Fast evaluation of imaginary-time Feynman diagrams and robust bath fitting

Zhen Huang

Department of Mathematics, University of California, Berkeleyhertz@math.berkeley.edu

July 5, 2024 TRIQS Meeting, Collège de France, Paris.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Softwares

Two software tools: ${\bf ppsc-soe}$ and ${\bf adapol}$.

- 1. ppsc-soe
 - Pseudo-particle self-consistent calculations via sum-of-exponentials.
 - ▶ Fast, *deterministic*, and **parallel** impurity solver.
 - ▶ Written in C++, with a Python interface, compatible with TRIQS.
- 2. adapol
 - ► Adaptive pole fitting for Matsubara functions.
 - ▶ Applications: bath fitting in DMFT, analytic continuation.

うして ふゆ く 山 マ ふ し マ うくの

▶ Written in Python, with a TRIQS interface.

Acknowledgement

Impurity solver (ppsc-soe)

Jason Kaye CCQ & CCM

Hugo Strand Örebro U

Denis Golež Jozef Stefan

Pole fitting (Adapol)

Chia-nan Yeh CCQ

Nils Wentzell CCQ

Jason Kaye CCQ & CCM

Lin Lin UC Berkeley

Emanuel Gull U Michigan

A shared ingredient of both softwares are *sum-of-exponentials approximation* of the Matsubara functions, also known as the *pole fitting* problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Pole fitting of Matsubara functions

We'd like to find an approximation to $G(i\nu_k)$ in the following form:

$$G(\mathrm{i}\nu_k) \approx \sum_{j=1}^p \frac{W_j}{\mathrm{i}\nu_k - \lambda_j}, \quad \forall k \in \mathbb{Z}.$$

Here λ_j are the poles, and W_j are the weight matrices $(n \times n)$. This is equivalent to the following approximation to $G(\tau)$:

$$G(\tau) \approx -\sum_{j=1}^{p} \widetilde{W}_{j} \mathrm{e}^{-\lambda_{j}\tau}, \quad \forall \tau \in [0, \beta].$$

Here $\widetilde{W}_j = \frac{W_j}{1 \mp e^{-\beta E}}$. We hope that the number of terms p is as small as possible.

(ロ) (同) (目) (日) (日) (0) (0)

Fewer poles than DLR?

- ► Let spectral width $\leq \Lambda$. Given $\beta\Lambda$ and accuracy ε , DLR provides a **basis** of exponentials for **all** Green's functions.
- ▶ Why do we want another pole fitting method?
- If we only need poles for a specific $G(\tau)$, could we find a more compact basis (poles)?
- ▶ The answer is YES!

AAA algorithm¹ for rational approximation

Barycentric formula for rational interpolants ($z \in \mathbb{C}$):

$$f(z) = p(z)/q(z) = \left(\sum_{l=1}^{m} \frac{w_l f_l}{z - z_l}\right) / \left(\sum_{l=1}^{m} \frac{w_l}{z - z_l}\right)$$

This satisfies $f(z_j) = f_j$ automatically at support points z_j . AAA algorithm: an **iterative** procedure that selects the next support point in a **greedy** fashion. At the *j*-th iteration:

- Select the next sample point z_j , at which the error of the current barycentric approximant is maximal.
- ▶ Choose w_l 's by minimizing $\sum_{z \neq z_j} |f(z)q(z) p(z)|^2$. This is a linear problem and boils down to compute an SVD.
- ► Continue until desired accuracy.

The poles of f(z) are the zeros of q(z). This reduces to a polynomial root finding problem.

¹Nakatsukasa, Yuji, Olivier Sète, and Lloyd N. Trefethen. "The AAA algorithm for rational approximation." SIAM Journal on Scientific Computing 40.3 (2018): (A1494-A1522.

Pole fitting procedure

Given $i\nu_j$ and $G(i\nu_j)$,

Step 1: Use AAA algorithm to obtain poles $\{\lambda_k\}_{k=1}^p$.

Step 2: Obtain weights W_j using linear least square fitting.

$$\min_{W_j} \sum_k \left\| G(i\nu_k) - \sum_{j=1}^p \frac{W_j}{i\nu_k - \lambda_j} \right\|^2$$

Note that this is a linear least squares problem with respect to W_j . (But not linear for the poles λ_j).

Step 3: (optional) postprocessing: further refinement of the poles using bilevel optimizations.

