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Please send any questions/comments/corrections to hhao@berkeley.edu.

Note: this study guide is a very condensed version of the course material (which will
still end up being a lot). In particular, most statements won’t be proved, and I won’t spend
space on giving many numerical examples. The goal is rather to give intuition to some of
the more difficult concepts, as well as to show how all of the concepts are interconnected (as
I think the course text manages to make linear algebra seem like a much more disjointed
subject than it actually is). Therefore, most of the below material is in a different order than
presented in the text, and I also don’t guarantee that 100% of the material on the midterm
will be discussed below.

1 Linear Systems and Vector Spaces

1.1 Basics of Linear Systems

Definition 1.1.1. A linear system is a set of equations of the form

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . . = . . .

am1x1 + am2x2 + . . .+ amnxn = bm

(1.1.1)

that are to be solved simultaneously (in the xi). Here, the aij are known coefficients, and the
bi are also known. We say that the system is consistent if it has at least one solution, and
inconsistent otherwise. We say that it is homogeneous if all the bi are 0, and inhomogeneous
otherwise.

The standard method of solving a linear system is Gaussian elimination, or row reduction.
To do this, we gather the aij into a coefficient matrix, and the bi into a column vector. We
then augment the coefficient matrix with the column vector, to obtain a matrix of the form

a11 . . . a1n b1
a21 . . . a2n b2
. . . . . . . . . . . .
am1 . . . amn bm


In essence, the augmentation “bar” functions as an equals sign (so the actual coefficient
matrix is the stuff to the left of the bar, and it is not really correct to think of the rightmost
column as part of the matrix), and the xi variables are suppressed. We then perform row
operations to transform the matrix to row echelon form. The allowed row operations are:
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� Swap two rows Ri and Rj.

� Scale a row by a scalar r ∈ R; that is, Ri → rRi.

� For two different rows Ri and Rj, add a scalar multiple of the row Ri to Rj; that is,
Rj → rRi +Rj for some r ∈ R (note in particular that Ri stays the same).

Here, addition and multiplication are done componentwise, so remember that all entries in
a row have to change together. To be in row echelon form, the matrix must satisfy:

� All nonzero rows are above any rows of all zeros.

� Each leading entry of a row is in a column to the right of the leading entry of the
row above it (in particular the leading terms go down and to the right in a “staircase”
pattern.

� All entries in a column below a leading entry are zeros.

To be in reduced row echelon form, the leading entry in a nonzero row must be 1, and each
leading 1 must also be the only nonzero entry in its column. So for instance:

Example 1.1.2. The matrix 1 0 4 0
0 0 1 1
0 0 0 0


is in row echelon but not reduced row echelon form.

Usually, row echelon form is sufficient to solve systems. We’ll do an example:

Example 1.1.3. Consider the system of equations given by the augmented matrix[
−1 3 4 2
2 0 2 −4

]
.

We can transform this matrix into row echelon form via the operations[
−1 3 4 2
2 0 2 −4

]
→
[
−1 3 4 2
1 0 1 −2

]
→
[
1 −3 −4 −2
1 0 1 −2

]
→
[
1 −3 −4 −2
0 3 5 0

]
.

What is this last matrix really telling us? Well, the two rows say that x1 − 3x2 − 4x3 = −2
and 3x2 + 5x3 = 0. The second equation gives us x2 = −5x3/3, and then the first row
gives us x1 = −2 − x3. Therefore we have solved the equation parametrically, with x3 our
parameter and x1 and x2 determined in terms of x3.

One more example:
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Example 1.1.4. Consider the system of equations given by the augmented matrix−1 3 4
2 3 1
1 2 0

 .
We reduce using row operations:−1 3 4

2 3 −2
1 −2 0

→
−1 3 4

0 9 6
0 1 4

→
−1 3 4

0 1 4
0 3 2

→
−1 3 4

0 1 4
0 0 −10.

 .
What does the last row actually mean? It says that 0x1 + 0x2 = −10, which is clearly
impossible. Therefore this system is inconsistent, since any solution to the original system
would obtain the contradiction 0 = −10 as a necessary deduction.

Remark 1.1.5. WARNING: Do not augment matrices for no good reason! Whenever
you write down an augmented matrix, you should have a very clear idea of what system of
equations you are trying to solve, and only then put down the “bar” in the appropriate place
(i.e. functioning as an equals sign) and carry out the row reduction. Randomly augmenting
and/or row reducing matrices is not likely going to help you. Row reduction should only
be carried out as one of the final steps in your solution, when you have to make an actual
numerical computation. The previous steps in the solution should involve general reasoning
using the results presented below about vector spaces, linear maps, etc.

1.2 Vector Spaces and Linear Combinations

The above shows us how to solve any specific linear system. Therefore we should attempt a
more significant question:

Question 1.2.1. Given a coefficient matrix with entries (aij), for which vectors (b1, . . . , bm)
can the system (1.1.1) be solved?

It is this question, and variants thereof, that are at the heart of linear algebra. To answer
this completely, we need to set up some terminology.

Definition 1.2.2. A (real) vector space V is a set, whose elements are called vectors, such
that:

� V has an addition operation with the following properties:

– The addition is associative and commutative.
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– There is a distinguised zero vector 0 ∈ V (the “zero vector”) such that 0 + v =
v + 0 = v for all v ∈ V .

– For every vector v ∈ V , there is a unique additive inverse vector −v such that
v − v = (−v) + v = 0.

� V also has a scalar multiplication operation, denoted rv or r · v for a real number
(scalar) r and vector v, such that:

– The scalar multiplication is “associative”: r(sv) = (rs)v for scalars r, s and vector
v.

– 1 · v = v for all v.

– Scalar multiplication is “distributive”: r(v+w) = rv+ rw and (r+ s)v = rv+ sv
for scalars r, s and vectors v, w.

– From this, it follows that 0 · v = 0 for all v ∈ V . Note that the 0 on the left-hand
side is the zero scalar, while the 0 on the right-hand side is the zero vector!

Example 1.2.3. The most familiar example of a vector space is Euclidean space Rn. This
is just the set of n-tuples of real numbers with the vector operations being componentwise
addition and scalar multiplication. Other examples include: the space Pn of polynomials of
degree at most n; Mm×n, the space of m × n matrices (with componentwise addition and
scalar multiplication); C[0, 1], the continuous functions from [0, 1] to R; C∞(R), the smooth
(infinitely differentiable) functions R→ R.

