Wandering Intervals.

J. Harrison

Let I be the closed interval of real numbers fron -1 to +1. A differentiable
function F:I -+ I is said to be convex if it has just one critical point at the origin 0,
say, and if it is monotone decreasing to the left of 0 and monotone increasing to the

right.

In this paper we construct a Cl convex function F which has a "wandering”
interval in the sense of Denjoy. That is, there exists a closed interval J] < I such that
the set of forward and inverse images of ] under F are disjoint and the complement of
the union of their interiors is a Cantor set. This Cantor set is an exceptional minimal
set since it is closed and invariant under F, contains no such proper subsets, and is
neither periodic nor the entire interval I.(Coven and Nitecki [1] have recently constructed
a related example with two turning points by adapting the Denjoy diffeomorphism of the

circle.)

. . . 2 .
it turns out that F is not topologically conjugate to any C~ convex function of I.
In fact, if G is C~ and topologically conjugate to F then G has a inflection point in its
. . . . . 2
nonwandering set. It is not known if such a G exists or if there are any C° maps of the

interval with exceptional minimal sets.
1 wish to thank H. Whitney for telling me about this problem which is stated as

a question in logic by H. Friedman [3]. I also thank ]J. Milnor and W. Thurston for

helpful conversations and finally the Institute for Advanced Study for its support.

§1. Basic Facts about Kneading.

Apart from Denjoy analysis, the main techniques we use are based on the
kneading invariant of Milnor and Thurston [4]. This is a topological invariant which is
defined in terms of the behaviour of the critical point of a convex function and
characterises much of the dynamical behaviour of continuous families of Cl functions

such as f(x) = x2 - a.



155

If f is convex and x ¢ I let Ei(x) be -1, 0 or +1 according to whether

. i
fl(x) >0, =0, or <0. The sequence si(x) is called the itinerary of x. Let Gi(x) =j1=108j(x).

Then the formal power series 6(3{) :ji‘% ej(x) tj is called the invariant coordinate of X.
The map x © B(x) is monotone decreasing if we endow the ring Z [t]] with the
lexicographical ordering. Let A denote the subset of Z[[t]] consisting of those formal
power series whose coefficient lie in {-1,0,+L}. Then it follows from the monotonicity

of 6 that

6(x) = lim 6(y) and 6(x) = lim 6(y)
yix vix

exist in the topology on A induced by the metric
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Definition. The kneading invariant V of f, denoted by V(f) is the formal power series

60h).

The n'th lap number is defined as follows. Let Jln-l be the number of local
maxima and minima of i within the interior of I. These points divide the interval into
Jln subintervals, each mapped homeomorphically by . Milnor and Thurston proved

that Ln can be explicitly derived from the kneading invariant [4].

§2. Blowing up orbits.

Consider any convex function f£:I + I such that f(1) = £f(-1). Each point
x € (£(0),£(1)] nas two inverse images, denoted a(x) and b(x) where a(x) < b(x). Extend
a and b to £(0) by letting a(0)) = b(f(0)) = 0. For x ¢ I, define Gx to be the semi-group

consisting of all words of the form afn(x) where « is a word in the letters a and b, n = 0.

Call GX the entire orbit of x. The set of points itn(x),n 2 0} is called the
forward orbit of x, and the set of points ia(x),oz a word in a and b} is called the backward

orbit of x. If p e Gx let HPH be the number of symbols in the word « plus n.
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A new function g can be made from f, roughly speaking, by replacing the

entire orbit of x by a set of disjoint intervals Iy and requiring g(Iy) = If(y)' The
itinerary of any point remains unchanged. We call f the base function of g. The

problem is to choose g to be as smooth as possible.

If the growth of the lap numbers is bounded by a polynomial then it is well
known that the w-limit set of x ¢ I is a periodic point of period 2", In this case it is

not too difficult to blow-up Gx and obtain a Cl function g.

We examine the special case when the lap numbers grow faster than any

polynomial and slower than any exponential.

Theorem 1. Let f:I + I be a convex function such that the lap numbers J&n satisfy
. 1 . . . .

Jln+l/lln + 1. Then there exists a C* convex function g possessing an invariant set of

disjoint intervals IX with the critical point ¢ ¢ Int IC such that vf = vg.

Proof. There are two possibilities corresponding to whether or not GC is dense in I.
When it is not, I - éc contains a maximal open interval U. Since U does not contain
¢ it is mapped homeomorphically onto its image. Also f(U) N U = @, otherwise a
point p ¢ Gc would be in the interior of one or the other which implies U N Gc 0.
Hence the maximal connected intervals in the complement of éc are mapped
homeomorphically onto one another. We simultaneously crush these down to points and

blow-up the orbit of c. If GC is dense in I, our methods merely blow-up Gc'

Let x ¢ Gc' We construct disjoint intervals IX with length

B 32
a = k/lx]| zHXH

where k is a constant such that
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Such a k exists since

32 ® 32
b z
xetic 1/]x|| ’LHxll s Dy +e,+ + 40/
® 32
< ngln.lon/n Zn
< X l/n2
n=l
azfz(c)
2
a ¢
()
c f(c)
Then
W B e x . ) + s
1 +1)°g /xl7 e
R N
. 32 32
= rllizl(nil) ﬁnil/n }@n
22
- nl—igl znil/zn

Both of these conditions are useful in establishing the differentiability of our final function

g. The first must hold in order that I remains compact, but, less obviously, it is

useful to ensure that the invariant set of intervals have full measure in I.