Application: bath fitting

- In (equilibrium) DMFT with Hamitonian-based impurity solvers, bath fitting is a crucial subroutine for the self-consistent iterations.
- Given $\Delta(iw)$, we want to obtain a fitting in the following form:

$$\Delta(\mathrm{i}w) \approx \sum_{k=1}^{N_b} \frac{V_k V_k^{\dagger}}{\mathrm{i}w - \omega_k}.$$

- This could be achieved via pole fitting +semidefinite programming (SDP) + bilevel optimization.
- Also applicable to the problem of analytic continuation ², especially for noisy data.

²Z. Huang, E. Gull., and L. Lin. (2023). Robust analytic continuation of Green's functions via projection, pole estimation, and semidefinite relaxation. Physical Review B, 107(7), 075151.

Software for hybridization fitting: Adapol https://github.com/flatironinstitute/adapol Documentation: https://flatironinstitute.github.io/adapol/

h dess	A / Documentation View p	age sourc
ical background	Documentation	
mentation	Tutorials	
orials non reference manual	 Matsubara fitting for data generated by discrete poles Matsubara fitting for data with continuous spectrum (semicircular density) 	
	Python reference manual	
	Hybridization fitting	
	<pre>o hybfit()</pre>	
	Analytic continuation	
	Analytic continuation o [anacont()]	
	Analytic continuation (anacont()) TRIQS Interface	
	 Analytic continuation [anacont()] TRIQS interface [hybfit_trias()] [anacont_trias()] 	

イロト 不得下 イヨト イヨト

ъ

Application: fast diagram evaluation

- Using the same setting as in H. U. R. Strand's previous talk: strong coupling expansion and pseudo-particle representation as an example.
- ▶ The most time-consuming part is to calculate the self-energy Feynman diagrams and single-particle Green's functions Feynman diagrams.

うして ふゆ く 山 マ ふ し マ うくの

Pseudo-particle self energy Feynman diagrams OCA (2nd order) diagrams:

$$=\sum_{\alpha_{1},\beta_{1}=1}^{n}\sum_{\alpha_{0},\beta_{0}=1}^{n}\int_{0}^{t}\mathrm{d}\tau_{2}\int_{0}^{\tau_{2}}\mathrm{d}\tau_{1}\,\Delta_{\alpha_{1}\beta_{1}}(t-\tau_{1})\,\Delta_{\alpha_{0}\beta_{0}}(\tau_{2})F_{\alpha_{1}}^{\dagger}G(t-\tau_{2})F_{\alpha_{0}}^{\dagger}G(\tau_{2}-\tau_{1})F_{\beta_{1}}G(\tau_{1})F_{\beta_{0}}$$

n: impurity size, $\Delta : n \times n$ p.p. hybridization function, $G : N \times N$ p.p. Green's function, $F_{\alpha}, F_{\beta}^{\dagger} : N \times N$: ED of impurty operators $\hat{c}_{\alpha}, \hat{c}_{\beta}^{\dagger}$. $(\alpha, \beta = 1, \cdots, n.)$

TCA (third order) diagrams:

Why is the calculation of these diagrams difficult: crossings of hybridization lines

- ▶ An *m*-th order diagram is a (2m 2)-dimensional integral.
- ▶ Direct calculation cost: $O(n^{2m}\beta^{2m-2})$ for an *n*-th order diagram. (*n* is the impurity size.)
- ▶ If there are no crossing of hybridization lines:

$$= \int_{0}^{t} dt_{2} \int_{0}^{t_{2}} dt_{1} \Delta(t_{2}) F^{\dagger} G(t - t_{2}) F^{\dagger} G(t_{2} - t_{1}) F G(t_{1}) F$$
$$= \int_{0}^{t} dt_{2} F^{\dagger} G(t - t_{2}) F^{\dagger} \Delta(t_{2}) F \int_{0}^{t_{2}} dt_{1} G(t_{2} - t_{1}) F G(t_{1}) F.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▶ The 2D integral becomes two 1D integrals.

Cutting the hybridization

Decomposition of the hybridization function:

$$\Delta(t-t') = \sum_{l=1}^{r} c_l \mathrm{e}^{-\lambda_l t} \mathrm{e}^{\lambda_l t_1} =: \sum_{l=1}^{r} u_l(t) v_l(t_1).$$

$$\Delta(t-t') = \sum_{l=1}^{u_l} \mathbf{v}_l$$

$$\mathbf{t} = \sum_{l=1}^{u_l} \mathbf{v}_l$$

Take OCA diagrams as an example:

$$Consider \int_{0}^{t} dt_{2} \int_{0}^{t_{2}} dt_{1} \Delta(t-t_{1}) \Delta(t_{2}) G(t-t_{2}) G(t_{2}-t_{1}) G(t_{1}).$$

