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These are notes for a survey talk on slopes in Arakelov geometry and number-theoretic
applications. In many ways one can think of Arakelov geometry as a recasting of Minkowski’s
geometry of numbers into more algebro-geometric language. In this talk we will introduce
the language of slopes and see some powerful Diophantine applications (among many) of
Bost’s slope method, which is introduced in [Bos01, Section 4]. All errors and pedantry are
due to me—please send me any comments or corrections.
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1 Basic definitions

We will introduce some basic definitions, which can be found in [Bos20, Chapter 1].
Fix K a number field, S := Spec(OK), and K(C) the set of field embeddings K ↪→ C.

Definition 1.1. A Hermitian vector bundle E is a finite locally free (i.e. projective) OK-
module E along with a family (‖·‖σ)σ∈K(C) of Hermitian norms (i.e. induced by a Hermitian
inner product) on the vector spaces Eσ := E ⊗OK,σ C that is invariant under complex
conjugation. The last condition means that ‖e⊗ z‖σ = ‖e⊗ z‖σ for all e ∈ E, z ∈ C, σ ∈
K(C).

We may define the rank of a Hermitian vector bundle in the obvious way, and a Hermitian
line bundle is a Hermitian vector bundle with rank 1. We may also consider isomorphisms
of Hermitian vector bundles, which must preserve the metrics.
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Definition 1.2. A subbundle (resp. quotient bundle) of a Hermitian vector bundle E is
an OK-submodule (resp. torsion-free quotient module) F of positive rank, such that the
Hermitian metrics of F are the restrictions (resp. the quotient metrics) of the metrics on E.

Recall that in the quotient case, if F = E/N , then ‖x‖F,σ := infn∈N ‖x− n‖E,σ.
There are a bunch of operations one can do to Hermitian vector bundles; for example:

direct sums, tensor products, duals, exterior powers, and pullback. We will not introduce
these in detail.

Definition 1.3. A morphism of Hermitian vector bundles E and F is defined as an OK-
module morphism ϕ : E → F such that for all σ ∈ K(C), the induced C-linear map
ϕσ : Eσ → Fσ has operator norm at most 1.

Definition 1.4. Let L be a Hermitian line bundle. The Arakelov degree of L is

d̂eg(L) := log|L/sOK | −
∑

σ∈K(C)

log ‖s‖σ =
∑
p∈S

vp(s) logNp −
∑

σ∈K(C)

log ‖s‖σ ,

where s is any nonzero section of L (which can be rational for the second equality), “p ∈ S”
means the maximal ideals of OK , and Np is the size of the residue field at p. It is independent
of the choice of s by the product formula.

Definition 1.5. If E is a Hermitian vector bundle of rank r, then the Arakelov degree of E
is defined to be d̂eg

(
∧rE

)
.

More details on the above constructions can be found in [Mor14, Section 3.3] (in par-
ticular, Propositions 3.10 and 3.11) or in my previous notes [Hao25]. The above notions
generalize the standard Minkowski geometry of numbers constructions, which occur in the
case K = Q. In that case, where Hermitian vector bundles are lattices in Euclidean inner
product spaces, the Arakelov degree is simply − log of the covolume of the lattice.

Proposition 1.6. Let E1, E2 be two Hermitian vector bundles with ranks r1, r2. Then

(1) d̂eg(E1 ⊗ E2) = r2d̂eg(E1) + r1d̂eg(E2).

(2) d̂eg(E1 ⊕ E2) = d̂eg(E1) + d̂eg(E2).

(3) −d̂eg(E1) = d̂eg(E
∨
1 ).

Proof. (1) The claim is obvious when the Ei are line bundles, and note that det(E1⊗E2) ∼=
(detE1)

r2 ⊗ (detE2)
⊗r1 .

(2) Apply (1) upon replacing Ei with det(Ei). Note that

det(E1 ⊕ E2) ∼=
r1+r2⊕
i=1

(
i∧

j=1

E1 ⊗
r1+r2−i∧
k=1

E2

)
= det(E1)⊗ det(E2).
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(3) The claim is obvious when E1 is a line bundle, and then use that exterior power commutes
with dual, along with (1).

We now come to the key definition.

Definition 1.7. Let E be a Hermitian line bundle of positive rank. The slope of E is defined
as

µ̂(E) :=
d̂eg(E)

rank(E)
.

We define the maximal slope of E to be

µ̂max(E) = sup{µ̂(F ) : F is a positive-rank Hermitian subbundle of E}

and likewise the minimal slope of E to be

µ̂min(E) = inf{µ̂(F ) : F is a torsion-free Hermitian quotient bundle of E}.