We will usually be discussing the Euclidean spaces Rn. On the other hand, it is useful
to adopt this more general framework, since we may sometimes have to deal with subsets of
Rn that are themselves vector spaces. We define this notion:

Definition 1.2.4. A subspace W of a vector space V is a subset closed under the vector
space operations of addition and scalar multiplication. This means that for any w,w′ ∈ W
and r ∈ R, w + w′ ∈ W and rw ∈ W .

From the definition, we see that the zero vector has to be in W . Moreover, we always
have a trivial subspace of V consisting of only the 0 vector, and V is of course a subspace of
itself. For more examples:

Example 1.2.5. The set of vectors (x, y) such that 3x − y = 0 is a subspace of R2, since
sums and scalar multiples of such vectors satisfy the same property. The set of vectors of
the form (1, y) is not a subspace of R2, since it doesn’t contain 0. The set of vectors of the
form (x, x2) is not a subspace of R2, since (1, 1) + (2, 4) = (3, 5) is not in this set.
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Let’s distill down to the essence of vector spaces, using Rn as our mental guide if we
need to. In vector spaces, we are allowed two operations: “add” and “scale”. A subspace is
simply a subset where, if we repeatedly apply these operations to various elements in that
subset, we never “leave” (i.e. produce elements outside) that subset. It is therefore useful
to formally define this notion of “applying addition and scaling over and over”:

Definition 1.2.6. Suppose {v1, . . . , vn} are vectors in a vector space Rn. A linear combi-
nation of the vi is a vector of the form c1v1 + . . .+ cnvn, where the ci are scalars. The span
of the vi is the set of all possible linear combinations of the vi.

Remark 1.2.7. We say that vectors {v1, . . . , vn} span a subspace W ⊆ V if every vector
in W is a linear combination of the vi, or equivalently, that W ⊆ Span(v1, . . . , vn). If all
the vi are in W , then we would have W = Span(v1, . . . , vn), and in this case we say that
{v1, . . . , vn} are a spanning set for W . Be careful with this multiple use of the word span!

We can therefore restate everything above in terms of linear combinations. A linear
combination of some vectors is just something that can be created by repeatedly applying
the operations of adding and scaling. A subspace is a subset of a vector space closed under
taking linear combinations. Moreover, since the span of a set of vectors is, by definition, all
possible linear combinations of the vi, and linear combinations of linear combinations (of the
vi) are once again linear combinations of the vi, we have:

Proposition 1.2.8. The span Span(v1, . . . , vn) of any set of vectors of V is a subspace of
V .

Example 1.2.9. Once again we consider vectors in R2. The span of (1, 0) and (0, 1) is clearly
all of R2, since every vector (x, y) is a linear combination of those two: (x, y) = x(1, 0) +
y(0, 1). The span of (1, 0) and (1, 1) is also all of R2, since (x, y) = (x − y)(1, 0) + y(1, 1).
However, the span of (1, 2) and (2, 4) is not all of R2, since any vector (x, y) in their span
must have y = 2x, but there are many vectors in R2 (e.g. (1, 1)) for which the second
component is not twice the first.

The vector spaces we deal with in this course are all special: they can be spanned by
finitely many vectors. We call such spaces finite-dimensional. For instance, of the vector
spaces introduced in Example 1.2.3, Rn, Pn, and Mm×n are finite-dimensional. C[0, 1] and
C∞(R) are not finite-dimensional (can you see why)?

1.3 Linear Maps

Now that we have set up the objects of our study (the vector spaces), we need to discuss
functions between vector spaces (and we will see how this relates to Question 1.2.1). Since
we have set up vector spaces as sets with the operations “add” and “scale”, in order for
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maps between vector spaces to have any sort of reasonable behavior, we need to stipulate
that they “preserve” these operations, so that the map T : V → W can transfer some
information about the relationships between vectors in V to relationships between vectors
in W (so T is not some completely random thing). So we define:

Definition 1.3.1. A T : V → W between vector spaces is linear if it “respects addition and
scalar multiplication”: that is,

� T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V .

� T (rv) = rT (v) for all r ∈ R, v ∈ V .

Example 1.3.2 (Very important!). Suppose A is a m × n matrix. Then the function
Rn → Rm, v 7→ Av is linear.

Example 1.3.3. For any vector spaces V and W , the map V → W sending all elements of
V to 0 ∈ W is linear, and called the zero map.

Example 1.3.4. The derivative map d : C∞(R)→ C∞(R) is linear, because the derivative
of the sum is the sum of the derivatives, and you can pull scalars out of derivatives.

Example 1.3.5. If P is the vector space of all polynomials with real-valued coefficients, and
a is a real number, then the map P→ R given by evaluation at a, p 7→ p(a) is linear.

Example 1.3.6. The map P→ P given by sending a polynomial p to the unique antideriva-
tive P of p such that P (0) = 0 is linear. It is not linear if we instead send p to the unique
antiderivative P ′ of p such that P ′(0) = 1 (why?).

Example 1.3.7. Suppose l is a line in the plane R2 that passes through the origin. Then
the map T : R2 → R2 that reflects a point through the line l is linear (this one is a bit
harder to see why that is the case).

Example 1.3.8. The linear maps from R to R are precisely of the form x 7→ cx for a fixed
real number c.

Example 1.3.9. Let S be the vector space of all infinite tuples of real numbers (x1, x2, . . .),
where the vector space operations are componentwise addition and scalar multiplication.
Consider the right-shift map S → S that sends (x1, x2, . . .) to (0, x1, x2, . . .). This is a linear
map.

By combining adding and scaling, we see that a map is linear if it respects linear
combinations:

T (c1v1 + . . .+ cnvn) = c1T (v1) + . . .+ cnT (vn). (1.3.1)

The most important application of this is when the vi already span the vector space V .
In that case, knowing the effect of the map T on the vi determines the entire map
T . The slogan is:
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A linear map T : V → W is determined on a spanning set for T .

In other words, I can reconstruct the map T just by knowing what it does to the vi.
Indeed, since any vector in V can be written as a linear combination c1v1 + . . . + cnvn,
Equation (1.3.1) tells us how to evaluate T on such a vector.

