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Abstract

Elliptic curves over Q are objects of fundamental arithmetic interest. In 1971, Ogg
conjectured a relationship between the genera of the modular curves X1(N) and the
possible groups that can appear as the torsion group E(Q)tors of such elliptic curves,
setting off a program of work that culminated with Mazur’s full classification in 1978
[18]. Our goal in this thesis is to give a detailed exposition of the key exceptional
case N = 13 worked out by Mazur and Tate [19], prefaced by developing the scheme-
theoretic background on relative elliptic curves and modular curves necessary for this
goal.
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1 INTRODUCTION

1 Introduction

The main subject of this thesis is the arithmetic of elliptic curves. Recall that classically
(i.e. over a field k), an elliptic curve is given by a smooth genus 1 curve E/k with a chosen
point 0 ∈ E(k), and the pointed set of rational points E(k) can be naturally equipped with
the structure of an abelian group. For k a number field, the study of the structure of this
group begins with the following famous theorem, proved by Mordell in 1922 for k = Q:

Theorem 1.0.1. If E is an elliptic curve over a number field k, then E(k) is a finitely
generated abelian group.

Given Mordell’s Theorem, one natural question is to ask for the possible groups that could
occur as the torsion group E(Q)tors for elliptic curves E over Q. To approach this question,
one builds certain modular curves Y1(N) over Q, where the Q-points of Y1(N) correspond
to pairs (E,P ), where E is an elliptic curve over Q equipped with a point P ∈ E(Q) of
exact order N . In other words, if Y1(N)(Q) is nonempty then there is some elliptic curve
E with E(Q)tors containing Z/NZ as a subgroup, and conversely if Y1(N)(Q) is empty then
E(Q)tors can never contain Z/NZ.

To understand the rational points of Y1(N), one builds its compactification X1(N), which
is a geometrically connected smooth projective curve over Q, so we can speak of its genus.
It turns out that g(X1(N)) is 0 exactly when 4 ≤ N ≤ 10 or N = 12 (we need to exclude
N = 1, 2, 3 due to the presence of nontrivial automorphisms preserving some pairs (E,P ),
so the moduli problem that would give rise to Y1(N) is not representable). For such N ,
X1(N) ∼= P1

Q because X1(N)(Q) 6= ∅ (via a “degenerate N -gon” over Q), so Y1(N) has
many rational points. Following [16, Table 3], here are some parameterizations for elliptic
curves E over any field k with char(k) - N , where E(k) contains a point with exact order N :

� For N = 4: let Et be the elliptic curve given by the Weierstrass equation

y2 + xy − ty = x3 − tx2,

subject to the condition that the discriminant ∆(t) = t4(1 + 16t) is nonzero. Then
(0, 0) has exact order 4 in Et(k).

� For N = 5: let Et be the elliptic curve given by the Weierstrass equation

y2 + (1− t)xy − ty = x3 − tx2,

subject to the condition that the discriminant ∆(t) = −t5(t2 − 11t − 1) is nonzero.
Then (0, 0) has exact order 5 in Et(k).

� For N = 10: let Et be the elliptic curve given by the Weierstrass equation

y2 + (1 + c(t))xy − b(t)y = x3 − b(t)x2

1



1 INTRODUCTION

where c(t) = t(t − 1)(2t − 1)/(t2 − 3t + 1) and b(t) = t3(t − 1)(2t − 1)/(t2 − 3t + 1)2,
subject to the conditions that t2 − 3t + 1 6= 0 (so c(t) and b(t) make sense) and the
discriminant ∆(t) is nonzero. Then (0, 0) has exact order 10 in Et(k).

Note that the condition ∆(t) 6= 0 entails that the product t10(t−1)10(2t−1)5(4t2−2t−1)
of Q-irreducible polynomials is nonzero.

On the other hand, for N such that g(X1(N)) > 0, we may not have many rational points
on X1(N) at all, and consequently Y1(N)(Q) might be empty (in the case that all of the
rational points of X1(N) lie in the complement of Y1(N)). For N = 11, where g(X1(11)) = 1,
this is indeed the case: work of Billing and Mahler [2] shows that X1(11) can be explicitly
described as the elliptic curve y2 − y = x3 − x2, which only has 5 rational points, none
of which lie on Y1(11) (there are 5 non-isomorphic “degenerate” objects over Q, so these
account for the Q-points). This result led Ogg to conjecture [22] that Y1(N)(Q) is empty
if g(X1(N)) > 0. After proving this conjecture for N a prime greater than 13 and several
small exceptional values of N (e.g. 13, 18, 25), the final classification was given by Mazur
[18]:

Theorem 1.0.2 (Mazur [18]). The torsion group E(Q)tors of an elliptic curve E/Q is iso-
morphic to one of the following groups:

� Z/NZ for 1 ≤ N ≤ 10 or N = 12.

� Z/NZ× Z/2Z for N = 2, 4, 6, 8.

A proof of this theorem is well beyond the scope of this thesis, so instead we will focus
on the proof of Ogg’s conjecture in the key exceptional case N = 13, which is due to Mazur
and Tate [19]. As we will see, this is the smallest N for which X1(N) has genus greater than
1, which makes determining X1(13)(Q) unamenable to direct computation (as is possible in
the case N = 11).

We have tried to give complete proofs for all results in this thesis, providing references
when we need to use certain facts without proof. We will assume the basic theory of algebraic
geometry as in [13], as well as the classical theory of elliptic curves as in [26]. In Section 5,
we will also need some notions from algebraic number theory and class field theory.

As for the content of this thesis, Section 2 describes the theory of relative elliptic curves,
where the base scheme is no longer constrained to be the spectrum of a field. In this general
setting, we will discuss the commutative group scheme structure of relative elliptic curves,
as well as what we need to do in order to describe such curves with Weierstrass equations.
In Section 3, we use the groundwork from Section 2 to build the moduli space Y1(N) as a
scheme over Z[1/N ], and then we discuss some of its geometric properties. In Section 4, we
use analytic input to deduce more geometric properties of Y1(N)Q and its compactification
X1(N)Q. These two sections culminate in the genus formula (Proposition 4.2.12) for the
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2 RELATIVE ELLIPTIC CURVES

curve X1(N)Q. Finally, Section 5 contains the core of this thesis, which is the aforementioned
result of Mazur and Tate that no elliptic curve over Q has a rational point of exact order 13.
Our exposition follows their paper [19], but we provide many extra details and explanations
in order to make their arguments more accessible to a novice algebraic geometer.

In Appendix A, we have provided proofs of some useful results from algebraic geometry
that are used in the main exposition, but would otherwise distract from the flow of the
core arguments. The reader is advised to simply accept these results on faith during a first
reading, and come back to their proofs later.
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2 Relative Elliptic Curves

In this section, we develop the theory of elliptic curves over locally Noetherian base schemes.
We follow the discussion from Chapter 2 of [15], as well as from [6]. We will also freely invoke
the theory of elliptic curves over a perfect (e.g. algebraically closed) field, as in [26].

Definition 2.0.1. Let S be a locally Noetherian scheme. A proper smooth S-scheme E is
a (relative) elliptic curve over S if it has 1-dimensional geometrically connected fibers all of
genus 1, as well as a given section e : S → E.

Note that the section e is part of the data of the elliptic curve E. We might like to think
of this relative situation as a family of elliptic curves Es/k(s), parameterized by s ∈ S.

Remark 2.0.2. The section e is a closed immersion, since if f : E → S is the structure
map, then id = f ◦ e is a closed immersion and f is separated.
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2.1 The Group Law 2 RELATIVE ELLIPTIC CURVES

2.1 The Group Law

In this section, we give the construction of a commutative group law on E. When S is
the spectrum of a field k, the group law is given in the language of Weil divisors: given
P,Q ∈ E(k), P + Q is the unique R ∈ E(k) such that P + Q ∼ R + e as divisors on E.
Equivalently, R is the unique k-point such that I −1

P ⊗I −1
Q
∼= I −1

R ⊗I −1
e as OE-modules,

where Ix is the invertible sheaf corresponding to a point x ∈ E(k).
On the other hand, in the relative case, we need to include input from the base S, since

Pic(S) might not be trivial. This is done via the following theorem:

Theorem 2.1.1 ([15, 2.1.2, Abel’s Theorem]). For any invertible sheaf L on E such that
degEs(Ls) = 1 for all s ∈ S, there is a unique P ∈ E(S) and some N ∈ Pic(S) such that
L ∼= I −1

P ⊗ f ∗(N ). For such P , we write L ≈ I −1
P .

For an S-scheme T , we now use this theorem to build a commutative group structure on
E(T ) functorial in T ; that defines the desired group law on E by Yoneda’s Lemma. Given
P,Q ∈ E(T ) = ET (T ), the invertible sheaf I −1

P ⊗ I −1
Q ⊗ IeT on ET has fiberwise degree

1 + 1− 1 = 1, so we may find a unique R ∈ ET (T ) such that I −1
P ⊗I −1

Q ⊗IeT ≈ I −1
R . We

define P +Q to be R. For S = Spec(k) where k is a field, this is the classical procedure.
Clearly P +Q = Q+ P . To check that the binary operation “+” is associative, we note

that (P +Q) +R and P + (Q+R) are both described by the unique R′ ∈ ET (T ) such that

I −1
P ⊗I −1

Q ⊗I −1
R ⊗I 2

eT
≈ I −1

R′

where the left side has fiberwise degree 1 + 1 + 1− 2 = 1.
The section eT is the identity in E(T ) since we trivially have I −1

P ⊗I −1
eT
⊗IeT ≈ I −1

P ,
so P + eT = P . To see that we have inverses, note that IP ⊗ I −1

eT
⊗ I −1

eT
has fiberwise

degree 1, so there is a unique P ′ ∈ ET (T ) such that IP ⊗I −1
eT
⊗I −1

eT
≈ I −1

P ′ , in which case
the above construction shows that P + P ′ = eT . This gives a commutative group structure
on E(T ). This is functorial in T , since the formation of the invertible ideal sheaves IP is
naturally compatible with base change.

We will also need the following uniqueness and naturality properties of the group law:

Theorem 2.1.2 ([15, 2.5.1]). If (E, e) is an elliptic curve over S, then the group law described
above is the unique structure of an S-group scheme on E for which e is the identity section.
Moreover, if (E ′, e′) is another elliptic curve over S, then any S-morphism f : E → E ′ such
that f(e) = e′ automatically respects the (uniquely determined) group laws on E and E ′

(i.e. f is a homomorphism of S-group schemes).

2.2 Relative Weierstrass Equations

From the theory of elliptic curves over a field, we know that such curves correspond to
Weierstrass cubic equations with nonzero (invertible) discriminant and vice-versa.
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2.2 Relative Weierstrass Equations 2 RELATIVE ELLIPTIC CURVES

We now prove that affine-locally on the base, any elliptic curve E → S is given by a
smooth relative Weierstrass equation in P2 over the base. In other words:

Theorem 2.2.1. Affine-locally on S = Spec(A), E is given by (the projectivization of) a
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.2.1)

inside P2
S, where: ai ∈ A, the above equation has discriminant in A×, and the closed

immersion E ↪→ P2
S sends the identity section e to [0, 1, 0] ∈ P2(S).

We first claim that we may reduce to the case where S is local. Indeed, if we have s ∈ S
and an OS,s-scheme isomorphism E⊗SOS,s ∼= C⊗SOS,s, where C is the closed subscheme of
P2
S given by (2.2.1), then by “spreading out”, this isomorphism arises from a U -isomorphism

E ⊗S U ∼= C ⊗S U , where U ⊆ S is an affine open neighborhood of s (see [17, Ex. 3.2.5] for
a more precise statement). The property of being a unit can also be checked on stalks, so
the statement about the discriminant also reduces to the local case. Hence from now on, we
may and do assume S = Spec(A) with A local Noetherian.

By [15, 1.2.2], we know that the ideal sheaf Ie of the closed subscheme e(S) is invertible.
So pick a small enough affine open neighborhood U = Spec(B) of the closed point of e(S)
such that Ie is trivial over U . Since S is the spectrum of a local ring, U must then contain
all of e(S). Hence Ie|U = tOU for some non-zero-divisor t ∈ B, and Ie|E−e(S) = OE−e(S).

We will now need some facts about the pushforwards of the powers I −n
e for n ≥ 1.

Proposition 2.2.2. For n ≥ 1, f∗(I −n
e ) is locally free of rank n and its formation commutes

with base change.

Proof. For any s ∈ S, the k(s)-vector spaces H1(Es,I
−n
e(s)) and H0(Es,I n

e(s)⊗Ω1
Es/k(s)) have

the same dimension by Serre duality. But since we are in the genus-1 situation on fibers,
we have deg(I n

e(s) ⊗ Ω1
Es/k(s)) = −n + (2 · 1 − 2) < 0, implying by Riemann-Roch that

H0(Es,I n
e(s) ⊗ Ω1

Es/k(s)) = 0. Hence H1(Es,I
−n
e(s)) = 0, so the cohomology and base change

theorem [10, 7.7.5] implies R1f∗(I −n
e )(s) = 0 since the fibral base change map

ϕ1
s : R1f∗(I

−n
e )(s)→ H1(Es,I

−n
e(s))

is trivially surjective and therefore an isomorphism (note that I −n
e is flat over S since

it is locally free over E and f : E → S is smooth). Hence the fibral base change map
ϕ0
s in degree 0 is also surjective and thus an isomorphism, so f∗(I −n

e ) is locally free with
formation commuting with base change since the fibral base change map in degree −1 is
trivially surjective.

To determine the rank, we may pass to (geometric) fibers. Our task is to compute
h0(E,OE(ne)) for an elliptic curve (E, e) over a field k, where OE(ne) = I −n

e . But
h1(E,OE(ne)) = 0 by Serre duality since deg(Ω1

E/k(−ne)) = (2 · 1 − 2) − n < 0, so by

Riemann-Roch, we have h0(E,OE(ne)) = n.
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2.2 Relative Weierstrass Equations 2 RELATIVE ELLIPTIC CURVES

Since f∗(I −n
e ) is a locally free sheaf of finite rank over the local ring S = Spec(A), it

must in fact be free of rank n.

Proposition 2.2.3. The natural map OS → f∗(I −1
e ) is an isomorphism.

Proof. On fibers, the map OS → f∗(I −1
e ) becomes k(s) → H0(Es,OEs(e(s))), and we saw

in the proof of Proposition 2.2.2 that the right side has dimension 1 over k(s). The map is
clearly injective (interpreting it in the context of rational functions on an elliptic curve over
a field), so is an isomorphism. To prove that OS → f∗(I −1

e ) is an isomorphism, it suffices to
check that the stalk map OS,s → (f∗I −1

e )s is an isomorphism for any s ∈ S. This is a map
of finite free OS,s-modules (of rank 1) that reduces to the above isomorphism after passing
to the residue field k(s), so the stalk map is a surjection, hence an isomorphism.

This shows that f∗(I −1
e ) has an OS-basis {1}. Now, for each n ≥ 1, consider the exact

sequence
0→ I −n

e → I −n−1
e → I −n−1

e /I −n
e → 0.

This stays exact upon applying the pushforward f∗, since in the proof of Proposition 2.2.2
we saw that R1f∗(I −n

e ) vanishes. Moreover, since e is a section to f and I −n−1
e /I −n

e (being
killed by Ie) is supported on e(S) ⊆ E, we can identify

f∗(I
−n−1
e /I −n

e ) ∼= f∗e∗e
∗(I −n−1

e ) = e∗(I −n−1
e )

with I −n−1
e /I −n

e , where the first I −n−1
e /I −n

e inside the pushforward f∗ is considered as
a sheaf of OE-modules and the second standalone I −n−1

e /I −n
e is considered as a sheaf of

OS-modules. So after applying f∗, we have a short exact sequence

0→ f∗(I
−n
e )→ f∗(I

−n−1
e )→ I −n−1

e /I −n
e → 0 (2.2.2)

of OS-modules. The first two terms are free of ranks n and n+1, and the third term is free of
rank 1, since it isomorphic to OS via multiplication by tn+1 (recall that the non-zero-divisor
t is chosen so that Ie = tOU on an affine open neighborhood U = Spec(B) of e(S)). Write
θn for the surjective composite map

f∗(I
−n−1
e )→ I −n−1

e /I −n
e

·tn+1

−−−→
∼
OS.

Let’s look at the global sections of the sheaves in (2.2.2). Note that since S is affine, the
global sections functor is exact. This means that, beginning with n = 1, we can write:

� f∗(I −1
e ) is free on {1}.

� f∗(I −2
e ) is free on global sections {1, x}, where θ1(x) = 1.

� f∗(I −3
e ) is free on global sections {1, x, y}, where θ2(y) = 1.

6



2.2 Relative Weierstrass Equations 2 RELATIVE ELLIPTIC CURVES

The idea is that on U around e(S), x has a t-adic expansion t−2 + (higher order terms) in
terms of t, and similarly y has a t-adic expansion t−3 + (higher order terms), where B has
t-adic completion A[[t]]. Continuing on, we see that

� f∗(I −4
e ) is free on {1, x, y, x2}, since θ3(x2) = 1.

� f∗(I −5
e ) is free on {1, x, y, x2, xy}, since θ4(xy) = 1.

� f∗(I −6
e ) is free on {1, x, y, x2, xy, x3} and on {1, x, y, x2, xy, y2}, since θ5(x3) and θ5(y2)

both equal 1.

We conclude that θ5(x3− y2) = 0, which implies that x3− y2 is a global section of f∗(I −5
e ).

Using the above basis of f∗(I −5
e ), there is a unique equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai ∈ A, as in (2.2.1).
Recall that on the affine open U around e(S), we have I −3

e |U = t−3OU , and away from
e(S), we have I −3

e |E−e(S) = OE−e(S). Then by looking at the “t-adic expansions” of x and
y (i.e. the maps θn defined earlier), we see that t3x|U ∈ tOU and t3y|U ∈ 1 + tO(U). By
shrinking U if necessary, we can arrange that t3y|U ∈ O(U)×. Indeed, t3y|U is a unit in the
residue field at the unique closed point e(s) of e(S) ∼= Spec(B/tB) (its reduction mod t is
already 1), so it is a unit on some affine open around e(s) (necessarily containing all of e(S)),
which we can take to be U . Hence y generates I −3

e |U , and clearly 1 generates I −3
e |E−e(S),

so by the universal property of projective space, we can use the invertible sheaf I −3
e and its

generating global sections {x, y, 1} to define an S-map ψ : E → P2
S, given on E − e(S) by

(x, y) ∈ OE(E − e(s))2.
By the construction of ψ, the global section

W (X, Y, Z) := Y 2Z + a1XY Z + a3Y Z
2 − (X3 + a2X

2Z + a4XZ
2 + a6Z

3)

of O(3) on P2
S pulls back to y2 + a1xy+ a3y− (x3 + a2x

2 + a4x+ a6) = 0 in I −9
e (E), so the

natural map of graded rings

A[X, Y, Z] �
⊕
n≥0

Γ(E, (I −3
e )⊗n)

has W in its kernel. In particular, ψ factors through the closed subscheme C ⊆ P2
S given by

the projectivization of the Weierstrass equation (2.2.1).
We now show that ψ : E → C is an isomorphism. First, E is flat over S because it is

smooth, and C is flat over S because the Weierstrass polynomial is monic in both x and y.
Then via the “fibral isomorphism criterion” [12, IV.17.9.5], to show ψ is an isomorphism,
it suffices to check this for the maps ψs : Es → Cs between geometric fibers over each

7
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geometric point s of S. Hence, now S = Spec(k) for an algebraically closed field k. Since
I −3
e = OE(3e) has {1, x, y} a basis of its global sections, by [13, IV.3.1, IV.3.2] we conclude

that ψ is a closed immersion into C (more precisely, a closed immersion E → P2 whose
image must be contained in C). But a closed immersion between integral proper curves
must be an isomorphism, so ψ is an isomorphism.

Note that the discriminant of our Weierstrass equation must be a unit, since this can
be checked on fibers, where we use the theory over an algebraically closed field again [26,
III.1.4(a)].

To complete the proof of Theorem 2.2.1, it remains to show that ψ sends e(S) to [0, 1, 0]
as S-points. We saw earlier that t3y|U is a unit in O(U), so the restrictions x|U ∈ I −2

e |U
and 1|U ∈ O(U) are multiples of y|U by elements of Ie(U) = tO(U). Thus, x|U = b0y|U and
1|U = b2y|U for b0, b2 ∈ Ie(U). Then ψ(U) ∈ D+(Y ) ⊆ P2

S with ψ : U → D+(Y ) ∼= A2
S

given by (b0, b1) ∈ B2. By design, b0 and b2 in Ie(U) = tB have vanishing image in the
coordinate ring of e(S) ∼= Spec(B/tB). Hence the isomorphism ψ carries e(S) to [0, 1, 0] as
S-points of P2.

Remark 2.2.4. The closed subscheme E ⊆ P2
R given by any smooth Weierstrass equation

W as in (2.2.1) always has {1, x, y} in Γ(W,I −3
e ) as generators of the sheaf I −3

e , where
{1, x} forms a basis of f∗(I −2

e ), {1, x, y} forms a basis of f∗(I −3
e ), and t = y/x ∈ Ie(U) is

a basis of Ie|U for an open U around e(S). This gives a converse to Theorem 2.2.1, up to
keeping track of the unit leading coefficients of the t-adic expansions of x and y.

