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Softwares

Two software tools: ppsc-soe and adapol .
1. ppsc-soe

> Pseudo-particle self-consistent calculations via
sum-of-exponentials.

» Fast, deterministic, and parallel impurity solver.

> Written in C++, with a Python interface, compatible with
TRIQS.

2. adapol
» Adaptive pole fitting for Matsubara functions.
» Applications: bath fitting in DMFT, analytic continuation.
» Written in Python, with a TRIQS interface.
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How?

A shared ingredient of both softwares are
sum-of-exponentials approximation of the Matsubara
functions, also known as the pole fitting problem.
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Pole fitting of Matsubara functions

We'd like to find an approximation to G(iv) in the following
form:

W;
G(ivg) ~ ) :iyk _jw VEk € Z.
j=1 !

Here \; are the poles, and W; are the weight matrices (n x n).
This is equivalent to the following approximation to G(7):

p
~— ZWje_)‘jT, VT € [0, 3].
j=1

W,
Here W 16755;

We hope that the number of terms p is as small as possible.
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Fewer poles than DLR?

» Let spectral width < A. Given SA and accuracy ¢, DLR
provides a basis of exponentials for all Green’s functions.

» Why do we want another pole fitting method?

» If we only need poles for a specific G(7), could we find a

more compact basis (poles)?
» The answer is YES!
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AAA algorithm!® for rational approximation
Barycentric formula for rational interpolants (z € C):

m

1) = p() /() = (Z Z”_”;) / (Z j_'”zl> ~

=1 =1

This satisfies f(z;) = f; automatically at support points z;.
AAA algorithm: an iterative procedure that selects the next
support point in a greedy fashion. At the j-th iteration:

» Select the next sample point z;, at which the error of the
current barycentric approximant is maximal.

» Choose w;’s by minimizing Z#Zj |f(2)q(2) — p(2)|?>. This
is a linear problem and boils down to compute an SVD.

» Continue until desired accuracy.

The poles of f(z) are the zeros of g(z). This reduces to a
polynomial root finding problem.
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rational approximation.” SIAM Journal on Scientific Computing 40.3 (2018): A1494-A1522.



Pole fitting procedure

Given iv; and G(iv;),

Step 1:
Step 2:

Step 3:
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Use AAA algorithm to obtain poles {A\,},_;.

Obtain weights W; using linear least square fitting.

2

p | | -
i i — - J
min G (ivg) E R

7k 7j=1 J

Note that this is a linear least squares problem with
respect to Wj. (But not linear for the poles \;).

(optional) postprocessing: further refinement of the poles
using bilevel optimizations.



Application: bath fitting

» In (equilibrium) DMFT with Hamitonian-based impurity
solvers, bath fitting is a crucial subroutine for the
self-consistent iterations.

» Given A(iw), we want to obtain a fitting in the following

form: N
b T
Vi.V,
Alw)~ Y —2Fk
(i) ; 1w — wg

» This could be achieved via pole fitting +semzidefinite
programming (SDP) + bilevel optimization.

» Also applicable to the problem of analytic continuation 2,
especially for noisy data.
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Z. Huang, E. Gull., and L. Lin. (2023). Robust analytic continuation of Green’s functions
via projection, pole estimation, and semidefinite relaxation. Physical Review B, 107(7); 075151.



Software for hybridization fitting: Adapol

https://github.com/flatironinstitute/adapol
Documentation: https://flatironinstitute.github.io/adapol/

# Adapol

Search docs

Physical background
Algorithms
8 Documentation
Tutorials

Python reference manual
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Documentation

Tutorials

« Matsubara fitting for data generated by discrete poles
« Matsubara fitting for data with continuous spectrum (semicircular density)

Python reference manual

« Hybridization fitting
o hybfit()

« Analytic continuation
© anacont()

« TRIQS interface
o hybfit_trigs()

o anacont_trigs()

@ Previous Next ©

© Copyright 2024, Zhen Huang.

Built with Sphinx using a theme provided by Read the Docs.



Application: fast diagram evaluation

» Using the same setting as in H. U. R. Strand’s previous
talk: strong coupling expansion and pseudo-particle
representation as an example.