Example 1.3.10. Let V = Rn. Let ei be the vector in Rn with a 1 in the ith component,
and 0s elsewhere. We call the set {e1, . . . , en} the standard basis of Rn (we will explain the
name later). Suppose now that n = 3, and we have a linear map T : R3 → R2 such that
T (e1) = (1, 0), T (e2) = (1, 1), and T (e3) = (0, 2). Then we can calculate, for instance:

T (2, 3,−1) = T (2e1 + 3e2 − e3) = 2T (e1) + 3T (e2)− T (e3) = (−1, 1).

In general,
T (x, y, z) = T (xe1 + ye2 + ze3) = (x+ y, y + 2z).

We now come to the all-important result:

Proposition 1.3.11. Linear maps Rn → Rm are “the same thing” as m × n matrices A.
More precisely, every such A induces a linear map by multiplication against an n-vector (this
is Example 1.3.2), and more importantly, every linear map T : Rn → Rm is the same as the
map v 7→ ATv for a unique m× n matrix AT (so ATv = T (v) for all v).

In fact, the discussion in Example 1.3.10 shows how AT is determined from T . One can
show from the definition of matrix multiplication that if A has column vectors a1, . . . , an ∈
Rm, then for a column vector v = (x1, . . . , xn)T , we have

Av = x1a1 + . . .+ xnan. (1.3.2)

But since v = x1e1 + . . .+xnen and T (v) = x1T (e1)+ . . .+xnT (en), if we require that the ith
column ai of A to equal T (ei), we would have Av = T (v) for any v. This is the procedure
to (re)construct the matrix of a linear transformation.

Example 1.3.12. Let T be as in Example 1.3.10. Then T has the matrix A =

[
1 1 0
0 1 2

]
.

Indeed, we have

A

xy
z

 =

[
x+ y
y + 2z

]
as previously calculated.

Example 1.3.13. Let T be the map R2 → R2 that rotates vectors counterclockwise in the
plane by θ radians. One can show that T is a linear map. Then to determine the matrix
for T , we need to find the images of e1 and e2 under T . Basic trigonometry shows that
T (e1) = (cos(θ), sin(θ)) and T (e2) = (− sin(θ), cos(θ)), so that the matrix for T is[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.
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1.4 Linear Independence and Bases

In every situation above, we have been handed a linear map T , which we then analyze.
Suppose we are now faced with the task of constructing a linear map from V → W . Ideally,
we would like to mimic the above ideas but in reverse: supposing that {v1, . . . , vn} span V ,
we would choose w1, . . . , wn to be the images of the vi under T , and then stipulate that

T (c1v1 + . . .+ cnvn) = c1T (v1) + . . .+ cnT (vn) = c1w1 + . . .+ cnwn (1.4.1)

to give the effect of T on any element of V (this procedure is known as “extending by
linearity”). However, we may run into the following problem. Suppose for another set of
scalars d1, . . . , dn, where the ci are not all equal to the corresponding di, we had

c1v1 + . . .+ cnvn = d1v1 + . . .+ dnvn.

Then the above construction would force

c1w1 + . . .+ cnwn = d1w1 + . . .+ dnwn,

but there is no guarantee that this actually occurs for the wi that we chose, so we may
have run ourselves into a contradiction. Therefore, we are motivated to make the following
definition:

Definition 1.4.1. A set of vectors {v1, . . . , vn} in V is linearly independent if

c1v1 + . . .+ cnvn = 0 (1.4.2)

implies c1, . . . , cn are all 0. In other words, the only linear combination of the vi that equals
0 is the trivial linear combination, where all the scalars are 0. Otherwise the vi are linearly
dependent.

This condition really is what we wanted:

Proposition 1.4.2. The following are equivalent:

1. Vectors {v1, . . . , vn} in V are linearly independent.

2. For any w ∈ Span(v1, . . . , vn), w can be written as a linear combination of the vi in
exactly one way. In other words, if c1v1 + . . . + cnvn = d1v1 + . . . + dnvn, then ci = di
for all i.

Similarly,

Proposition 1.4.3. The following are equivalent:
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1. Vectors {v1, . . . , vn} in V are linearly dependent.

2. There is some vj that can be expressed as a linear combination of the other vi (not
including vj).

3. There is some w ∈ Span(v1, . . . , vn) such that w can be written as a linear combination
of the vi in more than one way.

Here are some examples to build some intuition for linear (in)dependence.

Example 1.4.4. We check whether a specific set of vectors in Rn is linearly independent by
solving the homogeneous system given by Equation (1.4.2), and seeing whether the zero solu-
tion is the only solution to that system. For instance, the vectors (1, 1, 2), (1, 2,−1), (−1, 1, 1)
in R3 are linearly independent, since the system

x1 + x2 − x3 = 0

x1 + 2x2 + x3 = 0

2x1 − x2 + x3 = 0

only has the trivial solution.

Example 1.4.5. In a more abstract situation, we will have to reason more generally. For
instance, suppose that v1, v2, v3 are linearly independent vectors in some space V . Then we
claim that v1 + v2, v2 + v3, v1 + v3 are also linearly independent. Indeed, if there was a linear
combination c1(v1 + v2) + c2(v2 + v3) + c3(v1 + v3) that was 0, then we also have

(c1 + c3)v1 + (c1 + c2)v2 + (c2 + c3)v3 = 0,

so linear independence of v1, v2, v3 gives c1 + c3 = c1 + c2 = c2 + c3 = 0. Solving this
homogeneous system yields c1 = c2 = c3 = 0, so that {v1 + v2, v2 + v3, v1 + v3} is a linearly
independent set of vectors by definition.

Example 1.4.6. Any set of vectors containing the 0 vector must be linearly dependent,
since if the set is {v1, . . . , vn} and v1 = 0, then we have a nontrivial linear combination
v1 + 0 · v2 + . . .+ 0 · vn that equals 0.

Example 1.4.7. By item (2) of Proposition 1.4, it is true that two vectors are linearly
dependent only if one is a scalar multiple of the other. But this is not true for three or more
vectors: the vectors (1, 0), (0, 1), (−1,−1) are linearly dependent as their sum is 0, but none
of the three is a scalar multiple of another.