Example 2.2.5. To show that the statement of Theorem 2.2.1 really is only Zariski-local
on the base in general, we give an example of a relative elliptic curve with no smooth global
Weierstrass model in P2 over the base. To do this, we need the following theorem:

Theorem 2.2.6 ([28, 1.7]). Let E be an elliptic curve over an imaginary quadratic number
field K. If E has a global minimal Weierstrass model then E cannot have everywhere good
reduction.

In other words, if E did have everywhere good reduction, then it cannot be expressed as
the K-fiber of a smooth global Weierstrass model over OK (this would be a global minimal
Weierstrass model, since its discriminant ∆E would be a unit). The discussion in [4, Section
4] gives an example of an elliptic curve E over the imaginary quadratic field Q(

√
−259) with

everywhere good reduction. Explicitly, E is given by the Weierstrass equation

y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3,

where A = 16 and u = 222 + 36
√
−259.

In fact, by [4, 1.2], as we vary over all imaginary quadratic fields K, there are infinitely
many admitting an elliptic curve E/K with everywhere good reduction.
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2.3 Multiplication by N 2 RELATIVE ELLIPTIC CURVES

2.3 Multiplication by N

To complete our general discussion about relative elliptic curves, we need a fact concerning
the multiplication-by-N map [N ], where N is a nonzero integer. By commutativity of the
group law, for an elliptic curve E → S, [N ] : E → E is an S-homomorphism. We want to
prove the following:

Proposition 2.3.1. The map [N ] : E → E is finite locally free of rank N2. If N is invertible
on the base S, then [N ] is even étale.

The first part is the same as saying [N ] is finite flat, since S is locally Noetherian.

Proof. First, E is proper over S, so the S-map [N ] is proper. We next wish to show that
[N ] is quasi-finite, so then it is finite. It suffices for this to be checked on fibers over points
s ∈ S, and even geometric fibers. But from the classical theory [26, III.6.2], [N ]s : Es → Es
has finite fibers.

We now want to prove that [N ] is flat. Since E is flat over S, we can use the “fibral
flatness criterion” [11, 11.3.11] to reduce to verifying the flatness between fibers, and even
geometric fibers, over S. Since [N ]s is a nonconstant map between smooth connected curves
over an algebraically closed field, it must be surjective, so it induces injections of stalks. But
the stalks of Es are all regular local rings of dimension at most 1, hence fields or discrete
valuation rings. Since injections R1 ↪→ R2 of discrete valuation rings are flat (as R2 is
torsion-free over R1), we have the desired flatness of [N ]s. To conclude that the rank is N2,
we can just look at the rank on the generic fibers over geometric points of S, which is N2

by the classical theory.
It remains to prove that if N is invertible on the base, then [N ] is étale. We have a “fibral

étaleness criterion” [12, 17.8.2] in a similar manner as above, so it suffices to check étaleness
of each [N ]s, where N is invertible in k(s). Thus, now S = Spec(k) for an algebraically
closed field k with char(k) - N . We claim that we only need to check étaleness at the
identity e ∈ E(k). Indeed, for any point p ∈ E(k), the diagram

E E

E E

−p

[N ] [N ]

−Np

commutes, where the two horizontal arrows are isomorphisms (translation by a point). Thus,
the left vertical arrow is étale at p if the right vertical arrow is étale at e. Since k is
algebraically closed, and the étale locus is open, étaleness at E(k) is therefore sufficient.

Now, because we are working with smooth schemes over a field, and [N ](e) = e, it
suffices to show that the tangent map d[N ](e) : TE/k,e → TE/k,e is injective [17, 4.3.27]. By
Lemma A.1, this map is simply multiplication by the integer N on tangent vectors. But N
is invertible in k by assumption, so such a map of k-vector spaces is injective.

9
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Note that Proposition 2.3.1 implies that the S-group scheme E[N ] := ker([N ]) ∼= S×E E
(the fiber product with e : S → E and [N ] : E → E) is finite locally free over S, and if N is
invertible on S, E[N ] is even finite étale over S.

3 Algebraic Theory of Modular Curves

In this section, we work out parts of the theory of modular curves via algebraic approaches.
For the rest of this section, N ≥ 4 is an integer.

3.1 Some Definitions

We first need to define what we mean by an “exact order N point” on an elliptic curve E
over a Z[1/N ]-scheme S. We adopt the definition and equivalent conditions of [15, Lemma
1.4.4].

Definition 3.1.1. Suppose N is invertible on S. We say P ∈ E(S) has exact order N if it
is N -torsion (i.e. NP = e in E(S)) and the induced point Ps ∈ E(s) has exact order N (in
the classical sense) for every geometric point s of S.

Beware that this is the “wrong” definition if N is not invertible on S. With Definition
3.1.1, we can make the following definition:

Definition 3.1.2. The functor FN from the category of Z[1/N ]-schemes to the category of
sets is:

FN(S) = {(E,P ) : E/S is an elliptic curve, P ∈ E(S) of exact order N}/isomorphism.

We will prove that FN is representable, with universal object that is an elliptic curve in
“Tate normal form” (defined in Definition 3.1.3) equipped with a point (0, 0) of exact order
N . Even if N is not invertible on S, this is still true; we impose invertibility to ensure good
behavior of the representing object Y1(N). For instance, we’ll need invertibility to ensure
that it is smooth over Z[1/N ] (see Proposition 3.3.1), along with many other important
properties.

The Tate normal form of an elliptic curve will help us build the modular curves Y1(N).

Definition 3.1.3. A Tate normal form for an elliptic curve E → S = Spec(R) is a (global)
smooth Weierstrass model of the form

y2 + axy + by = x3 + bx2 (3.1.1)

with a, b ∈ R.

10
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Note that the equation (3.1.1) has discriminant

∆(a, b) = b3(−a4 + a3 − 8a2b+ 36ab− 16b2 − 27b), (3.1.2)

so b must be a unit (since one can check this on fibers). Moreover, (0, 0) = [0, 0, 1] is a
section on the curve (3.1.1) that is everywhere disjoint from the identity [0, 1, 0].

3.2 Tate Normal Form and Y1(N)

We now prove some facts concerning the Tate normal form.

Lemma 3.2.1. The Tate normal form admits no non-trivial change of Weierstrass coordi-
nates (x, y) 7→ (x′, y′) preserving (0, 0).

Proof. We adapt the proof of [26, III.3.1(b)]. By Remark 2.2.4, we see that {1, x} and {1, x′}
both form bases of f∗(I −2

e ), and {1, x, y} and {1, x′, y′} both form bases of f∗(I −3
e ). Since

S = Spec(R), there are elements u1, u2 ∈ R and r, s2, t ∈ R such that x = u1x
′ + r and

y = u2y
′ + s2x

′ + t. Moreover, u1 is a unit because OS = f∗(I −1
e ) (Proposition 2.2.3) and

f∗(I −2
e )/f∗(I −1

e ) ∼= I −2
e /I −1

e from (2.2.2) has both {x} and {x′} as an R-basis. Similarly,
u2 is a unit.

Upon substituting the expressions x = u1x
′ + r and y = u2y

′ + s2x
′ + t into (3.1.1), we

get an equation

(u2y
′ + s2x

′ + t)2 + a(u1x
′ + r)(u2y

′ + s2x
′ + t) + b(u2y

′ + s2x
′ + t) = (u1x

′ + r)3 + b(u1x
′ + r)2,

(3.2.1)

and since E ⊆ P2
S is defined by a Weierstrass equationW ′ in terms of x′ and y′, we must have

u3
1 = u2

2. Indeed, otherwise we can subtract u3
1W ′ from (3.2.1) to get a nontrivial R-linear

combination of {1, x′, y′, (x′)2, x′y′, (y′)2} that equals 0 on E, contradicting the fact that this
set forms a basis for f∗(I −6

e ).
Define u := u2/u1 and s := s2/u

2, so u2 = u1 and u3 = u2. Hence x = u2x′ + r and
y = u3y′+ su2x′+ t. Now, since (0, 0) is preserved by the coordinate transformation, r and t
must be 0. Then upon substituting u2x′ for x and u3y′+ su2x′ for y in (3.1.1), we rearrange
to get

(y′)2 +
a+ 2s

u
x′y′ +

b

u3
y′ = (x′)3 +

b− sa− s2

u2
(x′)2 − sb

u4
x′.

Since the Tate normal form in terms of x′ and y′ is such that a4 = 0 (in the notation of
(2.2.1)), we must have sb/u4 = 0. But b and u are both units, so s = 0. Also a2 = a3 for
Tate normal forms, so b/u3 = b/u2, giving u = 1. Hence x = x′ and y = y′.

Given this uniqueness, it is natural to try to describe when a relative elliptic curve actually
does have a Tate normal form. It turns out that in the case we ultimately care the most
about, this always happens:
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Proposition 3.2.2. If E is an elliptic curve over a ring R, and P ∈ E(R) is a point which
is not 2 or 3-torsion on any fiber, then E has a unique Tate normal form with P = (0, 0).

Proof. From Lemma 3.2.1, we have uniqueness. Moreover, it suffices to prove this proposition
when R is local. Indeed, by a spreading out argument (as at the start of the proof of Theorem
2.2.1), for every s ∈ Spec(R), we would then have a Tate normal form of E×R Us over some
open neighborhood Us of s, and these agree on overlaps by uniqueness (again Lemma 3.2.1),
so they globalize over S. So we may and do assume that R is local. The work in Section 2.2
shows that E has a Weierstrass model as in (2.2.1), and we want to transform it into Tate
normal form.

By assumption, P is not 2 or 3-torsion on any fiber, so it is not the point at infinity in any
fiber. In particular, if we write P in homogeneous coordinates [a′, b′, c′] in P2(R) (as we may
since R is local), c′ must be a unit as [a′, b′, c′] lands in D+(Z) in every fiber. Hence we can
scale by (c′)−1 to write P in the form [a, b, 1]. Changing variables via (x, y) 7→ (x− a, y− b)
in our Weierstrass equation (which preserves [0, 1, 0] ∈ P2(R)), we move P to (0, 0) and so
the new Weierstrass equation has the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

In particular we have a6 = 0 in R.
We now claim a3 is a unit. If not, it is 0 in some geometric fiber. Working in the case over

an algebraically closed field, we have y2+a1xy = x3+a2x
2+a4x, and using the tangent-chord

addition, we see that the line x = 0 intersects E at O := [0, 1, 0] and at P with multiplicity 2
(note that k[x, y]/(x, y2 +a1xy− (x3 +a2x

2 +a4x)) ∼= k[y]/(y2)). In other words, P = −P in
that fiber, contradicting the assumption on P . Hence we may make the change of variables
y 7→ y + (a4/a3)x over R preserving P = (0, 0), so now(

y +
a4

a3

x

)2

+ a1x

(
y +

a4

a3

x

)
+ a3

(
y +

a4

a3

x

)
= x3 + a2x

2 + a4x.

The a4x’s cancel, so (abusing notation by reusing the ai notation) we are left with a new
equation of the form

y2 + a1xy + a3y = x3 + a2x
2.

This new a3 is equal to the old a3, hence is a unit (or repeat the same argument for the new
a3).

We next claim a2 is a unit. If not, it is 0 in some geometric fiber, so with a Weierstrass
equation y2 + a1xy + a3y = x3 over an algebraically closed field, the tangent line y = 0 at
P meets E with order 3 (note that k[x, y]/(y, y2 + a1xy + a3y − x3) ∼= k[x]/(x3)). Hence
P = −2P in that fiber, but this again contradicts the assumption on P , so a2 is a unit.

We may make the change of variables y 7→ (a2/a3)3y and x 7→ (a2/a3)2x, so(
a2

a3

)6

y2 + a1

(
a2

a3

)5

xy + a3

(
a2

a3

)3

y =

(
a2

a3

)6

x3 + a2

(
a2

a3

)2

x
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and hence our new Weierstrass equation looks like

y2 + axy + by = x3 + bx2,

where b = a3(a2/a3)−3 = a2(a2/a3)−4 is a unit. This is a Tate normal form.

The importance of the Tate normal form is that it enables us to construct a representing
object for FN , along with its universal structure (which will be built as an elliptic curve in
Tate normal form). In other words, the result is:

Theorem 3.2.3. Let N ≥ 4 be an integer. Then the functor FN is represented by an affine
Z[1/N ]-scheme of finite type Y1(N), with universal object that is an elliptic curve in Tate
normal form.

Proof. Consider the elliptic curve E given by the Tate normal form y2 +axy+ by = x3 + bx2

over the ring R := Z[1/N, a, b][1/∆], where ∆ is as in (3.1.2). Notice that R is a UFD, as it
is a localization of one.

Now consider NP ∈ P2
R(R), where P := (0, 0). We have Pic(R) = 1 as R is a UFD,

so by the universal property of P2
R, everything in P2

R(R) is represented by a triple (u, v, w)
up to R×-scaling, with (u, v, w) = (1). Thus, we have NP = (f(a, b), g(a, b), h(a, b)) for
f, g, h ∈ R generating 1. Then the N -torsion requirement NP = (0, 1, 0) (as sections) over
an R-algebra R′ says exactly that f and h vanish in R′, since the natural map

{(a0, . . . , an) ∈ (R′)n+1|aj’s generate unit ideal in R′}/(R′)× → P2
R(R′)

is injective (being the subfunctor of points with the trivial line bundle, in regards to the
universal property of P2

R).
Hence, over R/(f, h), we get a universal elliptic curve in Tate normal form (namely,

y2 + axy + by = x3 + bx2) where P = (0, 0) is N -torsion. As we vary through proper
positive divisors d of N , over R we can likewise write d(0, 0, 1) = (fd, gd, hd) for some
fd, gd, hd ∈ R that generate 1. To make P “exact order N”, we want to avoid P being
d-torsion in any fiber, so hd has to be a unit at all points of the base. Thus, over the lo-
calization RN := (R/(f, h))[1/hd : d|N, 1 ≤ d 6= N ], we get an elliptic curve in Tate normal
form in which P has exact order N , and by Proposition 3.2.2, this is the universal such
curve. Hence Y1(N) := Spec(RN) represents the functor FN , over which the elliptic curve
y2 + axy + by = x3 + bx2 with P = (0, 0) is the universal structure.

3.3 Properties of Y1(N)

Having built the Z[1/N ]-scheme Y1(N), we would like to discuss some of its properties. In
particular, we want to show that:

1. Y1(N) is smooth over Z[1/N ];
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2. the fibers of Y1(N)→ Spec(Z[1/N ]) are of pure dimension 1;

3. the generic fiber Y1(N)Q is geometrically connected.

Later, we will “compactify” Y1(N) to a relative curve over Z[1/N ]: a smooth proper scheme
X1(N) of relative dimension 1 with geometrically connected fibers.

Proposition 3.3.1. The scheme Y1(N) is smooth over Z[1/N ].

Proof. Clearly Y1(N) is of finite type over Z[1/N ]. We shall use the “functorial criterion
for smoothness” as in [3, 2.2.6]. In particular, it suffices to prove that for any Artin local
ring A over Z[1/N ] with an ideal I such that I2 = 0 and A0 := A/I, the canonical map
Y1(N)(A)→ Y1(N)(A0) is surjective. Because of the functor that Y1(N) represents, we pick
an elliptic curve (E0, P0) over A0 with P0 of exact order N , and we want to lift this to such
a pair (E,P ) over A. Moreover, because A is local, E0 must have a global Weierstrass form
(even a Tate normal form, by Proposition 3.2.2), so we can lift its coefficients to define a
curve E over A. Notice that the discriminant of E is a unit, because A is local and it is a
unit in the quotient A0. Hence E really is an elliptic curve over A.

It remains to lift P0 to a point P of exact order N on E. Since we are over Z[1/N ],
E[N ] is étale by 2.3.1, so E[N ](A) → E[N ](A0) is bijective by [3, 2.2.6]. Moreover,
E[N ](A0) = E0[N ](A0). Hence P0 ∈ E0[N ](A0) uniquely lifts to some P ∈ E[N ](A), which
is N -torsion and is exact order N on fibers by design (A and A0 are both artin local with
the same residue field).

Proposition 3.3.2. The fibers of Y1(N)→ Spec(Z[1/N ]) are nonempty of pure dimension
1.

From the classical theory, for any algebraically closed field k with N ∈ k×, any elliptic
curve over k has a point of exact order N . Thus, Y1(N)(k) 6= ∅. This proves that the fibers
are nonempty.

For the second part of the statement, it is equivalent to check that for y ∈ Y1(N)(k),
where k is any algebraically closed field of characteristic not dividing N , the tangent space
to Y1(N)k at y is 1-dimensional over k. For this computation, let’s write Y := Y1(N)k, and
k[ε] := k[x]/(x2) for the dual numbers over k. Recall that the tangent space at y ∈ Y (k)
is the fiber of Y (k[ε]) → Y (k) above y as a set. We now need to describe a vector space
structure on it corresponding to the usual structure on Ty(Y ) = (my/m

2
y)
∗. Any k-map

f : Spec(k[ε]) → Y with image the k-point y induces a k-linear map F : my/m
2
y → (ε) ∼= k.

Conversely, consider the commutative diagram

k OY,y

k k(y) = OY,y/my

h

id π

ϕ
∼

(3.3.1)
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where h is the structure map on local rings induced by Y → Spec(k), ϕ is the unique
k-algebra map k(y)

∼−→ k, and π ◦h is inverse to ϕ. Then we have a composite k-algebra map

OY,y → OY,y/m2
y
∼= k ⊕my/m

2
y

given by

r 7→ (ϕ(r), r − h ◦ ϕ(r)) =: (ra, rb). (3.3.2)

So given F ∈ (my/m
2
y)
∗, we define f : Spec(k[ε]) → Y in the fiber above y ∈ Y (k) via

OY,y → k[ε], r 7→ r mod m2
y 7→ ra + F (rb)ε. This is a k-algebra map because (3.3.2) is

a k-algebra map and my/m
2
y is a square-zero ideal. Adding two maps F,G ∈ (my/m

2
y)
∗

corresponds to r 7→ ra + (F + G)(rb)ε on the level of k[ε]-points, and similarly for k-scalar
multiplication.

It is easy to check that r 7→ F (rb) is a k-derivation. Conversely, given a k-derivation
d : OY,y → k over y∗ := ϕ ◦ π : OY,y → k, we can check that r 7→ ϕ(r) + d(r)ε is a k-algebra
map OY,y → k[ε] lifting y∗. This defines inverse k-linear bijections between Derk(OY,y, k)
and Ty(Y ), so the following identifications give us the desired vector space structure on the
set-theoretic fiber of Y (k[ε])→ Y (k) above y:

Derk(OY,y, k)⇔ Ty(Y )⇔ {k-algebra maps OY,y → k[ε]} ⇔ fiber of Y (k[ε])→ Y (k) above y.

Let’s try to describe this fiber more concretely. A point y ∈ Y (k) has a corresponding
pair (E0, P0) over k (so P0 is exact order N on the elliptic curve E0). Hence the fiber is the
set of isomorphism classes of (E,P ) over k[ε] lifting (E0, P0).

Recall that once we lift E0 to some E, there is a unique choice of P lifting P0 by étaleness
of E[N ] (see the proof of Proposition 3.3.1). Moreover, if e, ẽ ∈ E(k[ε]) lift e0 ∈ E(k), then
in the group law of (E, e), the translation by ẽ on E is an isomorphism (E, e) ∼= (E, ẽ)
of pointed curves lifting the identity on E0. Note that this translation respects the group
laws on (E, e) and (E, ẽ) because of Theorem 2.1.2. Thus, we’re just trying to describe
isomorphism classes of liftings of bare curves E0 to E. For this, we will need to use some
basic tools from deformation theory:

Definition 3.3.3. If X is a scheme over a field k and k[ε] is the ring of dual numbers
k[x]/(x2), we say that a deformation of X (over k[ε]) is a flat scheme X ′ over k[ε], together
with a closed immersion i : X ↪→ X ′ such that i⊗k[ε]k : X → X ′⊗k[ε]k is an isomorphism. The
trivial deformation of X is X ⊗k k[ε], and the notion of isomorphism between deformations
of X is the evident one.

