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STOKES' THEOREM FOR NONSMOOTH CHAINS

JENNY HARRISON

Abstract. Much of the vast literature on the integral during the last two cen-

turies concerns extending the class of integrable functions. In contrast, our

viewpoint is akin to that taken by Hassler Whitney [Geometric integration the-

ory, Princeton Univ. Press, Princeton, NJ, 1957] and by geometric measure the-

orists because we extend the class of integrable domains. Let oi be an «-form

defined on Rm . We show that if w is sufficiently smooth, it may be integrated

over sufficiently controlled, but nonsmooth, domains y . The smoother is u> ,

the rougher may be y . Allowable domains include a large class of nonsmooth

chains and topological «-manifolds immersed in Rm . We show that our inte-

gral extends the Lebesgue integral and satisfies a generalized Stokes' theorem.

1. Introduction

The standard version of Stokes' theorem:

/    a) = /   dco
JdM JM

requires both a smooth «-manifold M and a smooth (n - l)-form œ. It was

realized at some point that one side of Stokes' formula could be used to define

the other side in more general situations. In particular Whitney [ 14] used the

right side to define the left in some cases where the interior of M is smooth,

even though the boundary dM is not smooth. More generally the interior

could be piecewise smooth or a suitable limit of simplicial chains. Whitney

systematically developed this insight by defining his flat norm on chains, based

on rectilinear subdivisions of simplices of one higher dimension of which the

chain in question is a partial boundary. He treated forms as cochains—linear

functions on the vector space of chains.

Stokes' theorem was thus extended by Whitney to integration of smooth

forms over objects that were limits in the flat norm of chains. These include cer-

tain kinds of fractals. But other fractals escape Whitney's construction. Whit-

ney's example of a function nonconstant on a connected arc of critical points

[15] shows the limits to any generalization of Stokes' theorem. Stokes' theorem

(which for arcs is just the fundamental theorem of calculus) must fail for such

arcs. There exists a Jordan curve in 3-space that has Hausdorff dimension > 2,

is not contained in any surface of finite area, and is not a limit in the flat norm

of simplicial 1-chains. Whitney's methods to not define integration of forms

over such a curve, nor do Lebesgue's. The methods for this paper accomplish

exactly this.

In a recursive construction we define a family of norms: For each real k

with n < k < m the k-natural norm \A\\ is defined on simplicial «-chains
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A in m-space. The definition utilizes projections of chains on hyperplanes,

Whitney's method of subdivisions and partial boundaries, and kth powers of

the «-masses of the projected chains. The recursion is on the integer part of

k - «.
The following theorem implies that this is indeed a norm on oriented sim-

plicial chains in Rm (which is not obvious). Completion yields Banach spaces

Xn.k = Xn,Á^m)- These spaces are nested, containing increasingly complex

chains as k increases. The parameter k acts as a dimension; it bounds the

fractal complexity of elements of Xn^. The boundary operator d on sim-

plices extends to a continuous operator d : X„tx —> Xn_\ tx ■

Theorem 1. Integration of an n-form co defines a bounded linear functional Lw

on Xnx if 0) is of class Cx~" . Furthermore, there is a constant c > 0 such

that for a simplicial n-chain A:

Is
where ||w||a-m denotes the k- « norm on forms.

This theorem extends results in [14] and [7].
Denote the dual space of cochains by Xn'k and the product of a cochain

X e Xn-X with a chain A e Xn¡x by X • A. Define SlnX = {«-forms co

of class Cx~n defined on Rm} . According to Theorem 1 the linear operator

A h-> JA co on simplicial «-chains in Rm is bounded and determines an element

Lm e X"'x. This results in a linear mapping L: SlnX —> X"'x . For A e X„ yx

we define fAco = Lm- A. Special cases: If A is a simplicial «-chain (finite) in

Rm , then JA co is identical to the Lebesgue integral for simplicial «-chains. If

A is an «-chain (possibly infinite) in Rn , then fA co is identical to the Lebesgue

integral for infinite «-chains with finite «-mass. Since Ld(a = dLu, we obtain

the following:

Theorem 2 (Stokes' theorem for nonsmooth chains). If A e XnX and co e

çk-n+\ ¿j an i^n _ iyform defined on Rm , then JA dco = JdAco.

Historical comments. In 1982 the author found a C2+a counterexample to the

Seifert Conjecture [2, 3]. At the heart of her construction is a diffeomorphism

of the two-sphere with a fractal equator y as an invariant set. The Hausdorff

dimension of y is precisely 1 +a. Coarser relations between the differentiability

class of a function and the topological dimension of a related set were well

known in the theories of Sard [13], Denjoy [ 1 ], and Whitney [15]. Subsequently,
these too were found to have fractal versions. (See [6, 11].) In each of these

theories appears the same phenomenon—the smoother the function, the rougher

an associated set. This paper is a result of the author's search for a general

principle underlying this duality between dimension and differentiability.