Example 1.4.8. Notice that we are very particular to say “some vj” in item (2) of Propo-
sition 1.4. It is not true that if {v1, . . . , vn} are linearly dependent, then every vj can be
expressed as a linear combination of the other vi. Indeed, the vectors (1, 0), (0, 1), (2, 0) are
linearly dependent, and (2, 0) is a linear combination of (1, 0) and (0, 1), but (0, 1) is not a
linear combination of (1, 0) and (2, 0).
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Remark 1.4.9. Linear (in)dependence is a notion that applies to a set of (multiple) vectors.
It does not make sense to refer to a single vector as “linearly independent” (from what?), or
refer to any non-vector object as “linearly (in)dependent.”

We now investigate the relationship between the ideas of “spanning set” and “linear
independence”. Here is the first important result:

Proposition 1.4.10. Suppose a vector space V can be spanned by n vectors. Then if m > n,
any collection of m vectors in V are linearly dependent.

As an application, any n+ 1 vectors in Rn are linearly dependent. This makes sense, as
Rn only has n “degrees of freedom”, so n+ 1 vectors should have some dependency going on
among them. Similarly, Rn cannot be spanned by less than n vectors, because Rn contains
the n vectors e1, . . . , en, which are linearly independent.

Corollary 1.4.11. If two finite linearly independent sets of vectors {v1, . . . , vr} and {w1, . . . , ws}
both have the same span V ′ inside V , then r = s.

In the special case that V ′ = V , we conclude that any linearly independent spanning set
of V has the same (finite) size. Therefore we are motivated to define

Definition 1.4.12. A basis of a vector space V is a linearly independent spanning set. The
dimension of a finite-dimensional vector space is the size of any basis, and any spanning set
for V has at least dim(V ) elements.

It is a fact that every vector space has a basis. In the finite-dimensional case, this may
be seen as follows. Take a finite set {v1, . . . , vn} that spans V . Then if any of the vi, say vn,
is a linear combination of the others, remove it from the set; {v1, . . . , vn−1} will still span V
(because vn was “redundant” and did not allow us to produce any new linear combinations
that we could not have achieved using only v1, . . . , vn−1). If we continue this procedure of
removing vectors that are linear combinations of the others, until none of the vectors are
linear combinations of the others, then the remaining set will be linearly independent. Since
the span remained the same, this truncated set will be a basis for V .

It also follows from Proposition 1.4.10 that

Corollary 1.4.13. If W is a subspace of V , then dim(W ) ⊆ dim(V ), and if this inequality
is an equality, than W = V .

Therefore the notion of dimension behaves in a reasonable manner.
In the familiar case of Euclidean space, we have:

Example 1.4.14. The standard basis vectors ei form a basis for Rn, so Rn has dimension
n. The set {(1, 1), (−1, 1)} is a different basis (of size 2!) for R2.



1.4 Linear Independence and Bases

Midterm 1 Study Guide
Math 54, Spring 2024

Page: 11

Proposition 1.4.15. Suppose V is finite-dimensional with dim(V ) = n. Then any linearly
independent set of n vectors in V is a basis.

This is useful, since it is usually easier to check that a set of vectors is linearly independent,
than to check that it spans some vector space.

Remark 1.4.16. It is good to think of dimension as how much “information” you need to
specify a vector in a vector space V . The intuition is that we need n := dim(V ) pieces of
information, since if we have a basis {v1, . . . , vn} for V , then a vector is specified by giving
n real numbers that serve as the coefficients in the linear combination c1v1 + . . . + cnvn. In
the case of Euclidean space with the standard basis, these n pieces of information are just
the components in the n-tuple representation of a vector.

It is also useful to be able to extend linearly independent subsets of a vector space to a
basis.

Proposition 1.4.17. Suppose V is finite-dimensional and {v1, . . . , vk} is a linearly indepen-
dent set of vectors in V (so necessarily k ≤ dim(V )). Then we may always “complete” this
set to a basis of V : there are dim(V ) − k vectors w1, . . . , wdim(V )−k in V such that the set
{v1, . . . , vk, w1, . . . , wdim(V )−k} is a basis for V .

Example 1.4.18. Suppose we have the two linearly independent vectors (1, 1, 2, 3) and
(0, 0, 1, 1) in R4, which has dimension 4. Then by adding the 4 − 2 = 2 vectors (1, 0, 0, 0)
and (0, 1, 0, 0), we obtain a basis of R4.

Finally, we come back to the original motivation for a basis. The mantra is:

To give a linear map T : V → W is equivalent to specifying the image of a
V -basis in W .

By this, we mean the following. To construct a linear map T : V → W (assuming V is finite-
dimensional), we simply need to give a basis {v1, . . . , vn} of V , pick out elements w1, . . . , wn,
and stipulate that T (vi) = wi for each i. Then we can extend the effect of T via linearity
to all elements of V , using the rule of (1.4.1). Since every element v of V can be uniquely
expressed as a linear combination c1v1 + . . .+ cnvn (this is where linear independence comes
into play!), we are assured that there is no ambiguity in my choice of the representation
of v as a linear combination of the vi (such ambiguity caused the problem discussed at the
beginning of this subsection).

Remark 1.4.19. I strongly recommend to think in terms of linear maps, rather than always
relying on the crutch of matrix representations. The main reason is that matrix representa-
tions depend on the choice of a specific basis/coordinate system, and sometimes you do not
have the luxury of writing down such a choice (e.g. if you are working with some subspace
inside Rn). Direct matrix computations also frequently obfuscate the underlying geome-
try of the vector spaces and linear maps that appear, so that it’s very easy to get lost in
computations without having any idea of what is actually going on.
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1.5 Kernel (nullspace), Image (column space), and back to linear
systems

To every linear map, we may associate two important vector (sub)spaces:

Definition 1.5.1. Let T : V → W be a linear map, with associated matrix A if the map
is between Euclidean spaces Rn → Rm. The nullspace or kernel of T , denoted ker(T ) or
N(A), is the subspace of V consisting of vectors v such that T (v) = 0. The column space
or image of T , denoted Im(T ) or C(A), is the subspace of W consisting of vectors of the
form T (v) for some v ∈ V . That is, W consists of the elements in W that are “hit” by T .
Convince yourself that these are actually subspaces of V and W respectively!