Lemma 3.3.4 ([14, 5.3]). Let X be a smooth variety over a field k. Then the set of isomor-
phism classes of deformations of X over k[ε] is in bijective correspondence with H1(X, TX/k).
Here, TX/k := H omX(Ω1

X/k,OX) = (Ω1
X/k)

∨ is the tangent sheaf of X over k.
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Proof. Let X ′ be a deformation of X, and let U := {Ui} be an affine open covering of X.
Over each Ui, deformations to k[ε] are isomorphic to the trivial deformation by Lemma A.2,
so choose isomorphisms ϕi : Ui ⊗k k[ε]

∼−→ U ′i as deformations, where U ′i is the induced
deformation on Ui coming from X ′. Note that if we restrict ϕi to the closed subscheme
Ui = (Ui⊗k k[ε])⊗k[ε]k, we get the identity map Ui → Ui by the very meaning of “isomorphic
as deformations.” Now, on each (affine) intersection Uij := Ui ∩ Uj, we get a k[ε]-scheme
automorphism ψij := ϕ−1

j ◦ ϕi of Uij ⊗k k[ε], which lifts the identity on Uij.
For a k-algebra R, let’s consider the elements θ ∈ Autk[ε](R⊗k k[ε]) = Autk[ε](R[ε]/ε2) re-

ducing to the identity mod ε. By the latter condition, for a ∈ R, we can write θ(a) = a+εd(a)
for some function d : R → R, so θ(a + εb) = θ(a) + εθ(b) = a + εd(a) + εb. Using that θ
is a k[ε]-algebra map, it’s not hard to check that d is actually a k-linear derivation, and
conversely such a d defines a k[ε]-algebra automorphism of R ⊗k k[ε] lifting idR. For two
such automorphisms θ1 and θ2 with corresponding k-linear derivations d1 and d2, we have
(θ1 ◦ θ2)(a + εb) = a + ε(d1(a) + d2(a)) + εb. In other words, elements in Autk[ε](R[ε]/ε2)
correspond to k-derivations R→ R (with the identity corresponding to the zero derivation),
and composing automorphisms corresponds to adding derivations.

Having gone through this brief detour, we return to the situation at hand. We may
think of the automorphisms ψij as elements θij ∈ H0(Uij, TX/k) = Derk(k[Uij], k[Uij]). On
Uijk := Ui ∩ Uj ∩ Uk, we have ψki ◦ ψjk ◦ ψij = id, so θki + θjk + θij = 0. It follows that
(θij) is a Čech 1-cocycle for the covering U valued in the sheaf TX/k. Moreover, if we change

each ϕi to another isomorphism ϕ′i : Ui ⊗k k[ε]
∼−→ U ′i as deformations, then (ϕ′i)

−1 ◦ ϕi
is an automorphism of Ui ⊗k k[ε] coming from some derivation αi ∈ H0(Ui, TX/k), so θ′ij
(corresponding to ψ′ij = (ϕ′j)

−1 ◦ ϕ′i) satisfies θ′ij = αj + θij − αi. In other words, (θij) differs

from (θ′ij) by a coboundary, which means (θij) is a well-defined class in Ȟ1(U, TX/k), which
we can check is compatible with refinements of open covers, and hence not dependent on the
affine covering U.

Thus, (θij) determines an element of H1(X, TX/k) as Čech theory for an affine open cover
of X computes quasicoherent sheaf cohomology on X. We can easily reverse the preceding
argument: a class (θij) of Čech 1-cocycles in Ȟ1(X, TX/k) glues trivial deformations of an
affine open cover to define a global deformation X → X ′. This gives the desired bijective
correspondence.

Now, recall that we have put a k-vector space structure on the set DefE0/k(k[ε]) of de-
formations of the k-scheme E0 over the first-order infinitesimal thickening k[ε] of k, since
this is exactly the fiber of Y (k[ε]) → Y (k) above y. It is concretely described as follows:
given deformations E,E ′ of E0 corresponding to k-algebra maps ψE, ψE′ : OY,y → k[ε] over
y∗ = ϕ ◦ π, we write

ψE(r) = ϕ(r) + dE(r)ε, ψE′(r) = ϕ(r) + dE′(r)ε

in the notation of (3.3.1), where dE and dE′ are some functions OY,y → k. Then dE and dE′
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are in fact k-derivations over y∗, and we define the sum E +E ′ to be the deformation of E0

corresponding to the k-algebra map ψE+E′ : OY,y → k[ε] (lifting y∗) associated to dE + dE′ :

ψE+E′(r) = ϕ(r) + (dE + dE′)(r)ε.

Similarly, for a scalar c ∈ k, we define the product cE to be the deformation of E0 corre-
sponding to the k-algebra map ψcE : OY,y → k[ε] (lifting y∗) associated to cdE:

ψcE(r) = ϕ(r) + c · dE(r)ε.

One can check that the set-theoretic bijection H1(E0, TE0) ∼= DefE0/k(k[ε]) also identi-
fies the natural k-vector space structure on H1(E0, TE0/k) (which comes from the addition
or scalar multiplication of derivations in Derk(k[Uij], k[Uij]), in the notation of the proof
of Lemma 3.3.4) with this k-vector space structure on DefE0/k(k[ε]) based on adding and
k-multiplying k-linear derivations. Since the latter vector space structure arose from a set-
theoretic identification of DefE0/k(k[ε]) with the tangent space Ty(Y ), we can finally give:

Proof of Proposition 3.3.2. The preceding shows that Ty(Y ) ∼= H1(E0, TE0/k) as k-vector
spaces. Thus, we just need to show that dimkH

1(E0, TE0/k) = 1. By Serre duality, this is
equal to dimkH

0(E0,Ω
1
E0/k
⊗ Ω1

E0/k
). Since E0 has genus 1, a Riemann-Roch calculation

shows that Ω1
E0/k
∼= OE0 . Thus, h0(E0,Ω

1
E0/k
⊗ Ω1

E0/k
) = h0(E0,OE0) = 1.

We postpone the discussion of the fibers of Y1(N) → Spec(Z[1/N ]) being geometrically
connected until later; this turns out to be a much harder fact (even over Q).

4 Analytic Theory of Modular Curves

In this section, we work out parts of the theory of modular curves via analytic approaches.
As in Section 3, N ≥ 4 is an integer.

4.1 The Analytic Theory of Y1(N)

In this subsection, we turn to the “classical” theory of Y1(N) as a quotient of the complex
upper half-plane H = {z ∈ C : Im(z) > 0}. It turns out this is the only way to get a grasp
on some of the properties of Y1(N)Q we want to know about (such as connectedness), a
concrete description of its “regular compactification” X1(N)Q, and its genus (after regular
compactification).

We will assume the basic facts of the theory of algebraic curves as laid out in [13, Chapter
IV]. Unless otherwise specified, in the rest of this subsection 4.1, we work over the base field
C, so by Y1(N), we really mean the base change Y1(N)C.

17



4.1 The Analytic Theory of Y1(N) 4 ANALYTIC THEORY OF MODULAR CURVES

Lemma 4.1.1. The natural map SL2(Z)→ SL2(Z/NZ) is surjective.

Proof. Let

[
a b
c d

]
be a representative of some class of SL2(Z/NZ), where a 6= 0 (replace

it by N , if necessary). We need to find a matrix in SL2(Z) that is equivalent to it mod
N . First, we claim that there is b′ ≡ b mod N such that (a, b′) = 1. If a = ±1, then take
b′ = b. If not, take the prime factorization a = ±pe11 . . . perr . For each 1 ≤ i ≤ r, write ti = 1
if pi|b, and 0 otherwise. By the Chinese remainder theorem, we can pick t ∈ Z such that
t ≡ ti mod pi for each i. We claim that (b+ tN, a) = 1, so that b+ tN is our required b′. If
not, pick a prime pi dividing both. If pi - b, then t ≡ 0 mod pi, a contradiction, but if pi|b,

then t ≡ 1 mod pi, so pi must divide N . Then it would not be possible for

[
a b
c d

]
to reduce

to an element of SL2(Z/NZ) (as pi divides each of a, b,N).
So with this b′ coprime to a, we can find integers x, y with ax − b′y = 1. Define

c′ := c + y(1 − (ad − b′c)) and d′ := d + x(1 − (ad − b′c)). Then

[
a b′

c′ d′

]
is in SL2(Z)

and equivalent to our original matrix mod N .

Recall that elliptic curves over C are analytically isomorphic to quotients C/Λ for some Z-
lattice Λ. Of course, lattices that are related by scaling by an element of C× give isomorphic
elliptic curves, so we may we assume that 1 is part of a Z-basis of Λ: it has the form Z⊕Zτ
for some τ ∈ H. We denote such a lattice by Λτ , and the corresponding elliptic curve C/Λτ

by Eτ . It is a classical fact (via functoriality of the complex-analytic exponential map) that
two such quotients Eτ , Eτ ′ are isomorphic if and only if Λτ = zΛτ ′ for some z ∈ C×.

We now define an action of SL2(Z) on H that preserves such isomorphism classes of Eτ ’s.

Suppose γ =

[
a b
c d

]
∈ SL2(Z). We set γ(τ) = (aτ + b)/(cτ +d), which is also in H by virtue

of γ having positive determinant, and moreover this indeed gives a group action. On the
other hand, notice that Λτ is Λγ(τ) scaled by cτ + d, since

Λγ(τ) = Z⊕ Z

(
aτ + b

cτ + d

)
·(cτ+d)−−−−→
∼

Z(cτ + d)⊕ Z(aτ + b),

and −b(cτ + d) + d(aτ + b) = τ , a(cτ + d)− c(aτ + b) = 1. Hence Eτ ∼= Eγ(τ).
We will now see what happens when we introduce points of exact order N :

Lemma 4.1.2. Any elliptic curve E/C with a point P of order N is isomorphic to some Eτ
with P = 1/N mod Λτ .

Proof. Pick τ ∈ H so that E = Eτ . We have P = (c/N)τ + (d/N), where c, d ∈ Z

satisfy (c, d) = (1) in Z/NZ (equivalently, gcd(c, d,N) = 1). Consider an element

[
a b
c d

]
18
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in SL2(Z/NZ), which by Lemma 4.1.1, lifts to some γ =

[
a′ b′

c′ d′

]
∈ SL2(Z). But P is also

(c′/N)τ + (d′/N) mod Λτ , since c′ − c, d′ − d ∈ NZ. Then the isomorphism Eτ
∼−→ Eγ(τ) via

scaling by 1/(c′τ + d′) sends the pair (Eτ , P ) to (Eγ(τ), 1/N mod Λγ(τ)).

We have built a surjective map of sets from H to Y1(N)(C) given by τ 7→ (Eτ , 1/N).
On the other hand, it is obviously not injective, since τ and τ + 1 have the same image, for
instance. It remains to find a good description of the fibers of this map. This is given by
using the following “congruence subgroups”:

Definition 4.1.3. We write Γ(1) to mean SL2(Z). We also set

Γ1(N) :=

{[
a b
c d

]
∈ Γ(1) : a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
.

One can check that Γ(1), and hence all the Γ1(N)’s, act “properly discontinuously” on
H, and so the quotient of H by any of these groups has a natural structure of a non-compact
connected Riemann surface. We will come back to this point later. For now, we just want
to show that Γ1(N)-orbits are the fibers of H→ Y1(N)(C).

Proposition 4.1.4. The fibers of H→ Y1(N)(C) are the Γ1(N)-orbits.

Proof. Using the fact that (cτ + d)Λγ(t) = Λτ , where (c, d) is the bottom row of a matrix
γ ∈ Γ(1), it is easy to see that the surjection H→ Y1(N)(C) is Γ1(N)-invariant and so de-
scends to a surjection H/Γ1(N)→ Y1(N)(C). Now, all we have to do is show that it is injec-
tive, so suppose that for τ, τ ′ ∈ H, there is an isomorphism of pairs (Eτ , 1/N)

∼−→ (Eτ ′ , 1/N).
Then Λτ = zΛτ ′ for some z ∈ C×, so 1 = z(cτ ′ + d) for some c, d ∈ Z and

1

N
+ j + kτ =

z

N
(4.1.1)

for some j, k ∈ Z.
Note that c and d must be coprime, since 1 is part of a basis of Λτ = zΛτ ′ . Thus, we can

pick a, b ∈ Z with ad − bc = 1. Let γ =

[
a b
c d

]
, so zΛτ ′ = Λγ(τ ′), as the latter is spanned

by 1 = z(cτ ′ + d) and (aτ ′ + b)/(cτ ′ + d) = z(aτ ′ + b), whereas the former is spanned by
z and zτ ′. Hence Λτ = Λγ(τ ′), so there are integers j1, j2, k1, k2 such that τ = j1γ(τ ′) + k1,
γ(τ ′) = j2τ + k2. Upon writing τ = j1j2τ + j1k2 + k1 and comparing imaginary parts, we
must have j1j2 = 1, so j1 = j2 = 1 as both τ and γ(τ ′) have positive imaginary part. Hence

τ = γ(τ ′) + k1, (4.1.2)

and so τ = γ′(γ(τ ′)) with γ′ =

[
1 k1

0 1

]
∈ Γ1(N).

19
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It remains to show that γ ∈ Γ1(N), so τ and τ ′ are in the same orbit of Γ1(N). By (4.1.1)
and (4.1.2), we have z = 1 + jN + kNτ = (1 + jN) + kN(γ(τ ′) + k1). Hence

1 = z(cτ ′ + d)

=

(
(1 + jN + kNk1) + kN

(
aτ ′ + b

cτ ′ + d

))
(cτ ′ + d)

= (1 + jN + kNk1)(cτ ′ + d) + kN(aτ ′ + b).

(4.1.3)

As Im(τ ′) 6= 0, we must have (1 + jN + kNk1)c + kNa = 0, so c ≡ 0 mod N . Also by
(4.1.3), (1 + jN + kNk1)d + kNb = 1, so d ≡ 1 mod N . Hence a ≡ 1 mod N by looking at
det(γ) mod N , so γ ∈ Γ1(N) by definition.

We have built a set-theoretic bijection H/Γ1(N) → Y1(N)(C), but it is not a tautology
that the complex manifold structures on H/Γ1(N) and Y1(N)(C) agree. Since a full proof
of this fact is quite involved, we will merely sketch the ideas:

Proposition 4.1.5. The bijection H/Γ1(N)→ Y1(N)(C) is a holomorphic isomorphism of
Riemann surfaces.

Note that because H is connected, so is H/Γ1(N). This in turn implies that Y1(N)C
is connected (since the complex topology is finer than the Zariski topology), so the generic
fiber Y1(N)Q is geometrically connected!

Sketch. Consider the free action of Z⊕Z on C×H by (n,m) : (z, τ) 7→ (z+n+mτ, τ). Let
E be the quotient space arising from this action, which has a natural map to H by taking the
second coordinate. Let ℘τ be the Weierstrass ℘-function corresponding to the lattice Λτ , so
℘τ is meromorphic on C with double poles at the points of Λτ [13, IV.4.12B]. The function
C×H→ CP1 defined by (z, τ) 7→ ℘τ (z) is holomorphic, and via the map

(z, τ) 7→

{
([℘τ (z), ℘′τ (z), 1], τ) z 6∈ Λτ

([℘τ (z)/℘′τ (z), 1, 1/℘′τ (z)] , τ) z ∈ Λτ

,

we get a holomorphic H-isomorphism

E ∼= {([x, y, z], τ) : y2z = 4x3 − g2(τ)xz2 − g3(τ)z3} ↪→ CP2 ×H

with the classical g2, g3 as in [13, IV.4.12B].
We have an action of Γ(1) on H, and we want to lift that to an action on E . For

γ =

[
a b
c d

]
∈ Γ(1), we can consider an action on C×H given by γ : (z, τ) 7→ (z/(cτ + d), γ(τ)),
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which lies over the action on H. Note that this map indeed defines an action, since if

γ′ =

[
a′ b′

c′ d′

]
∈ Γ(1), then the product γ′γ has bottom row

[
c′a+ d′c c′b+ d′d

]
and

γ′(γ(z, τ)) = γ′
(

z

cτ + d
, γ(τ)

)
=

(
z

(cτ + d) (c′(aτ + b)/(cτ + d) + d′)
, (γ′γ)(τ)

)
=

(
z

(c′a+ d′c)τ + (c′b+ d′d)
, (γ′γ)(τ)

)
.

We want to relate the Γ(1) and Z ⊕ Z-actions on C ×H. Define a “twisted” version of
the usual Γ(1)-action on Z⊕ Z by[

a b
c d

]
(n,m) = (an− bm,−cn+ dm).

A direct matrix calculation shows that this is still a group action. Then the Γ(1)-action on
C ×H is compatible with the Z ⊕ Z-action on C ×H in the sense that for any γ ∈ Γ(1),
(n,m) ∈ Z⊕ Z, and (z, τ) ∈ C×H,

γ((n,m) · (z, τ)) = (γ(n,m)) · (γ(z, τ)).

This can again be verified by direct calculation. Hence Γ(1)-action on C ×H descends to
an action on E over the usual Γ(1)-action on H.

We restrict to the action of the subgroup Γ1(N) on E . This action is free as it is free
on H. It turns out that the quotient H/Γ1(N) is the representing object for the functor F
associating a complex manifold to the set of holomorphic elliptic curves over that manifold
with a holomorphic section of exact order N on fibers, and moreover that the quotient
E/Γ1(N) with the section 1/N over H/Γ1(N) is the associated universal object.

Write E for the universal elliptic curve over Y1(N), as constructed in Theorem 3.2.3. By
the universality of E/Γ1(N) applied to the holomorphic elliptic curve Ean over Y1(N)an, we
get a unique holomorphic map Y1(N)an → H/Γ1(N) over which there exists a (necessarily
unique) Cartesian diagram

Ean E/Γ1(N)

Y1(N)an H/Γ1(N)

respecting the N -torsion sections. By inspection, Y1(N)an → H/Γ1(N) is exactly the inverse
of the set-theoretic bijection H/Γ1(N) → Y1(N)(C) constructed in Proposition 4.1.4 (note
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how this holomorphic map goes in the opposite direction to what we might expect!). Since
it is bijective and holomorphic between pure 1-dimensional complex manifolds, it must be a
biholomorphism.

4.2 The Analytic Theory of X1(N)

We have seen that Y1(N)Q is a smooth geometrically connected affine curve, but it is not
proper. This can be remedied via the regular compactification X1(N)Q, which is the unique
scheme fitting into the diagram

Y1(N)Q X1(N)Q

Spec(Q)

such that Y1(N)Q → X1(N)Q is an open immersion with dense image andX1(N)Q → Spec(Q)
is smooth and proper.

Remark 4.2.1. In general for any field K, the regular compactification X of a regular
affine curve Y over K exists and commutes with any separable base change L/K of fields,
since X is uniquely characterized as being regular and proper over the base field, containing
Y as a dense open subset. Let’s prove this in the case we are interested in: when K is
perfect (e.g. characteristic 0). Now, suppose the open immersion i : Y → X is the regular
compactification of Y . Then Y and X are both K-smooth (since the properties “regular”
and “smooth” are equivalent for finite type schemes over a perfect field), so YL and XL are
both L-smooth, hence regular.

It remains to show that iL : YL → XL makes YL dense inside XL. Since Y is a dense
open inside X, it is schematically dense (as X is reduced), so the natural map OX → i∗OY
is injective. Via the flat base change K → L, OXL → (iL)∗OYL is also injective, so again YL
is schematically dense in XL. But schematically dense implies topologically dense.

In particular, Y is geometrically connected over K if and only if X is. The “if” direction
is clear, since a regular connected scheme over a field must be irreducible, and nonempty
open subsets of irreducibles are irreducible. For the other direction, note that YKs is regular
and connected, hence irreducible, so its closure XKs is also irreducible.

It is hard to say much more about X1(N)Q via this definition, since it does not come
with a moduli space interpretation as Y1(N)Q does (in fact, a moduli interpretation in terms
of generalized elliptic curves does exist as in [7], but explaining that is well outside the scope
of this thesis, though it will be essential for later arithmetic applications in Section 5). We
will now take a completely different approach to describing X1(N)C, which is via its analytic
model. This will allow us to compute the genus of X1(N)Q as a curve over Q as well.
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Unless otherwise specified, in the rest of this subsection 4.2, we work over the base field
C. We will follow Sections 4.1 and 4.2 of [20], as well as Lecture 12 of [27].

Definition 4.2.2. Define H∗ to be union of the upper half-plane

H ⊂ C−R = P1(C)−P1(R)

together with the points of P1(Q), which we call the cusps. We give H∗ the natural topology,
described below, extending the one on H (as an open subset). For a finite-index subgroup Γ
of Γ(1), we write XΓ for H∗/Γ (in the future, Γ ⊆ Γ(1) will always have finite index, unless
otherwise specified). This is a compact Riemann surface, and we call z ∈ XΓ a cusp if it is
the image of a cusp of H∗ under the quotient H∗ → H∗/Γ.

Notice that Γ(1) acts transitively on the set of cusps: for rational a/b with a and b

coprime integers (where ±1/0 =∞), an element of the form

[
c d
b −a

]
sends it to∞. We can

also think of the topology on H∗ as follows: we give ∞ the neighborhood basis consisting of
sets Uk := {∞} ∪ {z ∈ H : Im(z) > k}, and a neighborhood basis at other cusps is given by
Γ(1)-translation. Moreover, because Γ has finite index in Γ(1), it follows that there are only
finitely many cusps of XΓ (as we just saw that Γ(1) acts transitively on P1(Q)).

We now introduce some notation involving stabilizers of points.

Definition 4.2.3. Write Γ for the image of a subgroup Γ ⊂ Γ(1) in Γ(1) := Γ(1)/{±1}.
Write Γz for the stabilizer of z ∈ H∗ under the action of Γ on H∗. Define Γz similarly.

Here, it is useful to quotient out by {±1}, since −1 stabilizes all points in H∗.
Ultimately, we would like to compute the genus of XΓ. The approach towards doing so

is as follows:

1. Understand the ramification of the quotient map XΓ → XΓ′ , where Γ ⊆ Γ′ are finite-
index subgroups of Γ(1).

2. Note that all cusps of H∗ lie in the same orbit under the Γ(1)-action; in other words,
X(1) := XΓ(1) looks like (H/Γ(1))∪{∞}. Moreover, the j-function gives a holomorphic
isomorphism X(1) ∼= CP1, so X(1) has genus 0.