This will make

it easier to calculate the derivative of g at a point not in U'IX since lengths can be

expressed as sums (possibly infinite) of the a .-

The second condition (ii) is necessary for a canonical smoothing of g since, for

some base functions f, arbitrarily close to an endpoint of IX there will be both contracting

and expanding intervals.
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Define IX by

-7z -z = .
L [y<X 3 1 yox ay] (s ot
yeGC yeGC
and g'(x) = +1
gp

Then = g|l is obtained by integratin ' which satisfies ''=a
g, =&l y integrating g Lﬁxgp )

or -1 on the endpoints of Ip’ p # ¢, depending on whether p > ¢ or p < c¢. For example

if p>c, let
2
1+ R (s -x)(x-t )/a, xel
g (x) = PP PP p
P 1 , x £1
P
/ p—l). Finally integrate

t
Then fsp[l + Rp(sp-x)(x-tp)/aé]dx = af(p) . Hence Rp = 6(af(p)

p
'(x) and add a constant so that 5)=s .
gp( ) gp( p i(p)

Similarly construct gp over Ip’ p < ¢ by letting
-1 + R (s -x)(x-t )/az, x el
g (x) = P P pp p
P -1 , X ¢ Ip

= 1 - i isfying g'(s ) = -1 and g'(t ) = +l
For x = ¢ let R If(c) be any smooth function satisfying gc(sc) an gc(tc)

Define g:1 #+ I by

g, xel,peGC
8lx) = lim g (s_) pX:Iimcs
P P p

It follows from conditions (i) and (ii) above that g is C*. For if x ¢ UIp then

) = 1 (0)-g(y)
e = g EREH

= lim+x Z a_, ./ T a
P

>
(the sign depending on whether x < c.)
y*x  x<p<y Hp) x<p<y

since UIp has full measure in I and x ¢ UIp. In general if bk’ ¢ 0 are positive real

numbers satisfying bk/ck = 1 then

lim Z b E =1
k=n k/k—n k
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Hence, for x ¢ UIp, g'(x) = _i i zz Thus g is continuously differentiable.
Finally observe that IC is a wandering interval. o

§3. The Base Function.

. . . . 2
Consider any continuous family of quadratics such as f(x) = x -a.

Theorem 2. There exists a value A such that f (x) = x2-A satisfies 4 /4 =+ 1 and
T—_ A ntl” n
fi (0) alternates on either side of 0, drawing monotonically and arbitrarily closer.

Proof. Let A be supfa : critical point of fa converges to a periodic orbit of period 2n}.

Milnor and Thurston discuss this in (4, §9.6] and prove that £n+ /Ion + 1. Using

1
their notation, we verify the rest of the theorem.

Writing { for fA’ observe that the reciprocal zeta function

k

Eeo™ - le(l-tz ) = S(-1XBE

where ¢(n) is the number of 1's in the diadic expansion of n. According to Milnor

and Thurston, §9.6, in this case the kneading determinant

D, 1) = 85,0t

Hence en(0+) = (—l)a(n)
P _ + +. _ ,_o(n-l)yrodntp)
= Gn(f ) = en+p(0 )/Gp_l((} } = (-1)
2k 2k 2k
Therefore if k > 1 60(f2 ) = (—1)0‘(2 a2 (-1)2k+l = -1
2k+1 2k+1 2k+1

@ e 2k

and BD(fZ ) = (-1)% +1 .
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Since Go(p) = ¢ _, the "address" of p,

0

2k 2k+1
f2 (0) <0 < f2 © .

2k 2(k+1) "
We compare 9(152 (0)) to 6(f (0)). Note that the first 27 terms are the

. 2k
same since for n < 2 ,

2k
en(fZ ) = (_l)2k+2+a(n)

and
2(k+1)
2(k+1)y+H1+o
'@ (o = (-
2k
2
Bucitn =20, 6 ()= (DT -
2(k+1)
and 6. (% ()= (PP
22k 2ZL 241 21+1
Therefore 0 <f (0), L > k. In a similar fashion, f 0) > f 0),
L >k
2 ) 2k i
Finally, note that lim S(f2 (0) = B(0 ). Hence G(Iim(fz (0))) = 8(0 ) since
2k 2k
lim(f" (0) exists. In fact, lim(f" (0)) = 0 as in this example 0 is the unique point p
s i 2(k+1) N 2(k+1)
such that 67(p') = 807). Similarly lim 8¢  (0)) = 60" so that limt®  (0) = 0.0

§4. Unsmoothability of g.