Remark 1.5.2. It’s important to keep track of where the kernel and image “live”. The
kernel lives inside the domain of the linear map, and the image lives inside the codomain,
so unless the domain is the codomain (i.e. W = V ), the domain and codomain will not
“interact” (so you shouldn’t be adding vectors in the kernel to vectors in the image, for
instance!).

Let’s specialize to the case when T is a map Rn → Rm, so we can represent it by a
matrix A. Then by Equation (1.3.2), it follows that

Proposition 1.5.3. The image of T is exactly the span of the columns of A (hence the name
“column space”). The kernel of T is exactly the set of solutions x ∈ Rn to the homgeneous
system Ax = 0 (which can be computed by row reduction).

Therefore we can now answer the Question 1.2.1 that started this whole discussion.
Suppose we have a coefficient matrix A with entries (aij), and we ask for which vectors
b = (b1 . . . , bm) ∈ Rm can the system (1.1.1) be solved by a vector x = (x1, . . . , xn) ∈ Rn.
But the definition of matrix multiplication shows that (1.1.1) is simply asking us to find x
such that Ax = b. So:

Proposition 1.5.4. The linear system (1.1.1) can be solved exactly when b is in the column
space of A, or equivalently, when b is in the span of the columns of A.

Corollary 1.5.5. The linear system (1.1.1) can be solved for any b ∈ Rm when C(A) = Rm,
or equivalently, when the columns of A span Rm.

It is useful to give a word to the situation described in the previous corollary. Namely:

Definition 1.5.6. A linear map T : V → W is called onto, or surjective, if Im(T ) = W .

For linear maps T : Rn → Rm, being surjective implies that n ≥ m, or that the corre-
sponding matrix A has at least as many columns as rows and that the columns span Rm.
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This is a corollary of the fact that it requires at least m vectors to span Rm (cf. Definition
1.4.12).

Having answered Question 1.2.1 in some sense, we can now ask the “dual” question.
With the Ax = b setup as above, we now ask when this system has at most one solution
(instead of “at least one solution”, as before), so that a solution is unique if it exists. This
question is answered by the nullspace:

Proposition 1.5.7. The linear system (1.1.1) has at most 1 solution x ∈ Rn for any b ∈ Rm

exactly when N(A) = 0, or equivalently, when the columns of A are linearly independent.

It is again useful to make a definition based on this proposition:

Definition 1.5.8. A linear map T : V → W is called one-to-one, or injective, if ker(T ) = 0.
This is the same as saying that T (v) = T (v′) only if v = v′; that is, T sends distinct elements
of V to distinct elements of W .

For linear maps T : Rn → Rm, being injective implies that n ≤ m, or that the corre-
sponding matrix A has at least as many rows as columns and that the columns are linearly
independent in Rm. This is a corollary of the fact that no more than n vectors can be
linearly independent in Rn (cf. Proposition 1.4.10).

Remark 1.5.9. Notice that if T is both injective and surjective (in which case we call T
bijective), we must have n = m. In this case, if T is a linear map Rn → Rn with associated
matrix A, we can interpret this condition in the context of linear systems, in that the linear
system (1.1.1) has exactly 1 solution x ∈ Rn for any b ∈ Rm. This very interesting case will
be discussed further in the section about matrix inversion.

We should notice the duality between linear independence and span, nullspace and column
space, manifested in the solutions of linear systems (at most one solution versus at least one
solution).

2 Matrix Properties

2.1 Transpose

Definition 2.1.1. The transpose AT of a m × n matrix A is an n × m matrix given by
turning the rows of A into the columns of AT .

Example 2.1.2. If

A =

[
1 2 3
4 5 6

]
,
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then

AT =

1 4
2 5
3 6

 .
The actual geometric interpretation of the transpose is mysterious: it tells us the dual

linear map between the dual vector spaces. We won’t need this interpretation for the course,
so it’s fine to only remember the definition of the transpose. We also have the useful formula

(A1 . . . An)T = AT
n . . . A

T
1 ,

which is to say that the transpose of a product is the product of the transposes in the reverse
order.

2.2 Multiplication and Inversion

The most important thing to remember with matrix multiplication is that

Matrix multplication corresponds to composition of linear transformations.

By this, we mean that if T : Rn → Rm and S : Rm → Rp are linear transformations
with corresponding matrices AT and AS, then the matrix corresponding to the map S ◦ T :
Rn → Rp is given by ASAT . This makes it very apparent why matrix multiplication is
not in general commutative, since composition of functions is not commutative (usually
f ◦ g 6= g ◦ f). This also shows why, for instance, that AB = 0 does not imply A = 0 or
B = 0 (two nonzero functions can compose to the 0 function), and why AB = AC does not
imply B = C. Also, since the composition of one-to-one or onto functions is also one-to-one
or onto, we conclude the same is true for products of such matrices.

Example 2.2.1. Suppose T is the linear transformation R2 → R2 that rotates vectors by
π/2 radians counterclockwise, and S is the linear transformation that reflects vectors across
the line y = x. We will find the matrix AST for S ◦ T in two different ways. First, we
can directly compute this matrix by finding S(T (e1)) and S(T (e2)). We have S(T (e1)) =
S(0, 1) = (1, 0) and S(T (e2)) = S(−1, 0) = (0,−1), so the matrix for ST is

AST =

[
1 0
0 −1

]
.

We can also compute AT and AS individually, and multiply them. Since T (e1) = (0, 1)

and T (e2) = (−1, 0), AT =

[
0 −1
1 0

]
. Similarly, S(e1) = (0, 1) and S(e2) = (1, 0), so

AS =

[
0 1
1 0

]
. Then

ASAT =

[
0 1
1 0

] [
0 −1
1 0

]
=

[
1 0
0 −1

]
,
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which is precisely AST .

We now turn to the problem of when a linear transformation is invertible in some sense.
Suppose we have a linear map T : Rn → Rm represented by a matrix A. We ask when there
is a map S : Rm → Rn such that S ◦ T is the identity map on Rn, in which case we call T
left-invertible, and we call S a left inverse of T . Equivalently, we ask when there is a n×m
matrix B such that BA = I, in which case we call A left-invertible as well (and B the left
inverse of A). This is true when:

Proposition 2.2.2. A linear map T : Rn → Rm, or the corresponding matrix A, is left-
invertible exactly when it is injective.