3. Apply the analytic Riemann-Hurwitz formula to the map XΓ → X(1) to compute the
genus of XΓ.

We begin by discussing the stabilizers of points z ∈ H.

Lemma 4.2.4. For z ∈ H, there is a natural group isomorphism between Γ(1)z and Aut(Ez).
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Proof. Say γ =

[
a b
c d

]
∈ Γ(1) stabilizes z. Via the Z-basis {1, z} of Λz, we can construct an

automorphism g of Λz by setting g(z) = az+b and g(1) = cz+d, and extending Z-linearly to
all of Λz. Since z = γ(z) = (az+ b)/(cz+ d), we have g(z) = (cz+ d)z = g(1)z, so g extends
C-linearly to all of C via multiplication by g(1) ∈ C×. But g(Λz) = Λz by construction, so
it induces an automorphism of Ez = C/Λz.

Conversely, suppose that g is an automorphism of Ez. By the basic theory of complex
Lie groups, we may draw a commutative diagram

C C

Ez Ez

Lie(g)

exp exp

g

via functoriality of the complex-analytic exponential map, where we interpret C as the Lie
algebra of Ez and exp as the quotient map C→ Ez (a homomorphism since Ez is abelian).
Since Lie(g) is C-linear, it must be multiplication by some α ∈ C×.

Now, αΛz ⊆ Λz, so α = cz + d for some integers c, d. As in the proof of Proposition
4.1.4, c and d must be coprime (since we also have α−1Λz ⊆ Λz as α−1 gives the inverse

automorphism), so we can put them into a matrix γ =

[
a b
c d

]
∈ Γ(1). Then α−1Λz = Λγ(z)

as the latter is spanned by 1 = α−1(cz+d) and (az+b)/(cz+d) = α−1(az+b). So Λz = Λγ(z),
meaning that there are integers a, b, a′, b′ such that γ(z) = az + b and z = a′γ(z) + b′. So
z = a′(az + b) + b, and since Im(z) 6= 0, we must have a′a = 1 upon comparing imaginary
parts. But then a = 1 as both γ(z) and z have positive imaginary parts.

Hence γ(z) + n = z for some integer n. In other words,

z =

[
1 n
0 1

] [
a b
c d

]
(z) =

[
a+ cn b+ dn
c d

]
(z).

Therefore, we have built γ′ =

[
a+ cn b+ dn
c d

]
∈ Γ(1)z from g. These maps Γ(1)z → Aut(Ez)

and Aut(Ez)→ Γ(1)z are easily checked to be inverses and group homomorphisms.

We have shown Γ(1)z = End(Ez)
×. From [13, IV.4.19], we know that End(Ez)

× is larger
than {±1} if and only if End(Ez) equals Z[i] or Z[ω], for ω = e2πi/3 a primitive cube root of
unity with positive imaginary part.

Lemma 4.2.5. If End(E) = Z[i] (resp. End(E) = Z[ω]), then E ∼= Ei (resp. E ∼= Eω).

Proof. We first treat the case End(E) = Z[i]. Write E = C/Λ, so Λ is a lattice stable
under Z[i]. Then Λ is a torsion-free Z[i]-module of Z-rank 2, which means it must be a free
Z[i]-module of rank 1. Hence Λ = zZ[i] for some z ∈ C×, and so E ∼= Ei. The case of
End(E) = Z[ω] goes exactly the same way.
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Hence if z ∈ H, one of three cases occurs:

1. if z ∈ Γ(1)i, then Γ(1)z = {±1,±i} ∼= Z/4Z and Γ(1)z
∼= Z/2Z;

2. if z ∈ Γ(1)ω, then Γ(1)z = {±1,±ω,±ω2} ∼= Z/6Z and Γ(1)z
∼= Z/3Z;

3. for all other z, Γ(1)z = {±1} ∼= Z/2Z and Γ(1)z = 1.

In general, for Γ ⊂ Γ(1), we call z ∈ H an elliptic point of order 2 or 3 (for Γ) if Γz has order
2 or 3. We will call a ∈ XΓ an elliptic point of order 2 or 3 if one (any) of its preimages in
H∗ is an elliptic point of that order.

Having analyzed stabilizers at points of H, it remains to deal with the cusps.

Lemma 4.2.6. If z ∈ H∗ is a cusp, then Γ(1)z
∼= Z.

Proof. By transitivity of the Γ(1)-action on P1(Q), we may assume z = ∞. Then for

γ =

[
a b
c d

]
, we see that γ fixes z exactly when c = 0, which forces a = d = 1 or a = d = −1.

Hence, the elements of Γ(1)z are represented uniquely by the set of matrices of the form[
1 n
0 1

]
.

We conclude that for any finite-index subgroup Γ ⊆ Γ(1), Γz is nontrivial only if z is a
cusp or an elliptic point, and these only have finitely many orbits under Γ.

With all of these preliminaries out of the way, we can finally understand the ramification
of a quotient map XΓ → XΓ′ . The key result is:

Proposition 4.2.7 ([20, 1.8.1]). Let Γ ⊆ Γ′ be finite index subgroups of Γ(1). Let z ∈ H∗,
and let a be its image in XΓ. Then the ramification index at a of f : XΓ → XΓ′ is [Γ′z : Γz].

Proof. First suppose that z is a point in H. We may find a Mobius transformation ρ ∈ SL2(C)
such that ρ(z) = 0 and ρ(H) = D, where D is the unit open disk. Let Wr be an open ball
of radius r < 1 about 0, and set U := ρ−1(Wr). Now, we know from above that Γz is a finite
cyclic group, being a subgroup of Z/cZ for c = 2, 4, or 6, so ρΓzρ

−1 is as well. Hence, if
ψ ∈ Γz, then θ := ρψρ−1 is an automorphism of D fixing 0.

By the Schwarz Lemma, for all w ∈ D, |w| = |θ(θ−1(w))| ≤ |θ−1(w)| ≤ |w|, so all inequal-
ities are equalities, and by applying Schwarz again, θ acts as multiplication by some complex
number on the unit circle. But θ is also an element of a cyclic group with θ|Γz | = id (even
though θ and −θ are different elements of ρΓzρ

−1, they give the same automorphism), so θ
acts as multiplication by some e2πin/d, d = |Γz|. As another consequence, ρΓzρ

−1(Wr) = Wr,
so Γz(U) = U .
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Now, recall that Γ(1) ⊇ Γ acts properly discontinuously on H, so as U is an open
neighborhood of z, we can take r so small such that γ(U)∩U 6= ∅ implies γ ∈ Γz. Then the
image π(U) in the quotient XΓ is biholomorphic to U/Γz ∼= Wr/ρΓzρ

−1.
Define ϕ on Wr by ϕ(w) = wd for d as above. Since ϕ is invariant under rotation by 2π/d

radians, and the group ρΓzρ
−1 consists of all possible rotations by integer multiples of 2π/d,

it induces a biholomorphism Wr/ρΓzρ
−1 ∼= Wrd . We may therefore draw a commutative

diagram

U Wr

π(U) U/Γz Wr/ρΓzρ
−1 Wrd

π

ρ

ϕ

where all horizontal arrows are biholomorphisms.
Consider the commutative square formed by U , Wr, π(U), and Wrd . Ramification at

z can be computed locally, so we are able to restrict attention to its open neighborhood
U . But the ramification of ϕ at 0 is clearly of degree d, so the same is true about the
ramification of π at ϕ−1(0) = z. Hence, if Γ ⊆ Γ′ are finite index subgroups of Γ(1), the
quotient X → XΓ → XΓ′ satisfying z 7→ a 7→ a′ ramifies at z with degree |Γz| in the first
step and degree |Γ′z| in the composition. Hence, the ramification index of XΓ → XΓ′ at a is
the desired [Γ′z : Γz].

The other possibility is that a is a cusp, so we then can pick σ ∈ Γ(1) such that σ(z) =∞.
For Ul := {w ∈ H : Im(w) > l} and U∗l := Ul ∪ {∞}, set U := σ−1(Ul) and U∗ := σ−1(U∗l ),
so U∗ is an open neighborhood of z. Similar to before, we pick l to be large enough such
that γ(U∗) ∩ U∗ 6= ∅ implies γ ∈ Γz, which means that π(U∗) ∼= U∗/Γz ∼= U∗l /σΓzσ

−1. From
Lemma 4.2.6 and the fact that Γz = Γ(1)z ∩ Γ (in particular, Γz is finite index in Γ(1)z), it

follows that σΓzσ
−1 must be of the form

{[
1 h
0 1

]m
: m ∈ Z

}
for some unique h > 0. Then

define ψ : U∗l → Wr, where r = e−2πl/h, by

ψ(w) =

{
e2πiw/h w ∈ Ul
0 w =∞

Of course, ψ is invariant under the action of σΓzσ
−1, as the action fixes ∞ and only

translates other points by integer multiples of h, so we get a map U∗l /σΓzσ
−1 → Wr from

the quotient, which is once again an biholomorphism. We may therefore draw a commutative
diagram

U∗ U∗l

π(U∗) U∗/Γz U∗l /σΓzσ
−1 Wr

π

σ

ψ
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with biholomorphisms for the horizontal arrows. Hence, via these identifications, we are able
to think of e2πiz/h as a uniformizer (local coordinate) at a = π(z).

So if we have finite-index subgroups Γ ⊆ Γ′ of Γ(1), we know that Γz = hZ ⊆ Z = Γ(1)∞
for some positive integer h, and likewise Γ′z = h′Z ⊆ Z for some h′ necessarily dividing h. We
saw that e2πiz/h is a uniformizer of the local ring Oa, and similarly e2πiz/h′ is a uniformizer of
the local ring Oa′ with a′ the image of z in XΓ′ . But the valuation of e2πiz/h′ in Oa is visibly
h/h′ = [Γ′z : Γz], and this is exactly the ramification of the quotient XΓ → XΓ′ at a.

We can now prove the genus formula for XΓ. Recall the Riemann-Hurwitz formula for
an analytic degree-n map f : S ′ → S between compact connected Riemann surfaces:

2g(S ′)− 2 = n(2g(S)− 2) +
∑
p∈S′

(ep − 1),

where ep is the ramification index at p. We will apply this to the quotient map XΓ → X(1)
for a finite-index subgroup Γ ⊆ Γ(1).

Theorem 4.2.8 (Genus Formula). Let Γ ⊆ Γ(1), and let d be the index [Γ(1) : Γ] (notice
that this is generally not [Γ(1) : Γ]!). Let v2 and v3 be the number of elliptic points of orders
2 and 3 in XΓ, respectively. Let v∞ be the number of cusps in XΓ, and let g be the genus of
XΓ as a Riemann surface. Then

g = 1 +
d

12
− v2

4
− v3

3
− v∞

2
. (4.2.1)

Proof. The quotient f : XΓ → X(1) has degree d, since any non-elliptic, non-cusp point of
H∗ has trivial Γ(1)-stabilizer and exactly d preimages, none of which are ramified. Then by
applying Riemann-Hurwitz to f , we have

2− 2g = 2d−
∑
p∈XΓ

(ep − 1).

Let q2, q3, and q∞ be the images of i, ω, and ∞ in X(1). By Proposition 4.2.7, we deduce
that ep = 1 unless p lies above q2, q3, or q∞, since otherwise Γ(1)z is already trivial for z ∈ H∗

above p.
First, the points of f−1(q2) that are elliptic (with respect to Γ) are unramified, since

they must be elliptic of order 2, and the corresponding index [Γ(1)z : Γz] is 1. Those
that are not must have Γz = 1 and ep = 2, but the total number of points in f−1(q2),
counted with multiplicity, is d. Hence the number of ramified points is (d − v2)/2, so that∑

f(p)=q2
(ep − 1) = (d− v2)/2. By similar logic,

∑
f(p)=q3

(ep − 1) = 2(d− v3)/3.

Finally, f−1(q∞) consists of exactly the cusps of XΓ, since the cusps of H∗ form a single
orbit under Γ(1). Hence

∑
f(p)=q∞

(ep − 1) =
∑

f(p)=q∞
ep −

∑
f(p)=q∞

1 = d − v∞. Plugging
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these equations into the Riemann-Hurwitz formula, we get

2− 2g = 2d− d− v2

2
− 2(d− v3)

3
− (d− v∞),

which gives (4.2.1) when rearranged.

We now define X1(N) := XΓ1(N). It is a fact that compact Riemann surfaces are both
“uniquely algebraic” and are uniquely determined by the complement of finitely many points,
so this model of X1(N) over C agrees with the analytification of the algebro-geometric
“regular compactification” introduced at the beginning of this section. Let’s apply the genus
formula to X1(N); the result will be of key importance to us later.

Recall from Theorem 4.2.8 that the degree of X1(N)→ X(1) is

d = dN = [Γ(1) : Γ1(N)] =
1

2
[Γ(1) : Γ1(N)],

since −1 6∈ Γ1(N) (as N ≥ 4 by assumption). By a Chinese remainder theorem-style
computation, we can compute |SL2(Z/NZ)| = N3

∏
p|N (1− (1/p2)), and as there are N

equivalence classes of matrices of the form

[
1 ∗
0 1

]
mod N , we use the surjectivity of the

reduction map Γ(1)→ SL2(Z/NZ) to conclude that d = (N2/2)
∏

p|N (1− (1/p2)).

We next show that H∗ has no elliptic points for Γ1(N). If z ∈ H and γ =

[
a b
c d

]
is in

Γ1(N)z, then cz2 + (d− a)z − b = 0. The discriminant of this quadratic is

(tr(γ))2 − 4 det(γ) = (tr(γ))2 − 4,

and since z has nonzero imaginary part, this must be negative. So, |a + d| < 2 but
a + d ≡ 2 mod N , which is impossible as we assume N ≥ 4. Therefore v2, v3 = 0 for
Γ1(N).

It remains to compute v∞ for Γ1(N).

Lemma 4.2.9. For Γ ⊆ Γ(1), γ 7→ γ(∞) induces a bijection of Γ\Γ(1)/Γ(1)∞ onto the
cusps of XΓ, so |Γ\Γ(1)/Γ(1)∞| = v∞(Γ).

Note that since −1 ∈ Γ(1)∞, we have Γ\Γ(1)/Γ(1)∞ ∼= Γ\Γ(1)/Γ(1)∞.

Proof. If hxk = y with h ∈ Γ, x, y ∈ Γ(1), and k ∈ Γ(1)∞, then x(∞) = xk(∞) and y(∞)
are the same mod Γ. Hence the map is well-defined, and if x(∞), y(∞) are the same in
XΓ, then y−1hx ∈ Γ(1)∞ for some h ∈ Γ, so the map is injective. The map is also clearly
surjective.
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Define Γ(1)+
∞ :=

{[
1 n
0 1

]
: n ∈ Z

}
, which is an index-2 subgroup of Γ(1)∞. Also, let

MN be the set of order-N elements of the additive group (Z/NZ)⊕2, so MN consists of the
ordered pairs (a, c) such that a and c generate the entire group Z/NZ. Then we put the
following two equivalence relations on MN :

(a, c) ∼ (a′, c′) if (a′, c′) = ±(a+ nc, c) for some n ∈ Z/NZ.

(a, c) ∼′ (a′, c′) if (a′, c′) = (a+ nc, c) for some n ∈ Z/NZ.

First, we show that there is a Chinese remainder theorem-style decomposition of MN/ ∼′:

Lemma 4.2.10. There is a natural bijection (MN/ ∼′) ∼=
∏

pe|N(Mpe/ ∼′pe), where the
product is taken over the maximal prime powers dividing N , and ∼′pe is the analogous
equivalence relation on Mpe .

Proof. There is an obvious surjective map (MN/ ∼′) →
∏

pe|N(Mpe/ ∼′pe), and it remains

to show that it is injective. If (a, c) ∼′pe (a′, c′) for all pe|N , then there is np such that
(a+npc, c) ≡ (a′, c′) mod pe. Then c ≡ c′ mod N , and we can lift all the np’s to a compatible
n ∈ Z/NZ. So (a + nc, c) and (a′, c′) are equal mod all pe, hence equal mod N , meaning
that (a, c) ∼′ (a′, c′).

The importance of the equivalence relations ∼ and ∼′, in regards to counting cusps of
X1(N), is as follows:

Lemma 4.2.11. There are bijections

Γ1(N)\Γ(1)/Γ(1)+
∞ →MN/ ∼′, Γ1(N)\Γ(1)/Γ(1)∞ →MN/ ∼ (4.2.2)

both given by

[
a b
c d

]
7→ (a, c) mod N .

Proof. A direct computation with representatives of classes in Γ1(N)\Γ(1)/Γ(1)+
∞ and in

Γ1(N)\Γ(1)/Γ(1)∞ shows that both maps are well-defined. Note that Lemma 4.1.1 shows
that for any integers a, c with (a, c,N) = 1, there are integers a′, c′ with a′ ≡ a mod N ,
c′ ≡ c mod N , and (a′, c′) = 1. Hence the maps of (4.2.2) are surjective, so we only need to
show their injectivity. We omit the remainder of the proof, as it is just a long computation
in matrix and modular arithmetic. See [8, 3.8.3] for the details.

So we may draw a commutative diagram

Γ1(N)\Γ(1)/Γ(1)+
∞ MN/ ∼′

Γ1(N)\Γ(1)/Γ(1)∞ MN/ ∼

ψ
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where the horizontal arrows are the bijections of (4.2.2) and the vertical arrows are the
natural quotient maps. We claim that the fibers of ψ each have size 2 when N ≥ 5.

For (a, c) ∈ MN/ ∼, we just need to check that (a, c) 6∼′ (−a,−c). If there is such an
equivalence, then c ≡ −c and a + nc ≡ −a mod N for some n. If c ≡ 0, then a ≡ −a,
which is impossible unless N = 2 due to the condition that (a, c) is order N in (Z/NZ)⊕2.
If c 6≡ 0, then nc ≡ −2a, but nc is either c or 0 (as c ≡ −c), so a has order 2 or 4 in Z/NZ.
Hence (a, c) has order 2 or 4 in (Z/NZ)⊕2, but again this cannot happen for N ≥ 5. Hence
|MN/ ∼′| = 2|MN/ ∼| when N ≥ 5 (note that when N = 4, |MN/ ∼′| = 5 and |MN/ ∼| = 3,
so by Lemma 4.2.9, v∞(Γ1(4)) = 3; this is related to the phenomenon of “irregular cusps”).

It remains to compute |MN/ ∼′| for N ≥ 5. By Lemma 4.2.10, we can reduce to the case
where N = pe is a prime power. Considering a fixed (a, c) ∈Mpe , let f be the largest integer
with 0 ≤ f ≤ e such that pf |c. Then it is easy to see that (a, c) ∼′pe (a′, c) exactly when
a ≡ a′ mod pf . So, for a fixed c, the number of inequivalent (a, c) under ∼′ is ϕ(pf ), since
a and c must generate 1 in Z/pfZ. On the other hand, for any 0 ≤ f ≤ e, the number of
corresponding c is ϕ(pe−f ), since such c are described as upf for u ∈ (Z/peZ)×, where u, u′

determine the same c exactly when u− u′ is in the additive subgroup pe−fZ/peZ. Hence

|Mpe/ ∼′pe| =
e∑

f=0

ϕ(pe−f )ϕ(pf ),

and taking the product over all pe|N , we get

|MN/ ∼′| =
∑
d|N

ϕ(d)ϕ(N/d).

Thus, by Lemma 4.2.9 and the above discussion, for N ≥ 5, we have

v∞(Γ1(N)) = |Γ1(N)\Γ(1)/Γ(1)∞| =
1

2

∑
d|N

ϕ(d)ϕ(N/d).

More importantly,

Proposition 4.2.12. For N ≥ 5, the genus of X1(N) is

g(X1(N)) = 1 +
N2
∏

p|N (1− (1/p2))

24
−
∑

d|N ϕ(d)ϕ(N/d)

4
. (4.2.3)

For N = 4, the genus is calculated by replacing the last term above with 3/2, so
g(X1(4)) = 0. One can further compute that g(X1(N)) = 0 for 4 ≤ N ≤ 10 and N = 12,
and it equals 1 for N = 11 and 2 for N = 13. As mentioned in the introduction, these
computations have arithmetic significance: the cases where g(X1(N)) = 0 are exactly those
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values of N ≥ 4 for which there are “one-parameter algebraic families” (in Tate normal
form) consisting of an elliptic curve over Q with a point of exact order N . Much deeper, as
Ogg conjectured [22], for other N ≥ 4 there are no elliptic curves E over Q with a point
P ∈ E(Q) of exact order N . We will not prove this, but rather focus on the case when
N = 13 in the following section.

5 Points of Order 13

In this section, we will consider Y1(N) and X1(N) as schemes over Q, unless otherwise
mentioned. We now come to the main result of this thesis:

Theorem 5.0.1 (Mazur-Tate). There is no elliptic curve over Q with a rational point of
order 13.