Remark 1.8. If E has rank 0, then its maximal (resp. minimal) slope is −∞ (resp. ∞) by
convention.

It turns out that the supremum and infimum in the definitions of the maximal and
minimal slope are in fact attained. This is not immediately obvious, but not terribly hard
to prove either; we omit the proof since it is not necessary for our purposes. Also, one can
check that µ̂max(E) = −µ̂min(E

∨
).

By (1) of Proposition 1.6, we have

Corollary 1.9.
µ̂(E1 ⊗ E2) = µ̂(E1) + µ̂(E2).

We now define heights of generically defined morphisms of Hermitian vector bundles.
These will play a role in the important slope inequality.

Definition 1.10. Let E,F be Hermitian vector bundles and ϕ : EK → FK be a nonzero
K-linear map. We define the height of ϕ (with respect to E,F ) to be

h(ϕ) :=
∑
p∈S

log ‖ϕ‖p +
∑

σ∈K(C)

log ‖ϕ‖σ ,

where ‖ϕ‖p is defined to be given by

inf{‖r‖−1p : r ∈ K×, rϕ ∈ (E∨ ⊗OK F )OK,p}

upon identifying HomK(EK , FK) with (E∨ ⊗OK F )K , and we give K the normalized p-adic
absolute value sending a uniformizer to 1/Np. Also, ‖ϕ‖σ is given by the operator norm of
ϕσ : Eσ → Fσ.
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Remark 1.11. Note that ‖ϕ‖p can also be thought of as an operator norm of ϕ ∈ HomKp(EKp , FKp),
where EKp , FKp have the p-adic norms induced by the Op (completion of OK at p) lattices
EOp , FOp .

By convention we set h(0) = −∞. It is clear that for morphisms ϕ of Hermitian vector
bundles (recall Definition 1.3), we have h(ϕ) ≤ 0.

Proposition 1.12. Suppose E,F are Hermitian line bundles. Then for a nonzero element
ϕ ∈ HomK(EK , FK), we have

d̂eg(E)− d̂eg(F ) = −d̂eg(E
∨ ⊗ F ) = h(ϕ).

Indeed, ϕ is a rational section of E∨ ⊗ F , and the rest follows from the definitions.
Now we discuss the slope inequality. To motivate it, we make the trivial observation that

if ϕ : E → F is an isometric injection, then one has µ̂(E) ≤ µ̂max(F ). We would like to
remove the rather strong hypothesis that ϕ is an isometry. This leads to:

Theorem 1.13. Let E,F be two Hermitian vector bundles with r := rank(E) ≥ 1, ϕK :
EK → FK be an injective K-linear map. Then

µ̂(E) ≤ µ̂max(F ) + h(ϕ). (1.1)

The intuition for the theorem is simply that upon removing the isometry condition, we
need a way of detecting how the metrics of E compare to those of F , and the discrepancy
must be reflected in any inequality relating any slopes of E and F . This discrepancy is
exactly furnished by the height h(ϕ), which has the operator norms of ϕ with respect to
various places built in to its definition.

Proof. Let F ′ be a OK-submodule of F such that F ′K = ϕ(EK). Replace F ′ with its satura-

tion so that F/F ′ is torsion-free. Hence we get a Hermitian vector bundle F
′

of rank upon
taking the restrictions of the F -metrics, and ϕ : EK → F ′K is a bijection. This induces a
nonzero map ∧rϕ of the top exterior powers, and so gives a rational section of the Hermitian
line bundle L := ∧ri=1E

∨ ⊗ ∧ri=1F
′. Apply Proposition 1.12:

d̂eg(E)− d̂eg(F
′
) = −d̂eg(L) = h(∧rϕ) =

∑
p∈S

log ‖∧rϕ‖p +
∑

σ∈K(C)

log ‖∧rϕ‖σ .

Note that ‖∧rϕ‖v ≤ ‖ϕ‖
r
v for all places v of K by definition of operator norms (see Remark

1.11), and so

d̂eg(E)− d̂eg(F
′
) ≤ rh(ϕ).

Since d̂eg(F
′
) ≤ rµ̂max(F ) by definition, we have the result upon dividing both sides in the

above inequality by r.
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By dualizing the inequality (1.1), we can obtain a corresponding statement for surjective
morphisms ϕ:

µ̂(F ) ≥ µ̂min(E)− h(ϕ).