$$If \Delta(t-t_{1}) = \sum_{l=1}^{r} u_{l}(t) v_{l}(t_{1}), \text{ then the original integral becomes } u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}),$$

$$\sum_{l=1}^{r} \int_{0}^{t} dt_{2} \int_{0}^{t_{2}} dt_{1} u_{l}(t) v_{l}(t_{1}) \Delta(t_{2}) G(t-t_{2}) G(t_{2}-t_{1}) G(t_{1}) = \sum_{l} \int_{0}^{t} u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}),$$

$$= \sum_{l=1}^{r} u_{l}(t) \left(\int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t_{2}} dt_{1} v_{l}(t_{1}) G(t_{2}-t_{1}) G(t_{1}) \right) \right) = \sum_{l} \int_{0}^{t} u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}) \int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t_{2}} dt_{1} v_{l}(t_{1}) G(t_{2}-t_{1}) G(t_{1}) \right) = \sum_{l} \int_{0}^{t} u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}) \int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t_{2}} dt_{1} v_{l}(t_{1}) G(t_{2}-t_{1}) G(t_{1}) \right) = \sum_{l} \int_{0}^{t} u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}) \int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t_{2}} dt_{1} v_{l}(t_{1}) G(t_{2}-t_{1}) G(t_{1}) \right) = \sum_{l} \int_{0}^{t} u_{l}(t) \Delta(t_{2}) v_{l}(t_{1}) \int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t_{2}} dt_{1} v_{l}(t_{1}) G(t_{2}-t_{1}) G(t_{1}) \right) \int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2}) \left(\int_{0}^{t} dt_{2} \Delta(t_{2}) G(t-t_{2})$$

Computational complexity

A pole fitting with r poles enables a hybridization of decomposition with nr terms:

$$\Delta(t - t_1) = \sum_{l=1}^{nr} u_l(t) v_l(t_1).$$

Computational cost for m-th order diagram:

$$O((nr)^{m-1}mr_0^2)$$
, r_0 is the DLR rank.

Comparison:

$$n^{2m}\beta^{2m-2} \to (nr)^{m-1}mr_0^2.$$

$$r_0 = \log(\beta), \quad r < r_0,$$

A D F A 目 F A E F A E F A Q Q

Examples

Spinless dimer model: strongly correlated, exact solvable.

$$H = Uc_0^{\dagger}c_0c_1^{\dagger}c_1 - v\left(c_0^{\dagger}c_1 + c_1^{\dagger}c_0\right) - t\sum_{k=0}^{1}\sum_{i=0}^{1}\left(c_i^{\dagger}b_{ik} + \text{h.c.}\right) - t'\sum_{k=0}^{1}\left(b_{0k}^{\dagger}b_{1k} + \text{h.c.}\right),$$

Plot of $G_{00}(\tau)^3$. (For $\beta = 16$.)

Runtime^{4 5}

Spinless dimer (n = 2):

ppsc-soe (TCA)	ppsc-soe (4th order)	ppsc-soe (5th order)	Inchworm	CT-hyb
7.64 seconds	1 hour	90 hours	500 hours	12000 hours

And erson two-band model (n = 4):

ppsc-soe (TCA)	ppsc-soe (4th order)	Inchworm	CT-hyb
0.2 hours	22 hours	1000 hours	3000 hours

DMFT calculation for toy model of Ca₂RuO₄ (n = 6): TCA: 59.7 core hours (for $\beta = 10$). It takes 6 iterations to reach accuracy $\varepsilon = 10^{-6}$). There are $4 \times 2^3 \times 6^6 = 1492992$ 5-dim integrals.

⁵ Multiorbital Quantum Impurity Solver for General Interactions and Hybridizations, E. Eidelstein, E. Gulll and G. Cohen, Phys. Rev. Lett., 124, 206405 and the second secon

Implementation

- ▶ Code is written in C++, based on cppdlr.
- ▶ Parallelizable: the evaluation of $(np)^{m-1}$ terms could be done simultaneously.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ Easy to use: python interface.
- ▶ TRIQS compatible.

Conclusion and outlook

Fast impurity solver:

- Robust, high-order accurate diagram evaluation possible beyond typical lowest-order approximations. Free of sign problem.
- Access to low temperature.
- Code ready to be tested on applications.

Bath fitting scheme:

- ▶ Python package (Adapol) available.
- ▶ TRIQS interface.

Ongoing work:

- Real-time bath fitting, real-time Feynman diagrams, real-time impurity solvers.
- ► Analytic continuation of continuous spectrum.
- ▶ Connections to Tensor Cross Interpolation (TCI).

▶ More software development ...

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