Equivalently, we need to show that Y1(13)(Q) is empty, or that X1(13)(Q) contains no
non-cusp points. We will closely follow the paper [19] of Mazur and Tate with help from
Lecture 22 of [27], filling in extra details when necessary, but also taking some “standard”
facts as black boxes.

5.1 Preliminaries

We fix some notation. For an algebraic closure Q of Q, set G := Gal(Q/Q). Also, for an
integer N ≥ 4, set K := Q(ζN), so there is a canonical isomorphism Gal(K/Q) ∼= (Z/NZ)×.
Write Γ for the group (Z/NZ)×/{±1}, so Γ is the Galois group of the maximal real subfield
K+ := Q(ζN + ζ−1

N ) of K (note that [K : K+] = 2, and K+ is the fixed field of {±1}). For
m ∈ (Z/NZ)× (resp. an automorphism α in G or Gal(K/Q), considering Gal(K/Q) as a
quotient of G), write γm (resp. γα) for its image in Γ.

We now define an action of Γ on X := X1(N)Q. For α ∈ (Z/NZ)×, we define a functor
on isomorphism classes of pairs (E,P ) (where E is an elliptic curve over a Q-scheme S and
P ∈ E(S) has exact order N) by sending (E,P ) to (E,αP ). This defines compatible actions
of (Z/NZ)× on the set of points Y1(N)(S) for any Q-scheme S, so it defines an action on
Y := Y1(N)Q and then extends to an action on X. But (E,P ) ∼= (E,−P ) by the inversion
map, and the moduli problem represented by Y does not distinguish isomorphic pairs (E,P ),
so in fact the action factors through to an action of Γ on X over Q.

On the other hand, we may describe a family of automorphisms of XK over K, namely
the Atkin-Lehner involutions, as follows. Fix a primitive Nth root of unity ζ ∈ K. Then for
a K-scheme S and an elliptic curve E → S equipped with P ∈ E[N ](S) of exact order N
(so 〈P 〉 ∼= Z/NZ as S-groups), there is a short exact sequence of S-group schemes

0→ Z/NZ→ E[N ]→ µN,S → 0, (5.1.1)
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which is the quotient identification via the N -torsion Weil pairing [15, 2.8.5]. Our choice of
ζ ∈ µN,S(S ′) with fiberwise order N can be lifted to Q ∈ E[N ](S ′) satisfying 〈P,Q〉E,N = ζ
for an étale cover S ′ → S, and this lift is well-defined and unique up to 〈P 〉. We define τζ
as the map XK → XK given on S-points of YK by

(E,P )→ (E/〈P 〉, ζ = Q mod 〈P 〉),

and extended via isomorphism functoriality of the smooth compactification XK over K. We
see that τζ = τζ−1 , since inversion defines an isomorphism (E/〈P 〉, ζ) ∼= (E/〈P 〉, ζ−1).

We claim that the τζ interact with the γm on XK , where m ∈ (Z/NZ)×, via the following
rules:

(τζ)
2 = 1, γmτζ = τζm , τζγm(τζ)

−1 = (γm)−1. (5.1.2)

By continuity and reducedness, it suffices to check these identities on points x ∈ Y (Q), where
x corresponds to a pair (E,P ) consisting of an elliptic curve E over Q and a point P of exact
order N . Using the notation of the previous paragraph for the action of τζ , τζ(x) corresponds
to a pair (E/〈P 〉, Q) with 〈P,Q〉E,N = ζ. To check that (τζ)

2 = 1, pick P ′ ∈ E(Q) such that
NP ′ = P , which is unique up to E[N ] = 〈P,Q〉 (the subgroup scheme generated by P and
Q). Then we claim (τζ)

2 acts as

(E,P ) 7→ (E/〈P 〉, Q) 7→ (E/〈P,Q〉,−P ′) = (E/E[N ],−P ′) ·N−→
∼

(E,−P ) ∼= (E,P ).

Indeed, since E → E/〈P 〉 is an isogeny with NP ′ ∈ ker(f), adjointness of the Weil pairing
for elliptic curves over an algebraically closed field [26, III.8.2] gives

〈Q,NP ′〉E,N = 〈f(Q), f(P ′)〉E/〈P 〉,N ,

so 〈Q,−P ′〉E/〈P 〉,N = 〈Q,−P 〉E,N = 〈P,Q〉E,N = ζ.
For the second equality γmτζ = τζm in (5.1.2), we note that 〈P,mQ〉E,N = ζm, so both

sides of the desired equality send (E,P ) to (E/〈P 〉,mQ). Finally, the third equality rear-
ranges as τζγm = γm−1τζ , since (γm)−1 = γm−1 . But 〈mP,m−1Q〉E,N = ζ, so τζγm acts on
(E,P ) as

(E,P ) 7→ (E,mP ) 7→ (E/〈P 〉,m−1Q).

On the other hand, γm−1τζ acts on (E,P ) as

(E,P ) 7→ (E/〈P 〉, Q) 7→ (E/〈P 〉,m−1Q),

so indeed τζγm = γm−1τζ .
We now combine our two families of automorphisms, given by the γm’s and the τζ ’s, into

a group acting on XK . Indeed, define a formal symbol τζ for each primitive Nth root of
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unity ζ, and set τζ = τζ−1 . Let ∆ be the group defined by the generating set Γ∪{τζ}ζ∈µ×N (K)

with the relations of (5.1.2), where µ×N(K) denotes the set of primitive Nth roots of unity.
One can check that ∆ acts on XK and that the map of groups Γ→ ∆ is injective with image
of index 2, where the τζ ’s are the elements of the non-trivial coset.

We now describe an action of G, descending through Gal(K+/Q), on ∆: for α ∈ G,

α(γm) = γm, α(τζ) = τζα = γατζ ,

where we define ζα := α(ζ) (a power of ζ). This respects the relations in (5.1.2), so it extends
to an action on the group ∆.

Proposition 5.1.1. For δ ∈ ∆, α ∈ G, and x ∈ X(Q),

α(δ · x) = α(δ) · (α(x)).

Proof. By continuity, we may take x ∈ Y (Q), which corresponds to a pair (E,P ) consisting
of an elliptic curve E over Q and a point P of exact order N . If δ = γm ∈ Γ, then α(δ · x)
corresponds to (α(E), α(mP )) and α(δ) · (α(x)) = δ · (α(x)) corresponds to (α(E),mα(P )),
where α(E) denotes the base change by α. These are of course the same pair, since the
group law commutes with base change.

If δ = τζ 6∈ Γ, then α(δ · x) corresponds to (α(E/〈P 〉), α(Q)), where 〈P,Q〉E,N = ζ, and
α(δ) · (α(x)) = τζα · (α(x)) corresponds to (α(E)/〈α(P )〉, Q′), where 〈α(P ), Q′〉E,N = ζα.
Galois-compatibility and perfectness of the Weil pairing [26, III.8.1(d)] forces Q′ = α(Q) up
to 〈P 〉, so the natural isomorphism α(E/〈P 〉) ∼= α(E)/〈α(P )〉 does the job.

In the remaining discussion, we will only ever need the actions of elements in ∆ − Γ on
XQ, but we will need the action of Γ on X (over Q).

In the remainder of this subsection, we briefly recall some facts about Jacobians, stating
the key results in [21, Sections 0.5, 6.1]. Let X be a flat, proper scheme over a locally
Noetherian base S with geometrically integral fibers, and suppose there is a fixed section
e ∈ X(S). We define the relative Picard functor on S-schemes as follows:

PicX/S(T ) := {isomorphism classes of pairs (L, α), where L is an invertible sheaf on XT

and α is an isomorphism e∗T (L) ∼= OT , equipped with the evident group structure}.

This functor is in fact representable by an S-group scheme PicX/S locally of finite type, called
the relative Picard scheme. We will now specialize to the case when S = Spec(k) for a field
k. The key result is:

Theorem 5.1.2. If X is smooth of dimension 1 then the identity component Pic0
X/k is

projective and smooth, with dimension equal to dimkH
1(X,OX). Moreover, it is naturally

self-dual as an abelian variety. There is also canonical k-morphism X → Pic0
X/k, described

on field-valued points p ∈ X(k′) by p 7→ [p]− [ek′ ].
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For X a curve of genus g over k, we set J(X) := Pic0
X/k, and call it the Jacobian variety of

X. The image X(k)→ J(X)(k) can be shown to generate J(X)(k), and J(X)(k) is identified
with Div0(Xk)/k(X)×, the group of degree-zero divisors of Xk up to linear equivalence.

5.2 The Curve X1(13) and its Jacobian

From now on, we take N = 13, so K = Q(ζ13), K+ = Q(ζ13 +ζ−1
13 ), and Γ = (Z/13Z)×/{±1}

is cyclic of order 6 and is generated by γ2. Moreover, ∆ ∼= D6. Write X := X1(13) and
Y := Y1(13) (remember that these are schemes over Q unless otherwise specified), so X is a
genus 2 curve by the discussion in Section 4.2. It also has 12 cusps in its complex-analytic
model XC, and we will require the following fact:

Fact 5.2.1. The 12 (geometric) cusps of X consist of 6 cusps rational over Q and 6 cusps
rational over K+. The group Γ acts cyclically on each of these subsets of 6 cusps, and ∆
acts freely on the set of all cusps.

To prove the first statement, one uses the interpretation of X as the moduli space of
generalized elliptic curves with a point of exact order 13, as described in [7]. We now give
some details as to what this means. By “generalized elliptic curve,” we mean f : E → S,
where S is a Noetherian Q-scheme, such that:

1. The map f is proper, flat, and has connected and reduced geometric fibers with di-
mension 1 and arithmetic genus 1.

2. There is a section e ∈ Esm(S) into the smooth locus of f , and a group law on (Esm, e)
with an action Esm × E → E extending the group law.

A point of exact order N on a generalized elliptic curve over S is an S-homomorphism
Z/NZ ↪→ Esm from the constant S-group scheme (Z/NZ) into the smooth locus, fiberwise
of exact order N , such that the image meets all irreducible components of any geometric
fiber Es (an “ampleness” condition). Of course, if E → S is already smooth, then the above
recovers the original Definitions 2.0.1 and 3.1.1 (the latter since Es is irreducible when it is
smooth).

The key fact is that such generalized elliptic curves over C with a point of exact order
N have the structure of a “d-gon”, where d|N . Here, we think of a d-gon as d copies of P1

S,
where ∞ on the ith copy of P1 is glued to 0 on the (i+ 1)st copy (with the dth copy glued
to the 1st). Suppose N = p ≥ 5 is prime, so there are only two choices for d. Moreover,
on the p-gon, there are (up to its geometric automorphism group) (p− 1)/2 non-isomorphic
choices of an exact order-p point, and these can be realized over Q, giving rise to (p− 1)/2
Q-rational cusps on X1(p). On the 1-gon, there are (p− 1)/2 non-isomorphic choices of an
exact order-p point, and these correspond to 1 physical point on X1(p) with residue field
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Q(ζp)
+, which splits into (p− 1)/2 geometric cusps. One can also show that ∞ corresponds

to a 1-gon, so it does not arise from a Q-rational cusp, and to find the (p−1)/2 non-rational
cusps, we can simply act on ∞ by elements of Γ ⊂ ∆ (seen to be pairwise distinct via the
moduli interpretation of X1(p) or via analytic calculation). On the other hand, 0 is not in
that orbit (as can be seen analytically), so it arises from a Q-rational cusp, and one can find
the (p− 1)/2 rational cusps from its Γ-orbit.

Example 5.2.2. Here is an example illustrating the analytic description of the action of ∆
on YC. Since ∆ is generated by γ2 and τζ where ζ := e2πi/13, it suffices to understand the
action of these elements on YC. We see that

γ2 · (Eτ , 1/13) = (Eτ , 2/13) ∼=
(
E(7τ+1)/(13τ+2), 1/13

)
,

since 2/13 is the same as (13/13)τ + 2/13 in Eτ , so γ2 is induced by

[
7 1
13 2

]
on H. For τζ ,

we need the fact that 〈1/13, τ/13〉Eτ ,13 = ζ, so

τζ · (Eτ , 1/13) = (C/(Λτ + 1/13Z), τ/13) ∼= (E13τ , τ) ∼=
(
E−1/(13τ), 1/13

)
,

where the first isomorphism is given by multiplication by 13, and the second isomorphism
is given by multiplication by −1/(13τ) (since −1/(13τ) ∈ H) and inversion. Hence, τζ is

induced by

[
0 1
−13 0

]
on H.

Now, X is a genus 2 curve, so by Theorem 5.1.2, its Jacobian J is an abelian variety of
dimension 2. We will need the following fact:

Fact 5.2.3. The Jacobian J has good reduction at all primes p 6= 13.

This rests on using the integral theory of generalized elliptic curves in [7] to build X1(N)
as a Z[1/N ]-scheme that is smooth and proper, for N ≥ 5.

Let P1, . . . , P6 be the six rational cusps in X(Q). Then we have the following theorem,
due to Ogg [23]:

Theorem 5.2.4. For each i 6= j, the nonzero divisor class [Pi] − [Pj] ∈ J(Q) is of order
19, and these each generate the same subgroup T of J(Q)tors ⊆ J(Q). Moreover, the image
of X(Q) in J(Q) via the embedding P 7→ [P ] − [P6] intersects T at only those 6 points
[Pi]− [P6].

Since this is proved using analytic methods, we will postpone the proof to Section 5.4.
On the other hand, given this result, we can prove:

Proposition 5.2.5. The group J(Q)tors is cyclic of order 19, so is equal to T .
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Proof. For this proof, we use the fact that there exists a proper smooth scheme X over
Z[1/13] with generic fiber XQ and having Y := Y1(13) over Z[1/13] as an open subscheme.
Thus, A := Pic0

X/Z[1/13] is an abelian scheme over Z[1/13] with generic fiber J (in particular,
it is the Néron model of J over Z[1/13]). Now, by the Hasse bound [26, V.1.1] that

||E(Fq)| − q − 1| ≤ 2
√
q

for an elliptic curve E/Fq, we see that there are no elliptic curves over F2, F3, F4 with
a point of exact order 13. Hence Y (Fq) is empty for q = 2, 3, 4. On the other hand, by
Proposition A.3, there is a unique elliptic curve E over F9 with a point of exact order 13,
and AutF9(E) ∼= Z/6Z. Since E(F9) must contain exactly 12 points of exact order 13
(otherwise violating the Hasse bound, since |E(F9)| ∈ 13Z), this gives 12/6 = 2 points on
Y (F9).

Now, using the moduli-theoretic interpretation of X, for any field k with char(k) 6= 13,
the discussion over Q after Fact 5.2.1 adapts over k to build exactly 6 non-isomorphic pairs of
13-gons over k with a point of exact order 13. Moreover, there are no 1-gon k-rational cusps
when µ13(k) = 1. Thus, there are exactly 6 cusps of X(Fq) for q = 2, 3, 4, 9, so |X(Fq)| = 6
for q = 2, 3, 4, and |X(F9)| = 6 + 2 = 8.

Pick a prime power q not divisible by 13. We now claim the following identity:

|A(Fq)| = −q +
1

2
|X(Fq2)|+ 1

2
|X(Fq)|2. (5.2.1)

To prove this, write V := H1
ét(XFq

,Ql) for a prime l - q, so V is a 4-dimensional vector space
over Ql (as X has genus 2). By the Lefschetz fixed-point theorem and the fact that XFq

(resp. AFq) has dimension 1 (resp. 2), we have

|X(Fq)| =
2∑
i=0

(−1)itr(F,H i
ét(XFq

,Ql)),

|X(Fq2)| =
2∑
i=0

(−1)itr(F 2, H i
ét(XFq

,Ql)),

and

|A(Fq)| =
4∑
i=0

(−1)itr(F,H i
ét(AFq

,Ql)),

where F = Frobq is the q-Frobenius morphism x 7→ xq. We will need the following additional
facts:

Fact 5.2.6. The vector space H2
ét(XFq

,Ql) is 1-dimensional, on which F acts as multiplica-
tion by q.

36



5.2 The Curve X1(13) and its Jacobian 5 POINTS OF ORDER 13

Fact 5.2.7. Via the cup product, H i
ét(AFq

,Ql) ∼=
∧i(H1

ét(XFq
,Ql)) =

∧i(V ).

Fact 5.2.8. The map α 7→ q/α is a bijection from the multiset of eigenvalues of F on V to
itself (this is due to “qF−1 being dual to F”).

From Facts 5.2.6 and 5.2.7, we conclude that

|X(Fq)| = 1− tr(F |V ) + q,

|X(Fq2)| = 1− tr(F 2|V ) + q2,

and

|A(Fq)| =
4∑
i=0

(−1)itr(F,
i∧
V ).

Now, F has 4 eigenvalues a, b, q/a, q/b on V by Fact 5.2.8, so the eigenvalues of F 2 on V
are a2, b2, (q/a)2, (q/b)2, and the eigenvalues of F on

∧i V are the i-fold products without
repetition from the 4-tuple (a, b, q/a, q/b). It follows that

|A(Fq)| = (1− a)(1− b)(1− (q/a))(1− (q/b))

=
1

2

(
−2q +

(
1 + q −

(
a2 + b2 +

(q
a

)2

+
(q
b

)2
))

+
(

1 + q −
(
a+ b+

q

a
+
q

b

))2
)

= −q +
1

2
|X(Fq2)|+ 1

2
|X(Fq)|2.

We conclude that |A(F2)| = 19 and |A(F3)| = 19. Now, note that for p = 2, 3, we have
a natural group homomorphism A(Q)tors ↪→ A(Q) = A(Z(p)) → A(Fp) given by reduction,
where the equality is given by the valuative criterion of properness. By Lemma A.5 and
the fact that A(Q)[ab] ∼= A(Q)[a] × A(Q)[b] inside A(Q)tors for coprime integers a, b, the
reduction map

A(Q)tors → A(Fp) ∼= Z/19Z (5.2.2)

is injective on prime-to-p-torsion. Since A(Q)tors contains a subgroup of order 19, and
A(Q)[19∞]→ A(Fp) is injective for p 6= 13, 19, the map (5.2.2) with p = 2 shows that there
is no nonzero l-torsion of A(Q) for prime l 6= 2, 19, whence |A(Q)[19∞]| ≤ 19. Similarly, the
map with p = 3 shows that there is no nonzero 2-torsion, so J(Q)tors = A(Q)tors

∼= Z/19Z.

Hence, to prove Theorem 5.0.1, it suffices to prove:

Theorem 5.2.9. The group J(Q) (a finitely generated abelian group by the Mordell-Weil
Theorem) has rank 0.
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Indeed, then J(Q) = J(Q)tors = T by Proposition 5.2.5, so

X(Q) = X(Q) ∩ J(Q) = X(Q) ∩ T,

and X(Q)∩T consists of only the 6 rational cusps by Theorem 5.2.4. Hence, Y (Q) is empty.
We now must investigate the structure of J in more detail.

Proposition 5.2.10. The abelian variety J is Q-simple (i.e. it doesn’t contain a proper
nonzero abelian subvariety over Q).

Proof. If not, then we could write an exact sequence

0→ J1 → J → J2 → 0

of abelian varieties over Q, where J1 and J2 are elliptic curves. Since J(Q) has a nonzero
19-torsion point, one of J1 or J2, say Ji, must have a rational point P of order 19. By the
Néron-Ogg-Shafarevich criterion for good reduction, Ji has good reduction away from 13,
as J does [25, Corollary 3]. Hence the natural reduction map Ji(Q)[19] → Ji(F2) is an
injection [26, VII.3.1]. But the Hasse bound tells us that an elliptic curve over F2 has at
most 5 F2-rational points, so Ji(F2) cannot have a point of order 19.

Now, note that J is contravariantly functorial in X via pullback of line bundles. On the
other hand, J is also covariantly functorial in X via norm of line bundles [9, 6.5], which is
the relative version of pushforward of divisors on curves over algebraically closed fields. In
particular, for a finite map of Q-curves ϕ : X ′ → Y ′, the norm associated to ϕ acts on points
P ∈ X ′(Q) as N(IP ) = Iϕ(P ), which becomes the familiar map

∑
niPi 7→

∑
niϕ(Pi) on

Weil divisors. In this way, the (left) action of Γ on X described in Section 5.1 induces an
action on J , given on Q-points by the aforementioned map of divisors.

Consider the generator γ2 of Γ = (Z/13Z)×/{±1} ∼= Z/6Z, which acts on X with order
6 (as one sees from the action on geometric points) and so also acts with order 6 on J , since
the Jacobian functoriality is faithful for positive genus. We want to consider the “minimal
polynomial” of the action of γ2 on J . We know that γ2 satisfies x6 − 1, which factors into
irreducibles over Q as

x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1).

By Lemma A.6, we see that γ2 satisfies the polynomial x2 − x + 1, since it does not satisfy
any of the other irreducible polynomials (which are factors of xn − 1 for n = 1, 2, 3).

Via the action of ∆ on XQ, by covariant functoriality of J in X, ∆ induces an action of
the quotient ring D := Z[∆]/(γ2

2 − γ2 + 1) on JQ. One can check that D is a free Z-module
with D⊗ZQ ∼= M2(Q) (the algebra of 2-by-2 matrices over Q), and that the subring Z[γ2] of
D is isomorphic to Z[ω] via γ2 7→ −ω, where ω is a primitive cube root of unity. Moreover:
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Proposition 5.2.11. The action of D on JQ is faithful.