One application of Theorem 1.13 is to prove the classical Siegel’s lemma:

Theorem 1.14 (Siegel’s lemma). Consider a homogeneous linear system of M equations in
N variables with integer coefficients aij not all 0, such that M < N and B := max|aij|. Then
there is a nonzero integer solution (x1, . . . , xN) to the system where all |xi| ≤ (NB)M/(N−M)

for all i.

In fact it might be more correct to think of the slope inequality as a reformulation of
Siegel’s lemma, but we won’t explain this point further.

2 Bost’s slope method

In Bost’s work, he extends the above slope inequality into the case of filtered vector bundles.
In this case, suppose FK is a finite-dimensional K-vector space with a filtration of K-vector
subspaces

0 = FN+1
K ⊆ FN

K ⊆ . . . ⊆ F 0
K = FK .

Also assume for all 0 ≤ i ≤ N , F i
K/F

i+1
K is the K-vector space associated (after tensoring) a

Hermitian vector bundle G
i
; that is, Gi

K = F i
K/F

i+1
K . Now suppose E is a Hermitian vector

bundle and ϕ : EK → FK is an injective K-linear map. We may then define Ei
K := ϕ−1(F i

K)
and Ei := Ei

K ∩ E to get a filtration

0 = EN+1 ⊆ EN ⊆ . . . ⊆ E0 = E

of Hermitian vector subbundles of E (give each Ei the restricted norms from E). Set ϕi to
be the evident K-linear map Ei

K → Gi
K .

Theorem 2.1 (Proposition 4.6, [Bos01]). With the above notation, we have

d̂eg(E) ≤
N∑
i=0

rank(Ei/Ei+1)
(
µ̂max(G

i
) + h(ϕi)

)
.

We will not prove this, but note that this reduces to Theorem 1.13 when i = 0. The
proof is not hard, given our “baby” version of the slope inequality. The key observation is
that d̂eg(E) =

∑N
i=0 d̂eg(Ei/Ei+1), as well as applying Theorem 1.13 to the natural injective

maps ϕ̃i : Ei
K/E

i+1
K → Gi

K .
There are many applications of Bost’s slope inequality (Theorem 2.1), most of them

being geometric reworkings or strengthenings of results that can be proven by more classical
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methods. For example, it plays a role in bounding the ranks of certain Z-modules of functions
for application towards holonomy results in [CDT24] (see in particular Section 7). In other
words, it shows that certain formal power series must satisfy an algebraic differential equation
with some prescribed degree (i.e. a type of algebraization result). Bost himself used the slope
framework towards algebraization results on foliations in the original paper [Bos01]. Note
that all of these applications (including the next one) involve transcendental properties.

We will sketch an application of it towards the Schneider–Lang theorem, which has been
vastly generalized to various algebraicity criteria of formal (analytic) maps in works such as
[Gas10], [Gra05], and [Her12]. First, the classical statement of the Schneider–Lang theorem
is as follows:

Theorem 2.2. Let K be a number field with a fixed embedding σ0 : K ↪→ C. Suppose
f1, . . . , fN are meromorphic functions, such that:

(1) At least two of the fi are algebraically independent over C. Suppose these two alge-
braically independent functions have finite orders ρ1 and ρ2.

1

(2) f ′j ∈ K[f1, . . . , fN ] for all j.

Then there are at most (ρ1 + ρ2)[K : Q] distinct complex numbers ω1, . . . , ωm such that
fi(ωj) ∈ K for all i and j.

We state two fun corollaries.

Corollary 2.3 (Lindemann–Weierstrass). If a 6= 0 is an algebraic number, then ea is tran-
scendental (in particular, e and π are transcendental).

Proof. Otherwise, there is some number field K containing all a, 2a, 3a, . . . along with all
ea, e2a, e3a, . . ., which contradicts Theorem 2.2 with f1(z) = z, f2(z) = ez.

Corollary 2.4 (Gelfond–Schneider). If a, b are algebraic numbers with a 6= 0, 1 and b 6∈ Q,
then any value of ab is transcendental (this is possibly multivalued if a is complex).

Proof. There is a contradiction to Theorem 2.2 with f1(z) = ez, f2(z) = ebz, since there
is some number field K containing the outputs of f1, f2 applied to the infinite sequence
log a, 2 log a, 3 log a, . . ..

In the rest of these notes we will sketch the proof of Theorem 2.2 loosely following ideas
from [Gra05, Section 3] and [Her12, Section 6]. We will focus on where the slope formalism
is used and neglect some of the estimations and complex-analytic details that come up. To
illustrate the ideas, we take N = 2 and f1, f2 to be entire, which is already enough to prove
our “fun” corollaries.