» The most time-consuming part is to calculate the
self-energy Feynman diagrams and single-particle Green’s
functions Feynman diagrams.
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Pseudo-particle self energy Feynman diagrams
OCA (2nd order) diagrams:

LYV

1
G(t—1) TGr,—1) " G(1)
t T Ty

0) A,y () Fl 66— epF g -
staater Jo do R e A A

n: impurity size, A :n X n p.p. hybridization function,
G : N x N p.p. Green’s function,

Fo“FgL : N x N: ED of impurty operators ¢q, é} (a,8=1,---,n.)

TCA (third order) diagrams:
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Why is the calculation of these diagrams difficult:
crossings of hybridization lines

LT
13

Wi,
\

~

» An m-th order diagram is a (2m — 2)-dimensional integral.

» Direct calculation cost: O(n?™3%m=2) for an n-th order
diagram. (n is the impurity size.)

» If there are no crossing of hybridization lines:

t t,
. ./‘\. = L dt, L dy A(L)F'G(t — )FTG(t, — ) FG(t))F

t t,
=J dt,F'G(t - t2)F*A(t2)F[ dt,G(t, — t,)FG(t))F .
0 0

» The 2D integral becomes two 1D integrals.



Cutting the hybridization

Decomposition of the hybridization function:
At~ 1) = Sy cre™ oMt = S w(Bur(ta).

At —t) uy vy
6--------- - L JE . °
t t t t

Take OCA diagrams as an example:

At —1,)

A(n)

t t
Consider J drz[ dt, At — 1)AL)G(t — 1)G(t, — 1)G(1).
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IfA(t—1) = Z u(f)v/(t,), then the original integral becomes @ Al vt
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Computational complexity

A pole fitting with r poles enables a hybridization of
decomposition with nr terms:

At —ty) Zul u(t1).

Computational cost for m-th order diagram:
O((nr)™ Ymr2), 7o is the DLR rank.
Comparison:

n2mpIm=2 _, (n’r)m_lmr%.

ro =log(B), r <ro,

s,

W,
=
01



Examples

Spinless dimer model: strongly correlated, exact solvable.
1

101
H = Uc:gcoc{cl — v(cgcl + cJ{co) —t Z Z (c:.rbik + h.c.) —t Z (b;gkbm + hlc.),
k=0 i=0 k=0

Plot of Goo(7) ? . (For 3 = 16.)

Error of Goo(7) Phys. Rev. Lett. 124. 206405
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Runtime

45

Spinless dimer (n = 2):

ppsc-soe ppsc-soe ppsc-soe
(TCA) (4th order) | (5th order) Inchworm CT-hyb
7.64 seconds 1 hour 90 hours 500 hours | 12000 hours
Anderson two-band model (n = 4):
ppsc-soe ppsc-soe
(TCA) (4th order) Inchworm CT-hyb
0.2 hours 22 hours 1000 hours | 3000 hours

DMET calculation for toy model of CagRuO4 (n = 6):
TCA: 59.7 core hours (for 5 = 10).
It takes 6 iterations to reach accuracy ¢ = 1079).
There are 4 x 23 x 6% = 1492992 5-dim integrals.
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4Z. Huang, J. Kaye, H. Strand, D. Golez, in preparation.

Multiorbital Quantum Impurity Solver for General Interactions and Hybridizations, E.
Eidelstein, E. Gulll and G. Cohen, Phys. Rev. Lett., 124, 206405:



Implementation
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» Code is written in C++, based on cppdlr.

» Parallelizable: the evaluation of (np)™~! terms could be
done simultaneously.

> Easy to use: python interface.
> TRIQS compatible.



Conclusion and outlook

Fast impurity solver:
> Robust, high-order accurate diagram evaluation possible
beyond typical lowest-order approximations. Free of sign

problem.
> Access to low temperature.
> Code ready to be tested on applications.

Bath fitting scheme:
» Python package (Adapol) available.
> TRIQS interface.
Ongoing work:
» Real-time bath fitting, real-time Feynman diagrams,
real-time impurity solvers.
» Analytic continuation of continuous spectrum.

» Connections to Tensor Cross Interpolation (TCI).
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> More software development ...
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Thank you for your attention!
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