Proof. For a fixed prime l, write Tl for the l-adic Tate module of JQ, and write Vl for Tl[1/l],
which is a Ql-module. Then there is a Z-algebra map EndQ(JQ) → EndQl

(Vl) (which
is injective; see [5, 7.6.7]), and by the action of D on J , we also have a Z-algebra map
D → EndQ(JQ). Upon tensoring the composite map against Q, we get a Q-algebra map
DQ → EndQl

(Vl). Since DQ
∼= M2(Q) is a simple Q-algebra, this latter map is injective.

Then we get a commutative diagram

D DQ

EndQ(JQ) EndQl
(Vl)

where the top and right arrows are injective (the former since D is Z-free). Hence the map
D → EndQ(JQ) is injective as well.

Define V := J [19](Q) to be the G-module of 19-torsion points in J , so V ∼= (Z/19Z)⊕4.
We also have an action of ∆ on JQ via covariant functoriality that is G-compatible on

Q-points in the sense of Proposition 5.1.1, since the Q-map X → J via a Q-cusp yields
a ∆-compatible map XQ → JQ and a G-compatible map X(Q) → J(Q) whose image

generates J(Q). In particular, V is a module over Z[γ2] ∼= Z[ω] ⊆ D.
Note that 19 splits in Z[γ2] since x2 − x + 1 ≡ (x − 8)(x − 12) mod 19, and since Z[γ2]

is a PID, we can write 19 = ππ for a prime π ∈ Z[γ2]. Let Vπ (resp. Vπ) be the kernel of
the action of π (resp. π) on V . Then V = Vπ ⊕ Vπ: since π and π generate 1, the Chinese
remainder theorem gives an isomorphism

Z[γ2]/(19) ∼= Z[γ2]/(π)× Z[γ2]/(π),

so the Z[γ2]/(19)-module V splits into a direct sum as claimed.
Note that π and π are integer combinations of γ2 and 1. Clearly γ2 commutes with all

elements of Γ (being cyclic) and G (as Γ acts on J over Q), so the subspaces Vπ and Vπ are
stable under the Γ and G-actions. On the other hand, for any τζ , we have τζγ2(τζ)

−1 = (γ2)−1

and ω−1 = ω, so conjugation by τζ swaps π and π. Hence it also swaps Vπ and Vπ, which
means they must both be dimension 2 inside the 4-dimensional space V .

Proposition 5.2.12. Under the self-duality of V via the Weil pairing and autoduality of J ,
Vπ and Vπ are isotropic (i.e. self-annihilating) and hence are dual to each other as G-modules.

Proof. Recall that we factored 19 = ππ in Z[γ2], where γ2 plays the role of a primitive 6th
root of unity. In terms of prime ideals, this is the factorization (19) = (19, γ2−8)(19, γ2−12),
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as x2 − x+ 1 ≡ (x− 8)(x− 12) mod 19 (note that 8 and 12 are primitive 6th roots of unity
in F19). Hence, upon swapping π and π if necessary, (γ2− 8) · Vπ = 0 and (γ2− 12) · Vπ = 0.
This says that Vπ and Vπ are eigenspaces of γ2 over F19 with eigenvalues z±1 for z = 8 or
12 ≡ 8−1 mod 19. For u, v ∈ Vπ, we claim

〈u, v〉J,19 = 〈γ2 · u, γ2 · v〉J,19 = 〈zu, zv〉J,19 = (〈u, v〉J,19)z
2

.

The first equality holds by the naturality of the Weil pairing with respect to isomorphisms.
Of course, z2 6= 1 as z has multiplicative order 6, so the only way the above equality is
possible is if the 19th root of unity 〈u, v〉J,19 is trivial. This shows the self-orthogonality of
Vπ, and the statement for Vπ is deduced in the same way.

Now, let V (1) be the subspace of V given by the cyclic group T ⊆ J(Q) of 19 rational
points coming from the cusps of X. By Proposition 5.2.5, V (1) is the entire subset of rational
points inside V . Obviously, G acts trivially on V (1), and V (1) is also stable under γ2 by
construction. Hence the 1-dimensional subspace V (1) must be contained in either Vπ or
Vπ, since for nonzero v ∈ V (1), at least one of π · v ∈ Vπ or π · v ∈ Vπ is nonzero and in
V (1) (again, both π and π are integer combinations of γ2 and 1). Without loss of generality
(swapping π and π if necessary), suppose V (1) is contained in Vπ.

We lastly define the subspace V (γ) to be {v ∈ V : α(v) = γα · v for all α ∈ G}. Recall
we defined an action by ∆ on JQ by covariant functoriality in XQ.

Lemma 5.2.13. The action on V of any τζ ∈ ∆ interchanges V (1) and V (γ).

Proof. If v ∈ V (1) and α ∈ G, we have by Proposition 5.1.1 (adapted to J)

α(τζ · v) = α(τζ) · (α(v)) = α(τζ) · v = γα · (τζ · v),

where the second equality comes from the fact that v is a Q-rational point. Conversely, if
v ∈ V (γ), then

α(τζ · v) = α(τζ) · (α(v)) = (γατζ) · (γα · v) = τζ · v,

since γατζγα = τζ (see (5.1.2)). Hence τζ · v ∈ V (1) since it is fixed by all α ∈ G.

This shows that V (γ) has dimension 1, and since V (1) ⊆ Vπ yet any τζ swaps Vπ and Vπ,
we conclude that V (γ) is contained in Vπ. This yields:

Remark 5.2.14. The subspaces V (1) and V (γ) have vanishing intersection. Thus, the
action of G on V (γ) is not trivial. This fact will be useful to us later.

It is also now possible to describe the quotient Vπ/V (γ):
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Proposition 5.2.15. Write V (χ) for the G-module of 19th roots of unity, so V (χ) is an
F19-vector space in the canonical way. Then there is a short exact sequence

0→ V (γ)→ Vπ
b−→ V (χ)→ 0 (5.2.3)

of G-modules.

Proof. Let us first define the G-module map b. By Proposition 5.2.12, the Weil pairing on
V gives a perfect G-equivariant pairing Vπ×Vπ → µ19. Via the inclusion V (1) ↪→ Vπ, we get
a surjective map

Vπ ∼= HomF19(Vπ, µ19) � HomF19(V (1), µ19) ∼= V (χ),

where the last isomorphism follows from the definitions of V (1) and V (χ). The composition
of the above maps defines the map b.

Going back to the original problem, we are done if V (γ) ⊆ ker(b) by just counting
the dimensions. We claim that the G-representations V (γ) and V (χ) are not isomorphic
(as representations over F19). On the latter, the G-action factors through Gal(Q(ζ19)/Q),
which acts faithfully. But on V (γ), the action of G factors through Γ = Gal(K+/Q) by
definition, and Q(ζ19) and Q(ζ13) have intersection Q. So V (γ) and V (χ) are 1-dimensional
non-isomorphic G-representations, so any G-equivariant map V (γ) → V (χ) must be the
zero map. In particular V (γ) ⊆ ker(b), as desired.

5.3 Proof of Theorem 5.2.9

With the previous setup, we are finally in a position to prove Theorem 5.2.9 (and hence
establish Theorem 5.0.1). As in the proof of Proposition 5.2.5, we extend J to an abelian
scheme A over Z[1/13], and A(Z[1/13]) = J(Q) by the valuative criterion for properness
over Dedekind domains applied to the diagram

Spec(Q) A

Spec(Z[1/13]) Spec(Z[1/13])=

!

Note that the action of D on J extends to A by the Néron mapping property of abelian
schemes over Dedekind domains, and there is a short exact sequence of Z[1/13]-group schemes

0→ F → A
π−→ A→ 0, (5.3.1)

where π is finite flat (as we may check on fibers over Z[1/13], using that π|19), and F is
defined as the finite flat kernel Aπ. In particular, the generic fiber of F corresponds to
Vπ ⊆ V .

To prove Theorem 5.2.9, we claim it suffices to show that:
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Proposition 5.3.1. The map π induces a surjection on A(Z[1/13]) = J(Q).

Indeed, if multipliction by π acts surjectively on J(Q) then so does multiplication by 19,
forcing the finitely generated abelian group J(Q) to be finite.

We now consider a commutative diagram with exact rows arising from (5.3.1) over Z[1/13]
and over Q (we will recall the necessary facts about the fppf cohomology as they are needed):

A(Z[1/13]) A(Z[1/13]) H1
fppf(Z[1/13], F )

A(Q13) A(Q13) H1
fppf(Q13, F )

π δ

ρ

π δ

(5.3.2)

To prove Proposition 5.3.1, the diagram (5.3.2) tells us that it suffices to show the following
two statements.

Proposition 5.3.2. The map π induces a surjection on A(Q13).

Proposition 5.3.3. The map ρ : H1
fppf(Z[1/13], F )→ H1

fppf(Q13, F ) is injective.

Proof of Proposition 5.3.2. Extend the abelian variety JQ13 to its (non-proper, but smooth
and separated) Néron model A′ over Z13. Let N be the kernel of the reduction map
A′(Z13)→ A′(Z/13Z). We have a diagram of exact sequences

0 N A′(Z13) A′(Z/13Z) 0

0 N A′(Z13) A′(Z/13Z) 0

π π π (5.3.3)

We claim that N is a pro-13 group. Since A′(Z13) = lim←−n≥1
A′(Z13/13n), and inverse limits

preserve kernels (being left exact), we see that N = lim←−n≥1
ker(A′(Z13/13n) → A′(Z/13Z)).

Hence we only need to show that each ker(A′(Z13/13n) → A′(Z/13Z)) is a finite (abelian)
13-group. The finiteness is clear, since Z13/13n is finite and A′ is finite type over Z13. Then
Lemma A.5 says that for all primes l 6= 13, the map A′[l](Z13/13n) → A′[l](Z/13Z) is
injective, so ker(A′(Z13/13n)→ A′(Z/13Z)) is a 13-group.

Since N is a pro-13 group, and 19 is prime to 13, clearly 19 = ππ acts bijectively on N .
Hence π also acts bijectively on N . Now, the universal property of Néron models [3, 1.2.1]
says that the canonical map

A′(Z13)→ A′Q13
(Q13) = JQ13(Q13) = J(Q13) = A(Q13)

is an isomorphism, so the middle vertical map in (5.3.3) is simply A(Q13)
π−→ A(Q13) under

this identification. We see via the snake lemma that this is surjective if the right vertical
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map A′(Z/13Z)
π−→ A′(Z/13Z) in (5.3.3) is surjective. But A′(Z/13Z) is a finite group, so

it suffices to prove that π is injective on A′(Z/13Z). Again by the snake lemma, it in turn
suffices to show that A(Q13)

π−→ A(Q13), or equivalently J(Q13)
π−→ J(Q13), is injective. So

the goal is to prove that J [π](Q13) = 0.
By Lemma A.7 (with p = 13) and the Q-finiteness of J [π], we see that J [π](Q13) is

exactly (Vπ)H := {x ∈ J [π](Q) : Hx = x}, where H ⊆ G is a decomposition subgroup of G
corresponding to 13. Now, recall from Proposition 5.2.15 the short exact sequence (5.2.3)

0→ V (γ)→ Vπ → V (χ)→ 0

of G-representations over F19. To show that J [π](Q13) = (Vπ)H is 0, it suffices to show that
V (γ)H = 0 and V (χ)H = 0.

Recall that the action ofG on the line V (χ) descends to a faithful action of Gal(Q(ζ19)/Q),
But 13 6≡ 1 mod 19, so 13 doesn’t split completely in Q(ζ19). On the other hand, because
H is a decomposition group over 13, the fixed field L ⊆ Q(ζ19) of H is the largest subexten-
sion such that 13 splits completely in L. So L 6= Q(ζ19), meaning that the image of H in
Gal(Q(ζ19)/Q) is nontrivial. Hence V (χ)H = 0.

It remains to show that V (γ)H = 0. As dimF19 V (γ) = 1 by Lemma 5.2.13, it suffices
to show that V (γ)H 6= V (γ); i.e. that H doesn’t fix all of V (γ). By definition of V (γ), G
acts on V (γ) through Γ = Gal(K+/Q), where K+ = Q(ζ13 + ζ−1

13 ). But 13 is ramified in
any non-trivial subextension of Q(ζ13), since 13 is the only prime ramified in Q(ζ13) and it
is totally ramified. Hence the fixed field L ⊆ K+ of the image of H in Γ must be Q, which
means this image is all of Γ. So if V (γ)H = V (γ), the action of G on V (γ) would be trivial.
But as per Remark 5.2.14, this is not the case.

It remains to prove that ρ is injective. We know that Z[ζ13] is the integral closure
of Z inside K = Q(ζ13), so Z[ζ13, 1/13] is the integral closure of Z[1/13]. The ring map
Z[1/13]→ Z[ζ13, 1/13] is étale, since Q→ Q(ζ13) is unramified away from 13.

Recall from (5.3.1) that we write F for the finite flat kernel Aπ of π : A→ A over Z[1/13].

Lemma 5.3.4. There is a short exact sequence of finite flat Z[1/13]-group schemes

0→ E → F → µ19 → 0, (5.3.4)

where the base change of E to the finite étale cover Z[ζ13, 1/13] is isomorphic to the constant
group scheme Z/19Z.

This lemma is essentially a “globalization” of Proposition 5.2.15.

Proof. Let E be the Zariski closure of V (γ) ⊆ Vπ ⊆ J [19] in A. Then we claim E is a
finite flat closed subgroup scheme of the finite flat F . The subscheme E is clearly finite,
since F = A[π] is finite. It is also flat, since for any Dedekind domain R with fraction field
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K and any flat R-scheme X, the schematic closure in X of any closed subscheme of XK is
R-flat. Moreover, E ⊆ F is a subgroup scheme since E ×E → F × F m−→ F factors through
the closed immersion E ↪→ F because R-flatness of E × E allows us to check the claim on
Q-fibers, where it is clear.

From Proposition 5.2.15, we see that the quotient F/E over Z[1/13] has generic fiber
V (χ) = µ19. Also, EZ[ζ13,1/13] has generic fiber Z/19Z as Gal(Q/Q(ζ13))-modules, since
V (γ) ∼= V (1) ∼= Z/19Z by Lemma 5.2.13. It remains to extend the generic fiber isomorphisms
(F/E)Q ∼= µ19 and EQ(ζ13)

∼= Z/19Z over Z[1/13] and Z[ζ13, 1/13] respectively.
We now consider a local version. Suppose R is a discrete valuation ring with characteristic

0 and fraction field K, but its residue field k has characteristic p > 0. Set e := ordR(p), the
absolute ramification index. Consider the functor

{finite flat commutative group schemes G/R with p-power order}
→ {finite flat commutative group schemes H/K with p-power order}

that sends G to its generic fiber. It is visibly faithful, and a theorem of Raynaud [24, 3.3.6]
says that if e < p− 1 then the above functor is even fully faithful. Also, from Lemma A.8,
we know that the functor

{finite étale commutative group schemes G/R}
→ {finite étale commutative group schemes H/K}

is fully faithful, where R can be any Dedekind domain.
To apply these facts, let T := Z[ζ13, 1/13]. The T -groups ET and (Z/19Z)T agree on

their generic fibers, and we want to extend such an isomorphism over T . We first look at
these groups over T [1/19]. Let’s show that ET [1/19] is étale. Let s be a non-generic point of
Spec(T [1/19]), so char(k(s)) = p 6= 19. Then the fiber Es is a finite flat group scheme over
k(s) of order 19, so its tangent space at the identity is killed by both p and 19, the latter being
true since the generic fiber of ET is killed by 19. Hence the tangent space is 0, so Es is étale
over k(s) at the identity and hence everywhere (via translation over k(s)). So by the fibral
étaleness criterion, the finite flat scheme ET [1/19] is étale over T [1/19]. The isomorphism of
ET and Z/19Z on generic fibers extends to an isomorphism ET [1/19]

∼= (Z/19Z)T [1/19], since
T [1/19] is Dedekind.

It remains to understand what happens at primes over 19. At any non-generic point s
of Spec(T(19)), k(s) is a field of characteristic 19. Moreover, 19 does not ramify at all in Os,
since the only rational prime ramifying in Z[ζ13] is 13. So the absolute ramification index e
of Os is 1 < 19 − 1, so the isomorphism of ET and Z/19Z on generic fibers extends to an
isomorphism over OT,s. These isomorphisms for such s spread out and agree on overlaps (as
we can check at the generic point), so they glue together to an isomorphism ET ∼= Z/19Z of
T -groups. Note that E is then étale over Z[1/13] by faithfully flat descent.
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The same type of argument applied over Z[1/13] shows that F/E and µ19 are isomorphic
as Z[1/13]-groups.

Now, using that (5.3.4) is short exact for the fppf topology over Z[1/13], we can draw a
commutative diagram with exact rows:

H1
fppf(Z[1/13], E) H1

fppf(Z[1/13], F ) H1
fppf(Z[1/13], µ19)

H1
fppf(Q13, F ) H1

fppf(Q13, µ19)

ρ ρ′ (5.3.5)

Hence, to prove ρ is injective as in Proposition 5.3.3, it suffices to show that ρ′ is injective
and H1

fppf(Z[1/13], E) = 0.

Lemma 5.3.5. The map ρ′ : H1
fppf(Z[1/13], µ19)→ H1

fppf(Q13, µ19) is injective.

Proof. Consider the exact sequence

0→ µ19 → Gm
x 7→x19

−−−−→ Gm → 0

of Z[1/13]-group schemes. This induces a commutative diagram with exact rows:

Gm(Z[1/13]) Gm(Z[1/13]) H1
fppf(Z[1/13], µ19) H1

fppf(Z[1/13],Gm)

Gm(Q13) Gm(Q13) H1
fppf(Q13, µ19) H1

fppf(Q13,Gm)

x 7→x19

ρ′

x 7→x19

(5.3.6)

By Lemma A.9, H1
fppf(Z[1/13],Gm) and H1

fppf(Q13,Gm) are both 0, since they are iso-
morphic to the Picard groups of a UFD and a field, respectively. Hence from (5.3.6) we get
a commutative diagram

Gm(Z[1/13])/(Gm(Z[1/13]))19 H1
fppf(Z[1/13], µ19)

Gm(Q13)/(Gm(Q13))19 H1
fppf(Q13, µ19)

∼

ρ′

∼

(5.3.7)

Thus, ρ′ is injective if the left vertical arrow is injective. But by the very meaning of Gm,
this is the natural map

Z[1/13]×/(Z[1/13]×)19 → Q×13/(Q
×
13)19 = (µ12/µ

19
12)× 13Z ×

(
(1 + 13Z13)/(1 + 13Z13)19

)
.

Since Z[1/13]× = {±13n} and −1 = (−1)19, injectivity is clear.
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The last step is to prove:

Lemma 5.3.6. The group H1
fppf(Z[1/13], E) vanishes.

Proof. For this proof, we may and do work with étale cohomology (cf. Lemma A.10). We
consider E as an étale sheaf over Z[1/13] via the functor of points of E.

Let T := Spec(Z[ζ13, 1/13]) and let f : T → Spec(Z[1/13]) be the structure map. We
have the Leray spectral sequence [1, 59.54.2]

Ei,j
2 = H i

ét(Z[1/13], Rjf∗(ET ))⇒ H i+j
ét (T,ET ).

The map f is also finite, so Rjf∗(ET ) vanishes for all j > 0 [1, 59.25.2]. Hence, the edge
map Ei,0

2 = H i
ét(Z[1/13], f∗(ET ))→ H i

ét(T,ET ) is an isomorphism for all i.
Now, there is a trace map f∗(ET ) → E with the following property [1, 59.66]: if

E → f∗(ET ) is the natural map which sends σ ∈ E(U) to the base change σT ∈ ET (UT ) for
an étale map U → Z[1/13], then the composition

E → f∗(ET )
trace−−→ E (5.3.8)

is multiplication by deg(f) = 12.
Notice that multiplication by 12 is an isomorphism on E, since this can be checked over

the finite étale base change ET , which is the constant group Z/19Z. Hence the maps in
(5.3.8) induce maps

H1
ét(Z[1/13], E)→ H1

ét(Z[1/13], f∗(ET ))→ H1
ét(Z[1/13], E),

where the composite map is an isomorphism. It follows that H1
ét(Z[1/13], E) injects into

H1
ét(Z[1/13], f∗(ET )) ∼= H1

ét(T,ET ), so our problem reduces to proving that H1
ét(T,ET ) = 0.

By Lemma 5.3.4, ET is the constant T -group scheme Z/19Z. Our goal is thus to show
H1

ét(T,Z/19Z) = 0. We now use the fact [1, 21.4.3] that there is a set-theoretic bijec-
tion between H1

ét(T,Z/19Z) and isomorphism classes of Z/19Z-torsors over T for the étale
topology; i.e. finite étale covers U → T with a Z/19Z-action such that the U -morphism
Z/19Z × U → U ×T U given by (g, u) 7→ (g · u, u) is an isomorphism. Here, the bijection
sends the zero element to the trivial torsor Z/19Z× U .