With the results of Denjoy on the circle in mind, one might naturally suspect
that a C2 map f of I with growth rate faster than polynomial has no subinterval ] such
that fkl] is a homeomorphism for all k =2 0. (See also the work of Guckenheimer and
Misieurwicz for discussion of the case when f has negative Schwarzian derivative.) We

2
apply Theorem 1 to f,, creating g, and show that there is no C convex map

A
conjugate to g.

If X,y ¢ I we denote the open interval with endpoints x and y by (x,y)

regardless of the order.
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2 irs
Lemma 3. Let f(x) = x - A. There exists an increasing sequence of positive

c. =0, and the intervals

i ints .,C =c
integers n, and points ¢_ _, Such that f(c_,) =+ o

I

i
(Ck’c-n+k) are disjoint where ck = fk(O).

Proof. Let i ¢ z. Consider all points x in both the forward and backward orbits of

i . - .
<y such that HXH < 2°. Suppose X is a member of this set with minimum distance to
n, n,
Denote it by ¢ if f = x, and by ¢ if £ =
y n, (CO) i y —n_1 ! (Xi) ¢

CO- 0 .

In the former case, we choose C inductively. It helps to observe that if
S ¢ (x,y) and £(x') = x is given, then there 1exists y' such that f(y') = y and

f(x',y") = (x,y). Thus there exists cy such that f(c-l’cni-l) = (co, cni) = I+ since

I . Furthermore c i . H choose ¢
c, ¢ . urther ec ¢ (C-l’cn,-l) otherwise ¢, ¢ I_{_ ence we can 9

1 2
such that f(c_z,cni_2) = (C—l’cn,-l) and inductively C-p such that f(c_p,co) = (C-p+l’cl)
< i I .
P ni since Cp & N
In the latter case f maps I_ = (CO’C—ni) diffeomorphically onto (cl,c -n,+1)
i

since <y ¢ I . Inductively, < ¢ fn(I_) otherwise c € fn_l(l_) = S ¢ 1 . Hence

g 4p) = ¢ ).

>

pt’ € “ntp+l

It is easy to check that in both cases, these intervals are disjoint by

considering all three possible intersections : If Xi e,

(i) ¢ e (c_,c ) and ¢ e (c,c )=c or ¢ or ¢ el
p m’ “m-n m-n p’ p-n p-m p-m m-p-n -
(ii) ¢ e (c_,c ) and ¢ e (c ,c )=c or ¢ el
p-n m’ “m-n m-n p’ m-n p-m-n m-p-n -
or ’
(iii) ¢_ e (c_,c ) and ¢ e (¢ _,c y=>c or ¢ el
p m’ “m-n p-n m’ “m-n p-m p-m-n -

None of these are possible since |p-m| < n. A similar argument holds if X =co.
Note that Theorem 2 implies the n, are unbounded so choose an increasing

subsequence. o
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We are now in a position to apply Denjoy analysis in which the following

straightforward lemma is crucial.

Lemma 4. If f' has bounded variation and |l/f'(x)[ is bounded, then log f' has bounded
variation.

If there is a critical point then the Denjoy analysis might not apply. However,
the critical point of our blown-up function g is contained in the interior of a wandering
interval I_.. This turns out to be strong enough to prove :

0

. = . ) 0 . 2 )
Theorem 5. The blown-up function g is not C~ conjugate to any convex C function G.

Proof. We construct a restricted function avoiding the critical point ¢ . Let UO c IO

be a small open interval containing c, and ]O be a connected component of IO - UO .
Let J] = I - (the entire orbit of U()) and F:J + ] be defined by F(x) = G(x). Let
]n = fl(]()) and denote by ]-n the n'th inverse image of ]O under consideration. Let a,

denote the length of Jn'

Consider the sequence n, + o in Lemma 3. Then for each i there exists
X, € such that
0 ]0

a

n, n,
iy, e . .
- - EF V) =6 (xn._l)G (Xn_—Z) G (XO)-
0 i i
There also exists )’E_n € J-n < I_n (where I_rl is the blown-up interval corresponding

i i i i
to c_n which, in turn, is defined in Lemma 3) such that

G _ "

- Lz - " "
7 =(F )(X-n.) =G (x_l)G (x_z) ... G (X-n,)
-n, i i
i
3_02 n]'_
H 1 = ! - !
ence log — kgl llog G (x_k) log G (Xn,-k)|
n, -n i
i i
< E (3 _ t
R |log G (x_k) log G (xni_k)|
< constant
The last inequality holds since ;(-k and x k=1,. -.p0,, are pairs of points in

n, -k’
i
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disjoint intervals (according to Lemma 3), all derivatives are bounded away from 0 and

G' has bounded variation.

Therefore
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