1Recall that the order of an entire function f is the infimum of all ρ such that there exist constants
A,B > 0 with |f(z)| ≤ AeB|z|ρ for all z ∈ C. In general for meromorphic functions, the order can be defined
via Nevanlinna theory, or simply by asserting that a meromorphic function has order of growth ρ if it can
be written as a quotient of holomorphic functions with orders at most ρ.
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2.1 Proof sketch of Theorem 2.2

Sketch of Theorem 2.2. Again, in this sketch we only takeN = 2 and assume f1, f2 are entire.
We will also only prove that there can only be finitely many distinct complex numbers ωj
such that fi(ωj) ∈ K for all i and j, not that there are at most (ρ1 + ρ2)[K : Q] of them
(i.e. we will not be so careful about the exact estimation). So suppose we have distinct
ω1, . . . , ωm such that each fi(ωj) is in K, and assume for convenience that ω0 := 0 also has
fi(0) ∈ K for all i and j. In fact, upon scaling the fi by a common integer, we may and do
assume that the fi(ωj) are in OK .

To begin, let D be a positive integer. Note that if f1 and f2 are algebraically independent,
then if the analytic map z 7→ Q(1, f1(z), f2(z)) is identically 0 for Q ∈ C[X0, X1, X2]D a
homogeneous degree-D polynomial, then Q ≡ 0. In particular, for nonnegative integers n, if
we consider the kernels of the maps θn : C[X0, X1, X2]D → CJzK/(zn+1) given by truncating
the above analytic function at the nth power, they form a decreasing chain for n = 0, 1, 2 . . .
and their intersection is 0. By finite-dimensionality we must have ker(θr) = 0 for some large
enough r.

Next, define E to be the OK-module H0(P2
OK ,O(D)), which is free of rank N :=

(
D+2
2

)
with the standard monomial basis. We will equip E with Hermitian metrics at each place
σ ∈ K(C) such that this standard monomial basis is orthonormal. From the definition we

immediately have d̂eg(E) = 0.
We now set up the F that will be used in the slope inequality. For 0 ≤ j ≤ m, let

Tj := z − ωj be a local coordinate at ωj (with ω0 = 0). Consider

Jq,j := OKJTjK/(T q+1
j ),

which is free of rank q + 1. We will use these to keep track of “higher derivatives/jets.” We
can also equip Jq,j with Hermitian norms at each σ ∈ K(C) by declaring the standard basis
to be orthonormal. Now we define

F := Jr,0 ⊕
m⊕
j=1

Jq,j

for some q ∈ N that will be chosen later. The point of this definition is to get a filtration
by adding (at most) one line to the vector bundle at each step in a convenient way for the
height estimates.

To define the desired map ϕ : EK → FK , we need an algebraic (not analytic) way to
encode the higher derivatives of the map z 7→ P (1, f1(z), f2(z)) as elements of K without first
embedding K into C. Here P (X0, X1, X2) ∈ E. Define the K-derivation d : K[U1, U2] →
K[U1, U2] by Ui 7→ Ai(U1, U2), where Ai ∈ K[U1, U2] satisfies f ′i = Ai(f1, f2). We then define
gP (X1, X2) := P (1, X1, X2) and K-linear ϕq,j : EK → Jq,j,K by

ϕq,j(P ) =

q∑
k=0

(dkgP )(f1(ωj), f2(ωj))

k!
· T kj ∈ Jq,j,K .
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Finally, we can define a K-linear map ϕ : EK → FK via the formula

P 7→ (ϕr,0, ϕq,1, . . . , ϕq,m).

By the choice of r, ϕ is injective, because σ0(ϕr,0(P )) (by abuse of notation) is precisely the
Taylor expansion of z 7→ P (1, f1(z), f2(z)), thought of as an entire function via σ0 : K ↪→ C,
about 0 truncated at the rth term.