Now, Z/19Z acts simply transitively on geometric fibers of U → T , and connected
components of U are irreducible (as U inherits the Dedekind property from T ) with each
component having nonempty generic fiber over T . Therefore U can only have either 1
connected component or 19 such. In the latter case, we get the trivial torsor. Suppose we
are in the former case, so U is a connected finite étale cover of the Dedekind affine T . Thus,
U must be irreducible and equal to the normalization of T in the function field k(U).

Looking at the function fields k(U) and k(T ), we note that [k(U) : k(T )] = 19 and Z/19Z
acts naturally on k(U) over k(T ). We conclude that any nontrivial element of H1

ét(T,Z/19Z)
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corresponds to a degree-19 Galois extension L of k(T ) = K = Q(ζ13) which is unramified
away from 13 (since T = Spec(OK [1/13]) and étale morphisms are unramified). Hence it
suffices to show that there are no such extensions L.

Suppose such an extension L/K exists. The prime 13 is totally ramified in K; write λ
for the unique prime of K over it. By class field theory, for any non-archimedean place v of
K, we have a commutative diagram

A×K/K
× Gal(L/K) ∼= Z/19Z

K×v Dv

O×v Iv

where the top horizontal map is the global Artin map. But since L is unramified away from
λ, all the inertia groups Iv in Gal(L/K) are trivial at non-archimedean places v 6= λ of K.
Also, all archimedean places of K = Q(ζ13) are clearly complex, so K×∞ is a product of copies
of C× and hence has no nontrivial finite quotient, so it is killed by the Artin map. Thus,
the Artin map induces a surjection K×\A×K/(K×∞ ×

∏
v 6=λO×v ) � Gal(L/K).

On the other hand, we know that

K×\A×K/(K
×
∞ ×

∏
v

O×v ) ∼= Cl(K),

and Cl(K) = 1 by [29, 11.1]. Thus, we have a composition of surjections

O×λ � K×\A×K/(K
×
∞ ×

∏
v 6=λ

O×v ) � Gal(L/K)

We have O×λ ∼= k(λ)× × (1 + mλ) as abelian groups, where mλ is the maximal ideal of
Oλ and k(λ) denotes the residue field OK/λ ∼= Oλ/mλ. Since λ is the unique prime of K
above 13, the group k(λ)× ∼= F×13 is of order 12. Also, the multiplicative group 1 + mλ is
pro-13, since (1 + mj

λ)/(1 + mj+1
λ ) ∼= mj

λ/m
j+1
λ is 13-torsion for all j ≥ 1 and 1 + mN

λ
∼= mN

λ

via the 13-adic logarithm for sufficiently large N . Hence t 7→ t19 is invertible on O×λ , so it is
impossible for a group homomorphism O×λ → Gal(L/K) ∼= Z/19Z to be a surjection.

This contradicts the existence of L, so H1
ét(T,ET ) = 0.

5.4 Proof of Theorem 5.2.4

In this subsection, we prove Theorem 5.2.4. To recall the statement, let P1, . . . , P6 be the
six rational cusps in X(Q). The claims are:

47



5.4 Proof of Theorem 5.2.4 5 POINTS OF ORDER 13

(i) for each i 6= j, the nonzero class [Pi]−[Pj] ∈ J(Q) (which is nonzero since g(X) = 2 > 0)
is of order 19;

(ii) all of these classes [Pi]− [Pj] generate the same subgroup T of J(Q)tors ⊆ J(Q);

(iii) the image of X(Q) in J(Q) via the embedding P 7→ [P ] − [P6] intersects T at only
those 6 points [Pi]− [P6].

To check equivalences of various divisor classes
∑6

i=1 ai[Pi], we can use Lemma A.11 to
pass to checking equalities of divisor classes

∑6
i=1 ai[(Pi)C], so we will now work with the

analytic model of X (while invoking some knowledge about Q-cusps among C-cusps). Note
that all meromorphic functions on Xan

C are rational functions on XC.
Now, we need to define another family of finite-index subgroups of Γ(1). Write

Γ(N) :=

{[
a b
c d

]
∈ Γ(1) : a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
,

which is a subgroup of Γ1(N) of index N . We write X(N) for XΓ(N) := H∗/Γ(N) and
Y (N) := H/Γ(N) for the open submanifold obtained by removing the cusps. As with
Y1(N), we can actually build Y (N) over Q as a moduli scheme, now for elliptic curves with
a “full level-N structure”: pairs (E,ϕ), where E is an elliptic curve over a Q-scheme S and
ϕ is an isomorphism (Z/NZ)S × µN,S

∼−→ E[N ]. Similarly, X(N) can be built as the regular
compatification of Y (N), and can be given a moduli-theoretic interpretation: X(N)(S) is
the set of isomorphism classes of generalized elliptic curves E/S equipped with a full level-N
structure (in this case, the isomorphism ϕ by definition has image in the smooth locus Esm,
and satisfies an ampleness condition).

Adapting the discussion following Fact 5.2.1, the geometric cusps of X(N) correspond
to full level-N structures on N -gons. For each cusp C of X(N)Q over an N -gon cusp of
X1(N)Q, we can verify the functorial criterion of étaleness for the natural quotient map
X(N) → X1(N) at C. In particular, X(13) → X is étale, hence unramified by [3, 2.2.6],
over the Q-rational cusps of X.

We now describe certain modular forms on X. These will be used to find relations
between the divisor classes [Pi]− [Pj]. Define the Eisenstein series

E2(τ ;α, β) :=
∑

(m,n)≡(α,β) mod 13

(mτ + n)−2.

for α, β ∈ Z. By [8, 4.6.1], differences of the form E2(α, β)−E2(α′, β′) are modular forms of
weight 2 for Γ(13). We will also need the following fact about the order of zeroes of E2(α, β)
at cusps, which is proved by taking the Fourier expansion of E2(α, β) at cusps:

Fact 5.4.1. For an integer x, write {x} for the unique integer 0 ≤ n ≤ 6 such that
n ≡ ±x mod 13. Then E2(α, β) has a zero of order at least {αa + βc} at the cusp (a, c) of
X(13).
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With this setup, we can finally start proving Ogg’s result in earnest. For 1 ≤ i ≤ 6, let
Pi be the cusp of X represented by (0, i), and let ϕi(τ) = E2(τ ; 0, i). We know that the
ϕij := ϕi − ϕj are modular forms of weight 2 for Γ(13). Note that Γ1(13)/Γ(13) ∼= Z is

generated by γ :=

[
1 1
0 1

]
, which acts on τ ∈ H by adding 1, and

ϕij(γ(τ)) =
∑

(m,n)≡(0,i) mod 13

(mτ + (m+ n))−2 −
∑

(m,n)≡(0,j) mod 13

(mτ + (m+ n))−2 = ϕij(τ).

Hence ϕij satisfies the invariance condition for both Γ(13) and Z, which means it satisfies
the same functional equation for Γ1(13). Therefore we may consider ϕij as a modular form
on Γ1(13).

If we consider the form ϕij on Γ1(13) as a global section of the line bundle ω⊗2 for
ω := e∗(Ω1

Esm/X) ∼= f∗(ωE/X), where f : E → X is the universal generalized elliptic curve, it

pulls back to the form ϕij on Γ(13) (considered as a section of the analogous ω⊗2 on X(13)).
Since X(13)→ X is unramified over the Q-rational cusps of X, the order of the zero of the
section ϕij of ω⊗2 at (0, c) is the same whether we consider this form and cusp as objects on
X(13) or on X.

By the above discussion and Fact 5.4.1, we can calculate lower bounds on the orders of
the ϕi at P1, . . . , P6. Below, by a 6-tuple (a1, . . . , a6), we mean that ai is the order of the
zero at Pi.

� ϕ1 has zeroes of orders at least (1, 2, 3, 4, 5, 6).

� ϕ2 has zeroes of orders at least (2, 4, 6, 5, 3, 1).

� ϕ3 has zeroes of orders at least (3, 6, 4, 1, 2, 5).

� ϕ4 has zeroes of orders at least (4, 5, 1, 3, 6, 2).

� ϕ5 has zeroes of orders at least (5, 3, 2, 6, 1, 4).

� ϕ6 has zeroes of orders at least (6, 1, 5, 2, 4, 3).

Now, ϕij is actually a modular form of weight 2 for Γ1(13), and we saw in Section 4.2 that
Γ1(13) has index (132/2)

∏
p|13 (1− (1/p2)) = 84 in Γ(1). But in general, a modular form of

weight k for an index-d subgroup Γ ⊆ Γ(1) has kd/12 zeros, counted with multiplicity, in
any fundamental domain for Γ. So, if we find 2 · 84/12 = 14 zeros of ϕij at the Pi, we know
that we have found all the zeros of ϕij. Since the order ordϕij(Pi) of a zero of ϕij at Pi is at
least min

(
ordϕi(Pi), ordϕj(Pi)

)
, we see that

� ϕ12 has zeroes of orders at least (1, 2, 3, 4, 3, 1).
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� ϕ13 has zeroes of orders at least (1, 2, 3, 1, 2, 5).

� ϕ14 has zeroes of orders at least (1, 2, 1, 3, 5, 2).

� ϕ15 has zeroes of orders at least (1, 2, 2, 4, 1, 4).

� ϕ16 has zeroes of orders at least (1, 1, 3, 2, 4, 3).

� ϕ23 has zeroes of orders at least (2, 4, 4, 1, 2, 1).

All of these 6-tuples sum to 14, so the above discussion shows that the above modular forms
ϕij have zeros of exactly the indicated orders at each Pi, as well as no other zeros.

We now take certain ratios of the above modular forms ϕij, considered as meromorphic
functions on X with no zeros or poles away from the cusps (thanks to the absence of zeros
on H shown above). We can explicitly compute the corresponding principal divisors on X:

(ϕ12/ϕ13) = (0, 0, 0, 3, 1,−4) (ϕ12/ϕ14) = (0, 0, 2, 1,−2,−1)

(ϕ12/ϕ15) = (0, 0, 1, 0, 2,−3) (ϕ12/ϕ16) = (0, 1, 0, 2,−1,−2)

(ϕ12/ϕ23) = (−1,−2,−1, 3, 1, 0)

. (5.4.1)

Here we consider a 6-tuple (a1, . . . , a6) as the divisor
∑6

i=1 aiPi.
For 1 ≤ i ≤ 5, let ti be the linear equivalence class of [Pi]− [P6], which is the image of Pi

under the embedding X(C)→ J(C). We claim that all of these have order 19 and generate
the same subgroup T of J(C) (recall that this is really a statement about X(Q) and J(Q),
but equalities of divisor classes can be checked over C). This would prove that any [Pi]− [Pj]
for i 6= j is of order 19 and generates T , since it is nontrivial can be written as a difference
of two of the divisors [Pi]− [P6]. One can check using the principal divisors listed in (5.4.1)
that

t5 = −3t4 2t3 = −7t4 t3 = 6t4

t2 = −5t4 t1 = 4t4
. (5.4.2)

For instance, 2t3 = (0, 0, 2, 0, 0,−2) and −7t4 = (0, 0, 0,−7, 0, 7) represent the same linear
equivalence class, since they differ by −2(ϕ12/ϕ13) − (ϕ12/ϕ14) = (0, 0,−2,−7, 0, 9). Simi-
larly, t3 = (0, 0, 1, 0, 0,−1) and 6t4 = (0, 0, 0, 6, 0,−6) represent the same linear equivalence
class, since they differ by 2(ϕ12/ϕ13)− (ϕ12/ϕ15) = (0, 0,−1, 6, 0,−5).

From the second and third equation in (5.4.2), we have 19t4 = 0, and so the rest of the
equations show that each of the ti generate 〈t4〉 = T . This proves claims (i) and (ii) of
Theorem 5.2.4.

It remains to show that the image of X(Q) in J(Q) via the embedding P 7→ [P ] − [P6]
intersects T at only those 6 points [Pi]− [P6]. This can be checked after passing from Q to
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C, since we will even show X(C) ∩ T consists of the points [Pi]− [P6]. From (5.4.2), we see
that t1 + t5 = t4 = t2 + t3, which is to say that there are linear equivalences

P1 + P5 ∼ P4 + P6 ∼ P2 + P3. (5.4.3)

Write D for the divisor P1 + P5, so dimC|D| ≥ 1. If K is a canonical divisor on X, then
a Riemann-Roch calculation (using g(X) = 2) shows that deg(K) = 2. Moreover, any
degree 2, effective divisor D′ on X with dimC|D′| ≥ 1 is linearly equivalent to K, since
Riemann-Roch again gives

dimC|D′| − dimC|K −D′| = deg(D′) + 1− g(X) = 1,

so dimC|K − D′| ≥ 0. But K − D′ has degree 0, and the only linear equivalence class of
degree-0 divisors corresponding to a nonempty complete linear system is the trivial equiva-
lence class, so K ∼ D′. In particular, all the linearly equivalent divisors of (5.4.3) are linearly
equivalent to K, so |D| = |K| = 1.

Now, suppose for contradiction that there is a point P ∈ X(C) 6∈ {P1, . . . , P6} such that
t := [P ] − [P6] is equal to vt4 for some v ∈ Z/19Z. Since X(C) → J(C) is injective, we
know that v 6∈ {0, 1, 4,−5, 6,−3} by the relations of (5.4.2). Indeed, if v were any of these
values, the relations of (5.4.2) would force P to be one of P6, P4, P1, P2, P3, or P5, contrary
to assumption.

Suppose t = −ti for some i, and hence P + Pi ∼ 2P6. Then there is a nonzero rational
function f on X determining a degree 2 cover X → P1, where f has simple zeros at P and
Pi and a double pole at P6. By what we showed above, f must also arise from the complete
linear system |K|, so f ∗(∞) = 2P6 is a canonical divisor. But then P4 + P6 ∼ D ∼ 2P6 and
so P4 ∼ P6, which would imply X ∼= P1, a contradiction. Hence v 6∈ {−1,−4, 5,−6, 3}, since
the relations of (5.4.2) show that −t1 = −4t4, −t2 = 5t4, −t3 = 6t4, and −t5 = 3t4.

Next, if t = 2ti for some i, then P +P6 ∼ 2Pi. But the same argument as in the previous
paragraph shows that 2Pi is a canonical divisor, but so are D = P1 +P5, P4 +P6, and P2 +P3

(5.4.3). So we may find some Pi + Pj linearly equivalent to 2Pi, upon which Pi ∼ Pj for
i 6= j, giving a contradiction again. So v 6∈ {2, 8, 9,−7,−6}, since the relations of (5.4.2)
show that 2t1 = 8t4, 2t2 = 9t4, 2t3 = −7t4, and 2t5 = −6t4.

The only remaining possibilities for v are {−2, 7,−8,−9}. We can look at each case
individually:

� By (5.4.2), we have −2t4 = t1− t3 = [P1]− [P3]. If t = −2t4, then P −P6 ∼ P1−P3, so
P1 + P6 would be canonical and hence linearly equivalent to P1 + P5, by (5.4.3). Then
P5 ∼ P6, a contradiction.

� By (5.4.2), we have 7t4 = t3 + t4 = [P3]+[P4]−2[P6]. If t = 7t4, then P +P6 ∼ P3 +P4,
so P3 + P4 would be canonical and hence linearly equivalent to P2 + P3, by (5.4.3).
Then P2 ∼ P4, a contradiction.
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� By (5.4.2), we have−8t4 = t2+t5 = [P2]+[P5]−2[P6]. If t = −8t4, then P+P6 ∼ P2+P5,
so P2 + P5 would be canonical and hence linearly equivalent to P1 + P5, by (5.4.3).
Then P1 ∼ P2, a contradiction.

� By (5.4.2), we have −9t4 = t2− t1 = [P2]− [P1]. If t = −9t4, then P −P6 ∼ P2−P1, so
P2 + P6 would be canonical and hence linearly equivalent to P4 + P6, by (5.4.3). Then
P2 ∼ P4, a contradiction.

So no such v with t = vt4 exists, and hence claim (iii) of Theorem 5.2.4 is proved.

Appendices

A Results from Algebraic Geometry

In this Appendix, we collect useful results from algebraic geometry. We will simply state the
results and proofs, and indicate where they are used in the main exposition.

The following result is used in the proof of Proposition 2.3.1.

Lemma A.1. Let G be a commutative group scheme locally of finite type over a field k,
with identity e and multiplication m. Then the composite map

dm(e,e) : Te(G)⊕ Te(G) ∼= T(e,e)(G×k G)→ Te(G) (A.1)

is addition of tangent vectors.

Proof. Let’s begin by explaining the first isomorphism. More generally, for locally finite type
k-schemes X, Y with x0 ∈ X(k) and y0 ∈ Y (k), we claim the natural map

T(x0,y0)(X ×k Y )→ Tx0(X)⊕ Ty0(Y )

via covariance is an isomorphism. For affine opens Spec(A) ⊆ X and Spec(B) ⊆ Y around
x0 and y0 respectively,

mx0 ⊗k k + k ⊗k my0 + mx0 ⊗k my0 = mx0 ⊗k B + A⊗k my0 = m(x0,y0).

Thus, mx0/m
2
x0
⊕my0/m

2
y0

∼−→ m(x0,y0)/m
2
(x0,y0). Dualizing this isomorphism gives the claim.

Now, the map dm(e,e) is necessarily k-linear, so it suffices to show that the composite
maps

Te(G)
i1−−⇒
i2

Te(G)⊕ Te(G)
dm(e,e)−−−−→ Te(G)
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are the identity, where i1 and i2 are inclusions into the first and second factors, respectively.
By functoriality of tangent spaces, the composition

Te(G)
i1−→ Te(G)⊕ Te(G)

dm(e,e)−−−−→ Te(G)

is induced by the composition G
g 7→(g,e)−−−−→ G ×k G

m−→ G, which is the identity. Therefore
dm(e, e) ◦ i1 = id, and similarly dm(e, e) ◦ i2 = id, so by linearity, dm(e, e) is addition.

The following result is used in the proof of Lemma 3.3.4. The result actually holds for
any artin local ring over k, but we only need the result for the dual numbers.

Lemma A.2 ([14, 4.8]). Let X be a smooth affine scheme over a field k, and let k[ε] be the
ring k[x]/(x2) of dual numbers over k. If X ′ is a flat scheme over k[ε] such that X ′⊗k[ε]k ∼= X
over k, then X ′ ∼= X ⊗k k[ε].

Proof. We will apply the “functorial criterion for smoothness” of [3, 2.2.6]; suppose we have
a k-morphism f : Y0 → X, where Y0 is an affine scheme of finite type over k. Let Y0 ⊆ Y be
a first-order infinitesimal thickening of Y , meaning that Y0 is a closed subscheme of Y such
that its ideal sheaf has square 0 (note that Y is also affine since (Y0)red = Yred, see [13, Ex.
III.3.1]). Then f lifts to some g : Y → X restricting to f on Y0.

In the case that Y0 = X, f = id, and the infinitesimal thickening is the closed immersion
i : X ↪→ X ′ given by the isomorphism X ′ ⊗k[ε] k ∼= X, we may find a lift p : X ′ → X such
that p◦i = id. Via p and the structure map X ′ → k[ε], we get a k[ε]-map f : X ′ → X⊗k k[ε],
which induces the original isomorphism X ′ ⊗k[ε] k ∼= X upon taking the fiber product ⊗k[ε]k
(since this fiber product just looks at the closed subscheme defined by killing ε).

Everything is affine, so let’s just work with rings. In the ring setting, we have a map
f : R⊗k k[ε]→ R′ over k[ε], inducing R ∼= R′ ⊗k[ε] k upon tensoring with k over k[ε]. To see
that f is an isomorphism, consider the following exact sequence of modules over k[ε]:

R⊗k k[ε]→ R′ → coker(f)→ 0.

After tensoring this with k over k[ε], we get

R→ R′ ⊗k[ε] k → coker(f)⊗k[ε] k → 0,

where the first map is an isomorphism, so coker(f) ⊗k[ε] k = 0. As k = k[ε]/(ε), it follows
that coker(f) = 0, so in fact we have a short exact sequence

0→ ker(f)→ R⊗k k[ε]→ R′ → 0

over k[ε]. Again, tensor this with k over k[ε], and since R′ is k[ε]-flat by assumption, the
tensored sequence stays exact, and we conclude ker(f) = 0 as well.
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The following result is used in the proof of Proposition 5.2.5.

Proposition A.3. There is a unique elliptic curve E over F9 with 13 dividing |E(F9)|, and
for this E, AutF9(E) ∼= Z/6Z.

The following proof is due to Brian Conrad (for the existence) and Noam Elkies (for the
uniqueness).

Proof. Note that by the Hasse bound ||E(F9)| − 9− 1| ≤ 2
√

9 = 6 [26, V.1.1], any E as in
the lemma equivalently satisfies |E(F9)| = 13.

Existence : To build the desired E, we start with a specific elliptic curve E0 over F3(!)
with j(E0) = 0, and then make a sextic twist over F9. Let E0 be given by the Weierstrass
equation y2 = x3 − x, which by the proof of [26, A.1.2], has automorphisms given by the
coordinate transformations x = u2x′ + r and y = u3y′, where u4 = 1 and r3 − r = 0. In F3,
there are 2 possibilities for u and 3 for r, so |AutF3(E0)| = 6.

