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Softwares

Two software tools: ppsc-soe and adapol .
1. ppsc-soe

I Pseudo-particle self-consistent calculations via
sum-of-exponentials.

I Fast, deterministic, and parallel impurity solver.

I Written in C++, with a Python interface, compatible with
TRIQS.

2. adapol

I Adaptive pole fitting for Matsubara functions.

I Applications: bath fitting in DMFT, analytic continuation.

I Written in Python, with a TRIQS interface.
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How?

A shared ingredient of both softwares are
sum-of-exponentials approximation of the Matsubara
functions, also known as the pole fitting problem.
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Pole fitting of Matsubara functions

We’d like to find an approximation to G(iνk) in the following
form:

G(iνk) ≈
p∑
j=1

Wj

iνk − λj
, ∀k ∈ Z.

Here λj are the poles, and Wj are the weight matrices (n× n).
This is equivalent to the following approximation to G(τ):

G(τ) ≈ −
p∑
j=1

W̃je
−λjτ , ∀τ ∈ [0, β].

Here W̃j =
Wj

1∓e−βE
.

We hope that the number of terms p is as small as possible .
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Fewer poles than DLR?
I Let spectral width ≤ Λ. Given βΛ and accuracy ε, DLR

provides a basis of exponentials for all Green’s functions.

I Why do we want another pole fitting method?

I If we only need poles for a specific G(τ), could we find a
more compact basis (poles)?

I The answer is YES!
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AAA algorithm1 for rational approximation

Barycentric formula for rational interpolants (z ∈ C):

f(z) = p(z)/q(z) =

(
m∑
l=1

wlfl
z − zl

)
/

(
m∑
l=1

wl

z − zl

)
.

This satisfies f(zj) = fj automatically at support points zj .
AAA algorithm: an iterative procedure that selects the next
support point in a greedy fashion. At the j-th iteration:

I Select the next sample point zj , at which the error of the
current barycentric approximant is maximal.

I Choose wl’s by minimizing
∑

z 6=zj |f(z)q(z)− p(z)|2. This
is a linear problem and boils down to compute an SVD.

I Continue until desired accuracy.

The poles of f(z) are the zeros of q(z). This reduces to a
polynomial root finding problem.

1
Nakatsukasa, Yuji, Olivier Sète, and Lloyd N. Trefethen. ”The AAA algorithm for

rational approximation.” SIAM Journal on Scientific Computing 40.3 (2018): A1494-A1522.
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Pole fitting procedure

Given iνj and G(iνj),

Step 1: Use AAA algorithm to obtain poles {λk}pk=1.

Step 2: Obtain weights Wj using linear least square fitting.

min
Wj

∑
k

∥∥∥∥∥∥G(iνk)−
p∑
j=1

Wj

iνk − λj

∥∥∥∥∥∥
2

.

Note that this is a linear least squares problem with
respect to Wj . (But not linear for the poles λj).

Step 3: (optional) postprocessing: further refinement of the poles
using bilevel optimizations.
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Application: bath fitting

I In (equilibrium) DMFT with Hamitonian-based impurity
solvers, bath fitting is a crucial subroutine for the
self-consistent iterations.

I Given ∆(iw), we want to obtain a fitting in the following
form:

∆(iw) ≈
Nb∑
k=1

VkV
†
k

iw − ωk
.

I This could be achieved via pole fitting +semidefinite
programming (SDP) + bilevel optimization .

I Also applicable to the problem of analytic continuation 2,
especially for noisy data.

2
Z. Huang, E. Gull., and L. Lin. (2023). Robust analytic continuation of Green’s functions

via projection, pole estimation, and semidefinite relaxation. Physical Review B, 107(7), 075151.
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Software for hybridization fitting: Adapol
https://github.com/flatironinstitute/adapol
Documentation: https://flatironinstitute.github.io/adapol/

10



Application: fast diagram evaluation

I Using the same setting as in H. U. R. Strand’s previous
talk: strong coupling expansion and pseudo-particle
representation as an example.

I The most time-consuming part is to calculate the
self-energy Feynman diagrams and single-particle Green’s
functions Feynman diagrams.
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Pseudo-particle self energy Feynman diagrams
OCA (2nd order) diagrams:

n: impurity size, ∆ : n× n p.p. hybridization function,
G : N ×N p.p. Green’s function,

Fα, F
†
β : N ×N : ED of impurty operators ĉα, ĉ†β . (α, β = 1, · · · , n.)

TCA (third order) diagrams:
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Why is the calculation of these diagrams difficult:
crossings of hybridization lines

I An m-th order diagram is a (2m− 2)-dimensional integral.

I Direct calculation cost: O(n2mβ2m−2) for an n-th order
diagram. (n is the impurity size.)

I If there are no crossing of hybridization lines:

I The 2D integral becomes two 1D integrals.
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Cutting the hybridization
Decomposition of the hybridization function:

∆(t− t′) =
∑r

l=1 cle
−λlteλlt1 =:

∑r
l=1 ul(t)vl(t1).

Take OCA diagrams as an example:
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Computational complexity

A pole fitting with r poles enables a hybridization of
decomposition with nr terms:

∆(t− t1) =

nr∑
l=1

ul(t)vl(t1).

Computational cost for m-th order diagram:

O((nr)m−1mr2
0), r0 is the DLR rank.

Comparison:
n2mβ2m−2 → (nr)m−1mr2

0.

r0 = log(β), r < r0,
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Examples

Spinless dimer model: strongly correlated, exact solvable.

H = Uc†0c0c
†
1c1 − v

(
c†0c1 + c†1c0

)
− t

1∑
k=0

1∑
i=0

(
c†i bik + h.c.

)
− t′

1∑
k=0

(
b†0kb1k + h.c.

)
,

Plot of G00(τ) 3 . (For β = 16.)

3Z. Huang, J. Kaye, H. Strand, D. Golez, 2024, in preparation.
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Runtime 4 5

Spinless dimer (n = 2):

ppsc-soe
(TCA)

ppsc-soe
(4th order)

ppsc-soe
(5th order)

Inchworm CT-hyb

7.64 seconds 1 hour 90 hours 500 hours 12000 hours

Anderson two-band model (n = 4):

ppsc-soe
(TCA)

ppsc-soe
(4th order)

Inchworm CT-hyb

0.2 hours 22 hours 1000 hours 3000 hours

DMFT calculation for toy model of Ca2RuO4 (n = 6):
TCA: 59.7 core hours (for β = 10).
It takes 6 iterations to reach accuracy ε = 10−6).
There are 4× 23 × 66 = 1492992 5-dim integrals.

4
Z. Huang, J. Kaye, H. Strand, D. Golez, in preparation.

5
Multiorbital Quantum Impurity Solver for General Interactions and Hybridizations, E.

Eidelstein, E. Gulll and G. Cohen, Phys. Rev. Lett., 124, 206405.
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Implementation

I Code is written in C++, based on cppdlr.

I Parallelizable: the evaluation of (np)m−1 terms could be
done simultaneously.

I Easy to use: python interface.

I TRIQS compatible.
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Conclusion and outlook
Fast impurity solver:

I Robust, high-order accurate diagram evaluation possible
beyond typical lowest-order approximations. Free of sign
problem.

I Access to low temperature.

I Code ready to be tested on applications.

Bath fitting scheme:

I Python package (Adapol) available.

I TRIQS interface.

Ongoing work:

I Real-time bath fitting, real-time Feynman diagrams,
real-time impurity solvers.

I Analytic continuation of continuous spectrum.

I Connections to Tensor Cross Interpolation (TCI).

I More software development ...19



Thank you for your attention!

20