Now we take the filtrations. We filter FK , which has rank (r+ 1) +m(q + 1), by cutting
off Taylor coefficients of P (1, f1(z), f2(z)) in an appropriate order after we impose enough
vanishing conditions at the ωj (1 ≤ j ≤ m) via the Jq,j. Let us take q = r, and filter FK via

F
a(m+1)+b
K = zaJr,0,K ⊕

b⊕
j=1

T a+1
j Jr,j,K ⊕

m⊕
j=b+1

T aj Jr,j,K

for 0 ≤ b ≤ m, 0 ≤ a ≤ r. In other words, we impose order-a vanishing at each ωj 6= 0
before imposing the same at 0, and we do this for all 0 ≤ a ≤ r. So we have F 0

K = FK ,

F
r(m+1)+m+1
K = 0, and each F k/F k+1 is rank 1. Therefore with E

k
, G

k
and ϕk defined as in

the first paragraph of this section, we may now apply Theorem 2.1:

0 = d̂eg(E) ≤
r(m+1)+m∑

k=0

rank(Ek/Ek+1)
(
µ̂max(G

k
) + h(ϕk)

)
. (2.1)

By construction, each rank(Ek/Ek+1) is 0 or 1 because it injects into F k/F k+1 and each
of those is rank 1; moreover exactly rank(E) = N =

(
D+2
2

)
of these ranks is 1. The fact

that F k/F k+1 is rank 1 also means that µ̂max(G
k
) = d̂eg(G

k
), and this is 0 for all G

k
by

construction of the metrics.
So we need to estimate the heights of the maps ϕk : Ek

K → Gk
K . For R > 0 a positive

radius to be optimized later, define M(R) := max|z|=R max(1, |f1(z)|, |f2(z)|). Let k =
a(m+ 1) + b for some 0 ≤ a ≤ r, 0 ≤ b ≤ m. By our algebraic construction ϕk sends P ∈ Ek
to the a-th jet coefficient of gP : (X1, X2) 7→ P (1, X1, X2) at (f1(ωb), f2(ωb)) ∈ K. For our
distinguished embedding σ0, the analytic function gP,σ0 : z 7→ gσ0(P )(f1(z), f2(z)) has zeroes
of order at least a at each ωj.

2 Omitting σ0 from the notation for convenience, we may write

gP (z) =
m∏
j=0

(z − ωj)ahP (z)

for some holomorphic hP , and then

g
(a)
P (ωb)

a!
=
∏
j 6=b

(ωb − ωj)ahP (ωb).

2I apologize for the increasingly poor notation.
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If R ≥ 2 max0≤j≤m|ωj|, we have

|hP (ωb)| ≤ max
|z|=R

|gP (z)|∏m
j=0|z − ωj|a

≤
‖P‖E,σ0 ·M(R)D ·N

(R/2)a(m+1)
,

hence

log|g(a)P (ωb)/a!|σ0 ≤ a log Vb + log ‖P‖E,σ0 +D logM(R)− a(m+ 1) log(R/2) +O(logD)

for some positive constant Vb depending only on ω0, . . . , ωm (which we will make negligible
later). Here and thereafter, the big-O notation means that the implicit constant can depend
on K, f1 and f2, but not other data (i.e. not the ωi’s, D, R, and certainly not m). Therefore

log
∥∥ϕa(m+1)+b

∥∥
σ0
≤ a log Vb +D logM(R)− a(m+ 1) log(R/2) +O(logD)

For other σ ∈ K(C) and any R > 0 (not the same as in the above case), we have a
similar inequality, but we do not have any vanishing conditions (so it is valid to take any
R > 0). By Cauchy’s inequality,

log|g(a)P,σ(ωb)|σ ≤ log(a!)− a logR + log max
|z−ωb|≤R

|gP,σ(z)|

≤ log(a!)− a logR + log ‖P‖E,σ +D logM(R) +O(logD).

In particular,

log|g(a)P,σ(ωb)/a!|σ ≤ −a logR + log ‖P‖E,σ +D logM(R) +O(logD),

which implies
log
∥∥ϕa(m+1)+b

∥∥
σ
≤ −a logR +D logM(R) +O(logD).

Now we optimize R for these σ 6= σ0. By the finite order hypothesis, we have logM(R) =
O(Rρ) for some fixed ρ > 0. If R is taken to be approximately (a/D)1/ρ, then we have

log
∥∥ϕa(m+1)+b

∥∥
σ
≤ −a

ρ
log

a

D
+O(a+D).

For finite places, we choose nonzero d ∈ Z such that df ′i = Ai(f1, f2) for some polynomial
Ai ∈ OK [f1, f2]. Then for all primes p of OK , due to the recursion on Taylor coefficients
given by df ′i = Ai(f1, f2) and the initial conditions on f1(ωb), f2(ωb) ∈ OK , we have

log|g(a)P (ωb)/a!|p ≤ − log|da|p − log|a!|p = avp(d) logNp + vp(a!) logNp.