We now prove an intermediate result:

Lemma A.4. Let k be a field with char(k) 6= 2. Suppose E is an elliptic curve over k
satisfying:

i. For some prime l ≥ 5 with l 6= char(k), E[l](k) ∼= Z/lZ.

ii. 6 divides |Autk(E)|.

Then Autk(E) has order 6 and is cyclic.

Proof. The cyclicity is automatic once |Autk(E)| = 6, since −1 ∈ Autk(E) is central with
order 2 (all maps of elliptic curves commute with inversion) but S3 has trivial center.

The only way that |Autk(E)| > 6 can occur is for k to be characteristic 3, in which case
Autk(E) = Autk(Ek) is a non-abelian group of order 12 (by [26, A.1.2], using the assumption
char(k) 6= 2). Thus, we just need to check that Autk(E) is abelian.

The action of Autk(E) on E[l](k) ∼= Z/lZ defines a map α : Autk(E) → (Z/lZ)×, so
Autk(E) is abelian if ker(α) = 1. But if γ ∈ ker(α), then γ is a k-automorphism of (E,P )
with P ∈ E(k) of exact order l ≥ 5. Such pairs have no nontrivial automorphisms, so
γ = 1.

Now, let C := AutF3(E0) act on E0. The group C of order 6 is cyclic, since−1 ∈ C is in its
center. Consider the C-action on E0[13](F3) ∼= F⊕2

13 . Since 13 - |C|, this F13-representation
is completely reducible. Moreover, F×13 contains a primitive 6th root of unity and C is
abelian, so irreducible F13[C]-modules are 1-dimensional. Hence, E0[13](F3) ∼= L1 ⊕ L2 as
C-representations, with the C-action on the line Li being via some character χi : C → F×13.
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But the action of C = AutF3(E0) leaves the 13-Weil pairing 〈·, ·〉E0,13 unaffected, so for any
c ∈ C and non-identity points P1 ∈ L1 and P2 ∈ L2,

〈P1, P2〉E0,13 = 〈c(P1), c(P2)〉E0,13 = 〈χ1(c) · P1, χ2(c) · P2〉E0,13 = (〈P1, P2〉E0,13)(χ1χ2)(c).

Since the Weil pairing is non-degenerate and symplectic, it follows that 〈P1, P2〉E0,13 6= 1 and
hence χ1χ2 = 1. Therefore C acts on E0[13](F3) via the representation χ ⊕ (1/χ) for some
character χ : C → F×13.

The C-action on E0[13](F3) has trivial stabilizer at nonzero points P , since the pair
(E,P ) with P of exact order 13 has no nontrivial automorphisms. Thus, χ is injective and
hence yields an isomorphism χ : C

∼−→ µ6(F13). In particular, χ2 6= 1, so χ 6= 1/χ. This
implies that L1 and L2 are the unique C-stable lines in E0[13](F3).

The action on E0[13](F3) by ΓF3
:= Gal(F3/F3) commutes with the C-action (as the

latter action is defined over F3), so it preserves the Li’s by the aforementioned uniqueness.
Hence ΓF3 acts on each Li by scalar multiplications, so let θi : ΓF3 → F×13 be the visibly
continuous action on Li. Since ΓF9 = (ΓF3)2 (as Frob9 = (Frob3)2), we see that the image of
ΓF9 under either θi is contained in (F×13)2 = µ6(F13). Hence, the action of ΓF9 on E0[13](F3)
is given by θ1 ⊕ θ2 for characters θi : ΓF9 → µ6(F13).

But χ : C
∼−→ µ6(F13) is the action on L1, so via the continuous map

ΓF9

θ1−→ µ6
χ−1

−−→
∼

C = AutF3(E0) ⊆ AutF9(E0),

we may form the sextic twist E over F9 of (E0)F9 by the reciprocal character 1/(χ−1 ◦ θ1)
of χ−1 ◦ θ1 : ΓF9 → C. Note that here, χ−1 denotes the inverse of the isomorphism
χ : C

∼−→ µ6(F13), whereas 1/χ as used before denotes the reciprocal of χ as characters

(i.e. the composition C
χ−→ µ6(F13)

a7→a−1

−−−−→ µ6(F13)). Then via the construction of twisting,
E[13](F3) = E0[13](F3) with the ΓF9-action on L1 in E[13](F3) being the product of θ1 and
χ ◦ (1/(χ−1 ◦ θ1)) = 1/θ1, hence trivial.

Therefore E(F9)[13] ⊇ L1 is nonempty, so 13 divides |E(F9)| and thus E(F9) ∼= Z/13Z.
Moreover, by the commutativity of C and the construction of E by twisting, we have
C ⊆ AutF9(E), so Lemma A.4 with k = F9 and l = 13 shows that AutF9(E) = C ∼= Z/6Z.
This settles the existence of E as in Proposition A.3.

Uniqueness : Let E be an elliptic curve over F9 with |E(F9)| = 13. Since we are in
characteristic 3, E is given by some Weierstrass equation

Ea,b,c : y2 = x3 + ax2 + bx+ c.

We will determine the possibilities for the coefficients a, b, c ∈ F9 such that |Ea,b,c(F9)| = 13,
and we will then show all such Ea,b,c are isomorphic. This will also give a more explicit proof
of the existence of an E with the desired properties.
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By the proof of [26, V.4.1], E is supersingular since the trace of Frobenius is

tr(Frob9) = 9 + 1− |E(F9)| = −3 ≡ 0 mod 3.

The same proof shows that the supersingularity of Ea,b,c is equivalent to the j-invariant
(4a)2 − 24(2b) = 16a2 of Ea,b,c being 0, so a = 0 and we write Eb,c instead of Ea,b,c. This
also forces b to be nonzero to ensure that the discriminant ∆ = −16(4b3 + 27c2) is nonzero
in F9. Therefore (b, c) must be among 8 · 9 = 72 possible choices.

Moreover, by the duplication formula given in [26, III.2.3], we see that (x0, y0) ∈ Eb,c(F9)
is a nontrivial 2-torsion point exactly when x3

0 + bx0 + c = 0. Hence Nb,c := |Eb,c(F9)| is odd
exactly when the polynomial x3 + bx+ c has no roots (i.e. is irreducible) over F9, since any
root x0 gives the nontrivial 2-torsion point (x0, 0), and vice-versa. There are 9 · 8/6 = 12
such polynomials x3 + bx + c that split completely, corresponding to unordered 3-tuples of
distinct roots (r, s,−r − s) (as x3 + bx + c has no repeated roots; note that if r 6= s then
r 6= −r − s and s 6= −r − s). Similarly, there are 9 · 4 = 36 such polynomials x3 + bx + c
that split as a monic linear times a monic quadratic, corresponding to unordered 3-tuples
of distinct roots (r, r + s

√
ρ, r − s√ρ) where s ∈ F×9 and ρ ∈ F×9 is a quadratic nonresidue.

Indeed, there are 9 choices for r, 4 choices for s (note that s and −s determine the same
unordered 3-tuple), and the description of the roots is constrained by the given factorization
of x3 + bx+ c and the fact that they must sum to 0. So because we are trying to find (b, c)
such that Nb,c = 13, we have cut our search down to 72− 12− 36 = 24 possible pairs.

For such pairs (b, c) (so Nb,c is odd), the Hasse bound gives |Nb,c − 10| ≤ 6, and we have
also constructed Eb,c to be supersingular, so tr(Frob9) = 10 − Nb,c ≡ 0 mod 3. These facts
constrain Nb,c to be either 7 or 13, so Frob9 on Eb,c respectively satisfies x2 + 3x + 9 or
x2 − 3x + 9 in those cases [26, V.2.3.1]. By the construction of quadratic twists, the traces
of Frob9 acting on Eb,c and its quadratic twist E ′b,c are negatives of each other, so quadratic
twisting on Eb,c switches the characteristic polynomial of Frob9 from x2 +3x+9 to x2−3x+9
and vice-versa. Thus, there are exactly 24/2 = 12 pairs (b, c) with Nb,c = 13.

We claim that if i is a primitive 4th root of unity in F×9 , then N−1,i = 13. Indeed, if
ρ ∈ F×9 satisfies ρ2 = i, then ρ is a non-square (as ρ has multiplicative order 8), and by
inspection E−1,i(F9) already has the 12 nonidentity points

{(0,±ρ), (±1,±ρ), (i,±ρ3), (i± 1,±ρ3)}.

Hence, it suffices to show that the polynomial x3 − x + i has no roots in F9 (in which case
Nb,c is either 7 or 13, so must be 13), and this amounts to a brute-force check. Also, E−1,i

has automorphisms (x, y) 7→ (x+1, y) and (x, y) 7→ (x,−y) with orders 3 and 2 respectively,
so Lemma A.4 shows that AutF9(E−1,i) ∼= Z/6Z. Hence we can take E to be E−1,i.

For any u ∈ F×9 , the curves Eu4b,u6c and Eb,c are isomorphic via (x, y) 7→ (u2x, u3y).
Likewise, for any q ∈ F9, Eb,q3+bq+c and Eb,c are isomorphic via (x, y) 7→ (x − q, y). Hence,
these u- and q-transformations act on pairs (b, c). We claim that the orbit of (b, c) = (−1, i)
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under this action consists at least 12 distinct pairs, which would show that any Eb,c with
Nb,c = 13 is isomorphic to E−1,i. Indeed, since the actions of u = −1 and q = ±1 are the only
ones fixing (−1, i), let u1, u2, u3, u4 be representatives of the 4 elements of the multiplicative
group F×9 /{±1}, and let q1, q2, q3 be representatives of the 3 elements of the additive group
F9/{0, 1,−1}. Then it is clear that all 12 possible pairs qj · (ui · (−1, i)) are distinct, and we
are done.

The following result is used in the proof of Proposition 5.2.5 and Proposition 5.3.2.

Lemma A.5. Let R be a local ring with residue field k. Let A be a smooth separated
commutative group scheme over R. Then for any prime l 6= char(k), the reduction map

A[l](R)→ A[l](k)

is injective.

Proof. The same argument as in the proof of Proposition 2.3.1 shows that A[l] is separated
and étale over R. Now, any section g ∈ A[l](R) is a closed immersion, but it is also étale
since both Spec(R) and A[l] are étale R-schemes, so it must be an open immersion as well
[3, 2.2.4]. Hence g cuts out a clopen subscheme (also denoted g) in A[l], so A[l] topologically
breaks up as a disjoint union of clopen subschemes g

∐
(A[l] − g). Thus, if two R-points

g, g′ ∈ A[l](R) induce the same k-point, they must be the same connected component C
(containing that physical k-point) as their image, so they agree topologically. Since g and
g′ are both sections to the restriction C

∼−→ Spec(R) of the structure map A[l] → Spec(R),
they must be the same R-point.

The following result is used in the discussion of the minimal polynomial of γ2 (after
Proposition 5.2.10):

Lemma A.6. Let A be any simple abelian variety over a field k, and f, g ∈ End(A) with
g ◦ f = 0. Then either g = 0 or f = 0.

Proof. A nonzero endomorphism f of A must be surjective: the scheme-theoretic image f(A)
is an abelian subvariety of A, forcing f(A) = A since f is nonzero and A is simple over k.
Hence, if g and f are both nonzero, g ◦ f is surjective. But g ◦ f = 0, so either g = 0 or
f = 0.

The following number-theoretic result is used in the proof of Proposition 5.3.2.

Lemma A.7. Let p be a prime and D ⊆ G be a decomposition group corresponding to
p; that is, D = D(v|v) fixes a place v on Q extending v := |·|p on Q. Then naturally
D ∼= Gal(Qp/Qp) as topological groups.
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Proof. Write Gp for Gal(Qp/Qp). We know that the place v is induced by an embedding

i : Q ↪→ Qp over Q → Qp (giving Qp and Qp the unique absolute values extending v). We
then have a map Gp → G by restriction. Any σ ∈ Gp preserves the unique absolute value
on Qp over |·|p on Qp, hence is an isometry and thus continuous.

We now claim that the image of Q inside Qp is dense. Since any element of Qp appears in

a finite subextension, it suffices to show that L∩Q is dense inside L for any finite extension
L/Qp.

By the primitive element theorem, L has the form Qp(a); let g ∈ Qp[x] be the minimal
polynomial of a. Since Q is dense in Qp, we can perturb the non-leading coefficients of g
slightly to create a nearby monic polynomial g′ ∈ Q[x], and by Krasner’s Lemma, g′ is still
irreducible (over Qp ⊇ Q) with L ∼= Qp[x]/(g) ∼= Qp[x]/(g′). Now, Q[x]/(g′) is a finite
extension F of Q, and F ⊗Q Qp

∼= L by construction. But tensoring a number field with
Qp gives a product of completions of F at places over v, so it follows that there is a unique
place w of F over v and Fw = L. Hence F is dense in L, so a fortiori, L ∩Q is also dense
in L.

By the preceding density, the restriction map Gp → G is injective. The image lands in
D, since the embedding i induces v on Q and the Gp action on Qp fixes the unique place on

Qp over |·|p on Qp.
We now show that the image of this map is all of D. We saw above that for all finite

subextensions L/Qp inside Qp, there is a finite extension F/Q with Fw ∼= L where w is a
place on F extending v. Increasing F (hence L) if necessary, we can focus on F that is
Galois over Q. An element σ′ ∈ Gal(F/Q) fixing w gives a unique isometric automorphism
τ : Fw → Fw such that τ ◦ j = j ◦ σ′, where j is the isometric embedding F ↪→ Fw. This
τ must fix Qp pointwise as it fixes its dense subset Q, so it is an automorphism of Fw/Qp.
Note also that we can find an embedding F ↪→ Q so that v restricts to w on F .

Given σ′ ∈ D, look at its actions on all finite Galois subextensions Q/F/Q, where F gets
the restricted place w of v. By the above discussion, this induces an automorphism σF on
Fw/Qp. But these Fw’s account for a cofinal system of finite subextensions Qp/L/Qp, since
L is isomorphic to some such Fw and Galois extensions have a unique image in an algebraic
closure. These automorphisms σF are clearly compatible, so we may patch them together
to an automorphism σ ∈ Gp which restricts to σ′|F for all finite F/Q. Hence the image of σ
under Gp → G is σ′, which means Gp → G surjects onto D.

Note that this group isomorphism Gp → D is a continuous map of topological groups,
since it’s enough to check continuity at the identity, which is clear. As a bijection from a
compact space to a Hausdorff space, it is a homeomorphism.

The following result is used in the proof of Lemma 5.3.4.

Lemma A.8. For a Dedekind domain R with fraction field K, the generic-fiber functor

{finite étale R-schemes} → {finite étale K-schemes}
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is fully faithful.

Proof. Let B be a finite étale algebra over R. We claim that B is equal to the integral
closure C of R in the generic fiber BK , which gives the result. Since BK is finite étale over
K, it is a finite product

∏
iKi of finite separable field extensions of K.

Now, since R is Dedekind and each Ki/K is separable, C is a finitely generated R-module.
It is torsion-free since it sits inside the K-vector space

∏
iKi. Since B is finite over R, it is

integral and hence contained in C. Therefore it suffices to check that the inclusion B ⊆ C is
an equality after localizing at each maximal ideal of R. Hence we may assume R is a discrete
valuation ring.

In this local case, B and C are R-free, and they have the same rank since their K-fibers
coincide. We can choose R-bases {bi} and {ci} for B and C respectively such that bi = rici
for some nonzero ri ∈ R, and hence

disc(B/R) = disc(C/R) ·
n∏
i=1

ri

as ideals of R. We claim that disc(B/R) is the unit ideal in R, so then the ri are units and
hence B = C as desired.

Letting k be the residue field of R, it suffices to check that disc(Bk/k) is nonzero. But Bk

is k-étale, so it is a product of finite separable extensions of k, implying disc(Bk/k) 6= 0.

The following result is used in the proof of Lemma 5.3.5.

Lemma A.9. For any scheme X, we have naturally H1
fppf(X,Gm) ∼= Pic(X).

Proof. To calculate H1
fppf(X,Gm), we use the fact that the derived H1

fppf functor is the same

as the Cech Ȟ1
fppf functor. By definition, Ȟ1

fppf(X,Gm) = lim−→U→X(Ȟ1(U,Gm)), where the
direct limit is taken over fppf covers U of X (by which we mean a collection of flat and locally

finitely presented maps {Ui
fi−→ X} such that the open images fi(Ui) form a cover of X).

Now, Ȟ1(U,Gm) = Z1(U,Gm)/B1(U,Gm), and we claim that

Z1(U,Gm)/B1(U,Gm) ∼= PicU(X),

where PicU(X) is defined as

PicU(X) := {L ∈ Pic(X) : LUi = f ∗i L ∼= OUi for all Ui
fi−→ X}.

We see that Z1(U,Gm) consists of collections of units on the fppf cover U satisfying the
“triple overlap” condition:

{(uij ∈ O(Ui ×X Uj)×) : uijujku
−1
ik = 1 ∈ O(Ui ×X Uj ×X Uk)×},
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and that B1(U,Gm) is the collection

{(uij ∈ O(Ui ×X Uj)×) : there exists (ui ∈ O(Ui)
×)i such that uij = p∗i (ui)/p

∗
j(uj)},

where pi, pj are the projection maps out of Ui ×X Uj. Hence we have a map

PicU(X)→ Z1(U,Gm)/B1(U,Gm), (A.2)

given as follows: if L ∈ PicU(X) has generators ei ∈ (f ∗i L)(Ui) over Ui for each i, then we
send L to the collection (uij), where uij ∈ O(Ui×X Uj)× is such that p∗i (ei) = p∗j(ej)uij. This
map is well-defined, since if we adjust the ei to a different compatible set of local generators
e′i and determine a new collection (u′ij), then uij is adjusted by p∗i (e

′
i/ei)/p

∗
j(e
′
j/ej).

To see that the map of (A.2) is an isomorphism, we use the theorem that all descent data
for a quasicoherent sheaf with respect to an fppf cover {S ′i → S} are effective. Note that
because fppf maps are (universally) open [1, 29.25.10], the proof of this theorem reduces to
the case of a single fppf map S ′ → S, which is a theorem of Grothendieck [3, 6.1.4].

Given L,L′ ∈ PicU(X) with the same image (uij) in Z1(U,Gm)/B1(U,Gm), we deduce
that the isomorphisms f ∗i L ∼= f ∗i (L′), coming from the given isomorphisms f ∗i L ∼= OUi
and f ∗i (L′) ∼= OUi , are compatible on triple overlaps (in the language of [3, 6.1], this is an
isomorphism of descent data). These isomorphisms f ∗i L ∼= f ∗i (L′) descend to an isomorphism
L → L′, which gives injectivity. For surjectivity, we simply note that a choice of (uij) in
Z1(U,Gm)/B1(U,Gm) gives a descent datum on the structure sheaves OUi “glued” across
the disjoint union

∐
i Ui via the uij (using compatibility of (uij) on triple overlaps). By

effective descent, this invertible sheaf is isomorphic to the pullback of some L ∈ PicU(X).
This argument shows that

H1
fppf(X,Gm) = lim−→

U→X
(Ȟ1(U,Gm)) = lim−→

U→X
PicU(X),

and the last term is exactly Pic(X), since every invertible sheaf is trivialized over some open
cover.

The following result is used in the proof of Lemma 5.3.6.

Lemma A.10. The cohomologies H1
fppf(S,E) and H1

ét(S,E) are in natural bijection for any
scheme S and any commutative finite étale S-group E.

This natural bijection is even a group isomorphism, but we do not need this stronger
statement.

Proof. By [1, 21.4.3], there is a set-theoretic bijection between H1
fppf(S,E) (resp. H1

ét(S,E))
and the set of isomorphism classes of E-torsors over S for the fppf (resp. étale) topologies.
Thus, it suffices to show that every fppf E-torsor over S is also an étale torsor, and vice-versa.
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One direction is clear, as étale maps are flat and locally of finite presentation. Conversely,
if U is an fppf E-torsor over S, then because E → S is étale, pr2 : E ×S U → U is étale as
well. But by assumption, the map ϕ : E×S U → U ×S U given functorially on points valued
in S-schemes by (e, u) 7→ (e · u, u) is an isomorphism, so it follows that the composition
pr2 ◦ ϕ−1 : U ×S U → U is étale. This is simply the second projection map for the base
change of U → S by itself, so by fppf descent, U → S is étale (and surjective, since it was
already a cover).

The following result is used in the proof of Theorem 5.2.4 (cf. Section 5.4).

Lemma A.11. Let C be a proper, smooth, geometrically connected scheme over a field k.
Then for any extension field K/k, the pullback map Pic(C)→ Pic(CK) is injective.

Proof. Let L be an invertible sheaf on C whose pullback LK is trivial. As Spec(K)→ Spec(k)
is flat, we have an isomorphism H0(C,L)⊗kK ∼= H0(CK ,LK) ∼= H0(CK ,OCK ) ∼= K (since C
is geometrically integral), which implies H0(C,L) is 1-dimensional. Since pullback commutes
with dual, H0(C,L−1) is likewise 1-dimensional. By choosing nonzero global sections of L
and L−1, corresponding to nonzero maps OC → L and L → OC respectively, the composite
map OC → L → OC is certainly nonzero, hence multiplication by some c ∈ k× and thus
an isomorphism. Therefore L → OC is a surjection of invertible sheaves and hence an
isomorphism.
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