In particular, if a m× n matrix is left-invertible, then we must have m ≥ n.
We can ask the same question about the dual notion of right-inveribility. Suppose we

have a linear map T : Rn → Rm with corresponding matrix A. We ask when there is
a map S : Rm → Rn such that T ◦ S is the identity map on Rm, in which case we call
T right-invertible and S the right inverse of T (note the difference from left-invertibility!).
Equivalently, we ask when there is a n ×m matrix B such that AB = I, in which case we
call A right-invertible as well. This is true when:

Proposition 2.2.3. A linear map T : Rn → Rm, or the corresponding matrix A, is right-
invertible exactly when it is surjective.

In particular, if a m× n matrix is right-invertible, then we must have m ≤ n.

Definition 2.2.4. A linear map T : Rn → Rm, or the corresponding matrix A, is invertible
if it is both left and right-invertible.

Putting together the above discussion, we see that if T : Rn → Rm is an invertible
linear map, when m ≥ n and m ≤ n, so that m = n and the associated matrix A must be
square. Moreover, T must be both injective and surjective; we call such maps bijective. We
saw in Remark 1.5.9 that this can be interpreted in the context of linear systems by saying
that the linear system Ax = b has a unique solution x ∈ Rn for all b ∈ Rn. Also, since
compositions of bijective maps are bijective, it follows that a product of invertible matrices
is also invertible.

Proposition 2.2.5. If A an an invertible square matrix, then its left and right inverses
coincide, and is unique. In other words, if A is an invertible n × n matrix, then there is
exactly one matrix, denoted A−1, such that AA−1 = A−1A = In, and if any other square
matrix satisfies either BA = I or AB = I, then B = A−1.

Therefore if A is invertible, the unique solution to Ax = b is given by x = A−1b. It also
follows from the above uniqueness that (A−1)−1 = A, and if A1, . . . , An are invertible square
matrices of the same dimension, then (A1 . . . An)−1 = A−1n . . . A−11 (i.e. the inverse of the
product is the product of the inverses in the reverse order).
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Remark 2.2.6. WARNING: It is not true that the left inverse or right inverse is unique
for (non-square) matrices. In other words, if A is some (possibly non-square) m× n matrix
such that BA = In and CA = In, we cannot conclude that B = C. The uniqueness only
holds for square matrices.

Now, suppose we know that a matrix A is square (of dimension n), which is a necessary
condition for it to be invertible. We ask under what conditions it is actually invertible. We
know that invertibility is equivalent to bijectivity of the corresponding linear map T : Rn →
Rn, but the magic fact is that

For a linear map T from Rn to itself, injectivity, surjectivity, and bijectivity are
all equivalent.

Remark 2.2.7. This fact is highly dependent on the fact that both the domain and codomain
of T are Rn! It is very much not true for a linear may between arbitrary vector spaces.

Writing out what this means in terms of matrices and linear systems, we get

Proposition 2.2.8. Suppose A is a square n × n matrix corresponding to the linear map
T : Rn → Rn. Then the following are equivalent:

1. A is an invertible matrix.

2. T is a bijective linear map. In other words, the columns of A form a basis for Rn, and
the linear system Ax = b has a unique solution x ∈ Rn for every b ∈ Rn, which is to
say that A can be row reduced to the identity matrix In.

3. T is an injective linear map. In other words, the columns of A are linearly independent
in Rn, and the linear system Ax = b has at least one solution x ∈ Rn for every b ∈ Rn.

4. T is a surjective linear map. In other words, the columns of A span in Rn, and the
linear system Ax = b has at most one solution x ∈ Rn for every b ∈ Rn.

To actually find the inverse, we use the method of row reduction. By Proposition 2.2.8,
we know that if a matrix A is invertible, it can be row-reduced to the n× n identity matrix
In. To find the inverse, we can perform a series of row operations to reduce A to In, while
performing the same row operations (in the same order) to the In. The result of those row
operations on In will be A−1. This is most commonly graphically represented by performing
row reductions on a “partitioned matrix” [A|In], with the matrix A on the left and the
identity on the right. (WARNING: this is not augmentation in the same sense as in
Section 1.1!).
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Example 2.2.9. We will find the inverse of the 3× 3 matrix1 1 −1
1 2 1
2 −1 1


(see Example 1.4.4). To do this, we set up1 1 −1 1 0 0

1 2 1 0 1 0
2 −1 1 0 0 1


and row-reduce the left-hand side to the identity. The computation is1 1 −1 1 0 0

1 2 1 0 1 0
2 −1 1 0 0 1

→
1 1 −1 1 0 0

0 1 2 −1 1 0
0 −3 3 −2 0 1

→
1 1 −1 1 0 0

0 1 2 −1 1 0
0 0 9 −5 3 1


→

1 0 −3 2 −1 0
0 1 2 −1 1 0
0 0 1 −5/9 1/3 1/9

→
1 0 0 1/3 0 1/3

0 1 0 1/9 1/3 −2/9
0 0 1 −5/9 1/3 1/9

 .
Therefore the desired inverse is  1/3 0 1/3

1/9 1/3 −2/9
−5/9 1/3 1/9

 .
Of course, if the matrix on the left-hand side of our partition cannot be row-reduced to

the identity matrix, then it is not invertible (Proposition 2.2.8).
Sometimes, a more abstract approach to finding the inverse is useful, as the next example

shows.

Example 2.2.10. Suppose T : R3 → R3 is a linear transformation such that T (2, 3, 6) =
(1, 0, 0), T (1, 0, 1) = (0, 1, 0), and T (−1,−1, 3) = (0, 1, 1). Then by linearity, T (−2,−1, 2) =
(0, 1, 1)− (0, 1, 0) = (0, 0, 1), so Im(T ) contains the standard basis for R3, and since Im(T )
is a subspace of R3, it follows that T is surjective (since Im(T ) must contain Span(e1, e2, e3),
which is already all of R3). By Proposition 2.2.8, it follows that T is invertible; we will
find the matrix corresponding to T−1. Since T−1 ◦ T = id, it follows that T−1 must send
(1, 0, 0) to (2, 3, 6), (0, 1, 0) to (1, 0, 1), and (0, 0, 1) to (−2,−1, 2). Therefore we obtain that
the matrix for T−1 is 2 1 −2

3 0 −1
6 1 2


without ever having calculated the matrix for T !
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3 Determinants

3.1 Basics of determinants

We will define determinants in a more abstract way than the course does. This is because the
“Laplace expansion” definition is both quite useless for computations (beyond small cases)
and does not capture the fundamental properties of the determinant (in fact, we will not
discuss Laplace expansion at all).