So the same inequality holds for log
∥∥ϕa(m+1)+b

∥∥
p
. Therefore∑

p

log
∥∥ϕa(m+1)+b

∥∥
p
≤
∑
p

avp(d) logNp + vp(a!) logNp = a log|NK/Q(d)|+ log|NK/Q(a!)|
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= [K : Q]O(a) + [K : Q]O(a log a).

Combining all the above estimates, we get

h(ϕa(m+1)+b) ≤ [K : Q]O(a) + [K : Q]O(a log a)− ([K : Q]− 1)

(
a

ρ
log

a

D
−O(a+D)

)
+ a log Vb +D logM(R)− a(m+ 1) log(R/2) +O(logD).

This inequality is valid for all D, all r large enough (compared to D), and all R large enough
(compared to the |ωi|). We would like R to scale as approximately D1/ρ, so take D large
enough such that R = D1/ρ is large enough in the above sense. The above inequality becomes

h(ϕa(m+1)+b) ≤ [K : Q]O(a log a)− ([K : Q]− 1)

(
a

ρ
log

a

D
−O(a+D)

)
+ a log Vb +D2 − a(m+ 1)

ρ
log(D) +O(logD).

(2.2)

By (2.1), we have

0 ≤
r∑

a=0

m∑
b=0

rank(Ea(m+1)+b/Ea(m+1)+b+1)h(ϕa(m+1)+b), (2.3)

where exactly N =
(
D+2
2

)
of the rank terms are 1, and the rest are 0. In our estimate for

h(ϕa(m+1)+b), the dominant negative term in terms of a is a(m+1) log(D)/ρ. Therefore when
all other parameters are held equal, the “worst-case scenario”, i.e. when the right-hand side
is maximized, occurs when these rank terms occur for as small of a as possible (i.e. the
nontrivial contributions to the sum occur at the smallest jet orders). Of course, this requires
more careful analysis of the constants hidden in the big-O notations, but in the regime where
D is large (which is where we ultimately care about anyways, in the limit as D →∞), this
is not hard to see.

So we only need to consider the case where the rank-1 terms in the sum (2.3) occur at
filtration steps 0 to N − 1, and derive a contradiction if m is too large. We will do the
estimation rather crudely as this is only a sketch, and leave it to the reader to actually work
things out carefully.

Each of the inner sums has m+ 1 terms, so the index a ranges from 0 to approximately
S := D2/(2(m+ 1)). Then if D is large, we have

S∑
a=0

a log a ≈
∫ S

0

a log ada = O(S2 logS) ≤ D4O(logD)

(m+ 1)2
.

Therefore the positive contribution in (2.3) coming from the [K : Q]O(a log a) term of (2.2)
is approximately

D4O(logD)

(m+ 1)2
· (m+ 1) =

D4O(logD)

m+ 1
,
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up to terms of smaller order in D. For the same reason, the negative contribution in (2.3)

coming from the − ([K : Q]− 1)
(
a
ρ

log a
D

)
term of (2.2) is also approximately D4O(logD)

ρ(m+1)
, but

this can actually be safely ignored as it will not be the dominant negative term due to the
m+ 1 in the denominator. Next, the positive contribution from the ([K : Q]− 1)O(a+D)
term is approximately

(m+ 1)
S∑
a=0

O(a+D) = (m+ 1)O(S2) +O(DS) =
O(D4)

m+ 1
,

which is of smaller order in D. Similarly, the positive contributions from summing the a log Vb
and D2 terms are on the order of log Vb · O(D4)/(m + 1) and O(D4)/(m + 1), respectively.
The O(logD) term is negligible.

It remains to look at the negative contribution from the −a(m+1)
ρ

log(D) term. By similar

reasoning it (negatively) contributes ρ−1D4O(logD). Putting everything together, (2.3)
gives

0 ≤ C1D
4 logD

m+ 1
− C2D

4 logD

ρ
+ C3D

4 (2.4)

for some positive constants C1, C2, C3 > 0, with C1 and C2 depending only on the data of
K, f1, f2. This inequality must be true for all large enough D. It follows that if m is too
large with respect to C1, C2, ρ, then for D large enough, we get a contradiction due to the
C1D4 logD

m+1
scaling inversely with m. This gives an absolute bound on m, again depending

only on the data of K, f1, f2, which is what we wanted.

As mentioned at the beginning of the proof sketch, we did not compute the explicit
bound m ≤ (ρ1 + ρ2)[K : Q], which requires more work, but the above suffices to show the
application of Bost’s slope method.
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