Definition 3.1.1. For a positive integer n, the determinant is the unique multilinear alter-
nating map

det : Rn × . . .×Rn︸ ︷︷ ︸
n times

→ R

such that det(e1, e2, . . . , en) = 1 (notice that the determinant is a function whose input is
n vectors in Rn, not just one). The determinant of a square matrix is the determinant, as
defined above, applied to the n column vectors of A.

We will briefly explain what “multilinear” and “alternating” mean, but feel free to skip
this; much more important are the consequences of these two properties.

� Multilinear means that if all but one of the n arguments in det are held fixed, then
det is a linear function Rn → R with respect to the last argument. For instance, the
function v 7→ det(e1, v, e3, . . . , en) is linear in v.

� Alternating means that if vi = vj for some i 6= j, then det(v1, . . . , vn) = 0. Equivalently,
swapping two entries in the argument changes the sign of the determinant:

det(v1, . . . , vn) = − det(v1, . . . , vj︸︷︷︸
ith position

, . . . , vi︸︷︷︸
jth position

, . . . , vn).

Let’s collect some consequences that follow almost immediately from Definition 3.1.1.

Proposition 3.1.2. Suppose v1, . . . , vn are vectors such that some vj is a linear combination
of the other vi. Then det(v1, . . . , vn) = 0. In other words, if A is a square matrix with linearly
dependent columns, then det(A) = 0.

It turns out that the converse is also true: If det(A) = 0, then A has linearly dependent
columns. But becauseAmust be square (the determinant is only defined for square matrices),
Proposition 2.2.8 tells us that

Proposition 3.1.3. A square matrix A is invertible if and only if det(A) = 0.



3.1 Basics of determinants

Midterm 1 Study Guide
Math 54, Spring 2024

Page: 19

Therefore the determinant gives us another test for the invertibility of A.
The intuition for the determinant is that it represents “oriented hypervolume”. The idea

is that the n-dimensional box whose sides are given by vectors v1, . . . , vn has determinant
det(v1, . . . , vn). For instance, in the n = 2 case, v1 and v2 could be two non-parallel sides
of a parallelogram inside the plane R2. Then the properties mentioned in the definition of
the determinant carry geometric meaning. The condition that det(e1, . . . , en) means that
we assign the “standard n-box” to have an n-volume of 1. The alternating condition is
manifested in the sense that if vi = vj for some i 6= j, then our box collapses to an n − 1-
dimensional box (think of the case n = 2 and n = 3 for intuition), so its n-volume must
be 0 (i.e. a flat parallelogram in 3-space has no 3-volume). Multilinearity also a geometric
explanation: for instance, if I start with an n-dimensional box and scale the length of one
side while keeping all other sides the same length, then the n-volume of my box should scale
by the same factor.

Less obvious are these two properties of determinants:

Proposition 3.1.4. The determinant is a multiplicative function: the determinant of a
product is the product of the determinants. In other words, if A and B are square
matrices of the same dimension, then det(AB) = det(A) det(B).

From this, it follows that the determinant of the product of matrices is unchanged if we
multiply the matrices in a different order—this is because mutliplication of real numbers is
commutative, and not because multiplication of matrices is commutative (which is false!). In
particular, if a product of matrices has zero determinant, then at least one of the matrices has
zero determinant, so any rearrangement of the product still has zero determinant. Thinking
of this in terms of invertibility/bijectivity of linear maps, the intuition is multiplying by any
one non-invertible matrix/non-bijective map “ruins” the invertibility/bijectivity of the whole
product of matrices/composition of linear maps, no matter which order we multiply/compose
in.

Corollary 3.1.5. If A is invertible, then det(A−1) = det(A)−1.

This is because we must have det(A) det(A−1) = det(AA−1) = det(In) = 1.

Proposition 3.1.6. For a square matrix, then det(A) = det(AT ).

Therefore A is invertible if and only if AT is, and in that case we have (AT )−1 = (A−1)T

(the transpose of the inverse is the inverse of the transpose). Moreover, since transpose
switches the rows and columns, this shows that we can also define the determinant of a
square matrix A as the determinant applied to its row vectors, and then all of the above
results hold with “column of A” replaced by “row of A”. In fact, we will exploit this by
calculating the determinant of A via row operations (column operations also work, but we
will do it the way the course does it).
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We now demonstrate the method of calcuating determinants using row operations. By
the above discussions, we can determine the effects of row operations on the determinant of
a matrix A. Suppose A has rows R1, . . . , Rn. Then:

1. If A′ is obtained from A by swapping two rows Ri ↔ Rj, then det(A′) = det(A).

2. If A′ is obtained from A by scaling a row Ri → rRi, then det(A′) = r det(A). In other
words, we can “factor out” a scalar r from a row if we remember to scale the new
determinant by the same amount. This in particular implies that det(rA) = rn det(A),
since each row is scaled by r.

3. If A′ is obtained from A by adding a scalar multiple of Ri to Rj (Rj → rRi +Rj), then
det(A′) = det(A).

We also need the fact that

Proposition 3.1.7. The determinant of a triangular matrix A (doesn’t matter if upper or
lower triangular) is the product of the entries on the main diagonal.

Using this, we can calculate some determinants.

Example 3.1.8. We calculate the determinant of

A =


10 11 12 13 426

2000 2001 2002 2003 421
2 2 1 0 419

100 101 101 102 2000
2003 2004 2005 2006 421

 .
(see next page)
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Using row reductions,

det


10 11 12 13 426

2000 2001 2002 2003 421
2 2 1 0 419

100 101 101 102 2000
2003 2004 2005 2006 421

 = det


10 11 12 13 426

2000 2001 2002 2003 421
2 2 1 0 419

100 101 101 102 2000
3 3 3 3 0



= 3 det


10 11 12 13 426

2000 2001 2002 2003 421
2 2 1 0 419

100 101 101 102 2000
1 1 1 1 0



= 3 det


0 1 2 3 426
0 1 2 3 421
0 0 −1 −2 419
0 1 1 2 2000
1 1 1 1 0



= −3 det


1 1 1 1 0
0 1 2 3 421
0 0 −1 −2 419
0 1 1 2 2000
0 1 2 3 426



= −3 det


1 1 1 1 0
0 1 2 3 421
0 0 −1 −2 419
0 0 −1 −1 1579
0 0 0 0 5



= −3 det


1 1 1 1 0
0 1 2 3 421
0 0 −1 −2 419
0 0 0 1 1160
0 0 0 0 5

 .
This last matrix is upper-triangular, so the determinant is the product of the diagonal entries,
which is −5. Therefore det(A) = (−3)(−5) = 15.

Example 3.1.9. Let A be a n×n matrix whose diagonal entries are a, and whose off-diagonal
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entries are b. So

A =


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a

 .
We will calculate det(A) in terms of a, b, and n. First, upon replacing the last row by
R1 +R2 + . . .+Rn, we have

det(A) = det


a b . . . b
b a . . . b
...

...
. . .

...
a+ (n− 1)b a+ (n− 1)b . . . a+ (n− 1)b.

 = (a+(n−1)b) det


a b . . . b
b a . . . b
...

...
. . .

...
1 1 . . . 1.

 .
We then subtract bRj from each of the other rows. This doesn’t change the determinant, so
that

det(A) = (a+ (n− 1)b) det


a− b 0 . . . 0

0 a− b . . . 0
...

...
. . .

...
1 1 . . . 1

 .
This last matrix is lower triangular with diagonal entries a− b, a− b, . . . , a− b, 1 (there are
n− 1 occurrences of a− b). It follows that det(A) = (a+ (n− 1)b)(a− b)n−1.

Example 3.1.10. We will show that if n ≥ 2, the determinant of an n × n matrix with
odd entries is divisible by 2n−1. Indeed, replace each row R2, R3, . . . , Rn by R1 + R2, R1 +
R3, . . . , R1 + Rn respectively; this does not change the determinant. Then each of the rows
from the 2nd to the nth row now has all even entries, so we can factor out a 2 from each of
those n− 1 rows, so that the determinant of this new matrix is divisible by 2n−1. Therefore
our original determinant must also be divisible by 2n−1.

We will give explicit formulas for determinants of 2 × 2 and 3 × 3 matrices. These are
useful to remember since the matrices are so small, but do not try to extend them to matrices
of higher dimension.

Proposition 3.1.11. The determinant of a 2× 2 matrix is

det

[
a b
c d

]
= ad− bc.

The determinant of a 3× 3 matrix is

det

a b c
d e f
g h i

 = aei+ bfg + cdh− ceg − bdi− afh.
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You can remember these rules by the following heuristic: add products of entries on
diagonals going right-down and subtract products of entries on diagonals going left-down,
“wrapping diagonals around” the matrix if necessary for the 3× 3 case.

Finally, we can use the determinant to give an explicit formula for the inverse of a 2× 2
matrix, which is sometimes useful to remember. As above, do not try to extend this rule to
matrices of higher dimension!

Proposition 3.1.12. If A =

[
a b
c d

]
is invertible, then

A−1 =
1

det(A)

[
d −b
−c a

]
.

Here, the necessary det(A) 6= 0 condition appears as we need to divide by precisely that
quantity.

Remark 3.1.13. I recommend against using the Laplace expansion method of calculating
the determinant, since it really isn’t useful unless n = 4. When n = 2 or n = 3 you have
explicit formulas, and when n ≥ 5 it is slow and error-prone in hand calculations due to the
recursive nature. It is much better to use row reduction when calculating all determinants
of dimension ≥ 4.

3.2 Cramer’s Rule and the Adjugate

Cramer’s rule is an explicit formula of solving the linear system Ax = b when A is invertible.
For each 1 ≤ i ≤ n, define Ai to be the same as the matrix A, but with the ith column
replaced by the column vector b. Then Cramer’s rule says that

Proposition 3.2.1. The ith component of the unique solution x to the linear system Ax = b
is given by

xi =
det(Ai)

det(A)
.

Since Cramer’s rule is cumbersome to apply when n ≥ 4 (due to the repeated determi-
nants that need to be calculated), it is not recommended as an alternative to the usual row
reduction method for concrete calculations. Usually Cramer’s rule is invoked in an abstract
context.

Finally, we will briefly discuss the adjugate matrix of a square matrix A. This is a
mysterious construction whose utility, like Cramer’s rule, is usually in a theoretical context.

Definition 3.2.2. Let A be n×n matrix. The (i, j)-th minor Mij is the determinant of the
n − 1 × n − 1 matrix given by deleting the ith row and jth column from A. The (i, j)-th
cofactor Cij is defined as (−1)i+jMij. Let C be the n×n matrix whose (i, j)-th entry is Cij.
We define the adjugate matrix of A to be adj(A) = CT .
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From this definition, one can show that

Proposition 3.2.3. For any square matrix A, Aadj(A) = adj(A)A = det(A)I. In particular,
if A is invertible, then A−1 = 1

det(A)
adj(A).

Just like with Cramer’s rule, the adjugate is pretty useless for actually computing any-
thing (for instance, the inverse of an invertible matrix). But to show its theoretical utility,
we will finish with a pretty result.

Proposition 3.2.4. Suppose an invertible square matrix A has integer entries. Then A−1

has integer entries if and only if det(A) = ±1.

Proof. It can be proved from the Definition 3.1.1 of the determinant of a matrix with integer
entries is also an integer. One can see this via induction on dimension with Laplace expansion,
or using the permutation expression of the determinant—the point is that the determinant
can be written as sums of products of the entries of the matrix, and sums and products of
integers are still integers.

So, if A−1 has integer entries, then both det(A) and det(A−1) = det(A)−1 are inte-
gers, which is only possible if det(A) = ±1. Conversely, if det(A) = ±1, then A−1 =
det(A)adj(A) = ±adj(A). But the entries of adj(A) are cofactors of A, which are, up to sign,
determinants of n − 1 × n − 1 matrices with integer entries. Therefore adj(A) has integer
entries, so A−1 does as well.
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