Fractals are rife in many fields: geometric measure theory, dynamical sys-

tems, PDEs, function theory, foliations_Except for various dimension theo-

ries, however, there are few available techniques for investigating them. Usually

there is a large measure of geometric control over their formation that can be

proved or reasonably postulated. In at least some interesting cases this ought

to allow integration of sufficiently smooth forms over the fractals. For exam-

ple, it would be very useful, and perhaps not too difficult, to show that certain
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solenoid-like invariant sets for flows are domains for integration of 1-forms

and that certain closed unions of leaves of a foliation by fc-manifolds are do-

mains for integration of k-forms. Such sets could then be proved fairly directly

to carry homology cases. Currently such proofs (due in various contexts to

S. Schwartzmann, J. Plante, D. Sullivan, and others) are indirect and hard to

come by. It may well be that these new discoveries in geometric integration

theory will provide simple but powerful new tools to sharpen differentiability

results and reduce technicalities in known proofs.

2. Norms on chains

We take Whitney's approach in [14] with simplicial «-chains. It provides

an algebraic way of equating chains with common simplicial subdivisions. An

n-simplex a = Po---pn in R" is the convex hull of « + 1 vertices p¡ in

R", i = 0, ... , n. If the « vectors {po - Pi} are linearly dependent, then

a is degenerate. The order of the vertices p, of a nondegenerate simplex a

determines an orientation on a . The simplex -er is identified with the simplex

with the same pointset as a but the opposite orientation. Define a simplicial

n-chain A in R" as an equivalence class of formal sums Yaiai wrtri real

coefficients and oriented simplices in Rn as follows: A formal sum Y ai°V

defines a function A: Rn —» R by A(x) = Y±ai f°r x e mt(ff/) where +a¡

is used if a, is oriented in the same way as R" and -a¡ is used otherwise.

Set A(x) = 0 if x does not lie in the interior of any simplex a¡. Two formal

sums of oriented simplices are equivalent if the functions defined by them are

identical except in sets with «-dimensional Lebesgue measure zero. (Degenerate

simplices can be used but are equated with the zero «-chain.) The definition

of a simplicial «-chain A in R" is independent of the orientation chosen for

R".
More generally we can define a simplicial n-chain in Rm when m > « . For

each affine «-plane P in Rm let Cn(P) denote the linear space of simplicial

«-chains in P. A simplicial n-chain A in Rm is an element of the direct

sum of the Cn(P). Let A and B be two simplicial «-chains in Rm . If the

corresponding summands of A and B are equivalent, we write A ~ B .

Let Mn(a) denote the «-dimensional mass or volume of an «-simplex a .

Let A be a simplicial «-chain in Rm and n the orthogonal projection onto an

affine subspace of Rm . For 0 < k < n define the projected k-mass of A to be

MltX(A) = inf {£ \ai\(Mn(nOi))xl" : £«,<* ~ a} .

If n is the identity, we write Mx(A) = Mx,n(A) for simplicity of notation.

Then M „(A) is the «-mass of A . It is a norm on simplicial «-chains in Rm .

Integration of smooth integrands over smooth domains. The mass norm Mn is

often used to estimate the integral of a continuous form over a domain with

finite mass. For example, let A be a simplicial «-chain in Rm and co a con-

tinuous «-form. Clearly,

|/<J<M„(,4)IMIo.
\Ja    I

Whitney used a smaller norm on chains to find better estimates for simplicial

«-chains with large mass.
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Whitney's flat norm. Let A be a simplicial «-chain in Rm . Whitney defined

the flat norm of A as

\A\» = inf{Mn(A - ÖC) + Mn+l(C)} ,

where the infimum is taken over all simplicial (« + l)-chains C. For example,

if A is a Jordan curve in R2 , \A\* is bounded by the area of the Jordan domain

spanning A. If A is an arc in R2, consider any simplicial 1-chain B so that

A + B is a Jordan curve. \A^ is bounded by the sum of the arc length of B

plus the area of the Jordan domain spanning A + B.

The flat norm is used to complete the space of simplicial «-chains in Rm .

Denote the resulting Banach space of flat n-chains by Xn and the dual space of

flat n-cochains by X" . Whitney showed that the boundary operator 9 defined

on simplicial «-chains is continuous with respect to the flat norm and extends

to d: Xn -*X„-i.
Let A be a simplicial «-chain and C a simplicial (« + l)-chain in Rm . Let

co be an «-form of class C1 defined on Rm . Whitney used Stokes' theorem

for simplicial «-chains to show

(*)      \ [ o\<   /       co\ + \[ dco\<Mn(A-dC)\\co\\o + Mn+i(C)\\dco\\0.
[JA      I        \JA-dC     I       \JC I

Therefore, \ JAco\ < ¡A^WcoWi . This estimate enabled Whitney to integrate over

elements of X„. Whitney believed he could generalize Stokes' theorem and

wrote at the end of his first paper of geometric integration theory [16], "With

the help of methods described above a very general form of Stokes' theorem

may be proved. We shall not give details here." However, it turned out that

his integral does not extend to the Lebesgue integral. Theorem 1 generalizes

Whitney's theorem and leads to strict generalizations of the Lebesgue integral
and Stokes' theorem.

The natural norms [5]. Let y be a Jordan curve in R3 that has Hausdorff

dimension greater than two. This curve not only has infinite arc length but has

no spanning surface with finite area. Thus a sufficiently close simplicial 1-chain

A will only bound 2-chains with huge area. Neither the arc length norm Mi (A)

nor the flat norm \A^ will give good estimates for integrals over A. The natural

norms defined below give sharper estimates.

Since 39 = 0, only simplicial «-chains without boundary have spanning

(« + l)-chains. Yet all simplicial (« + l)-chains C can be viewed as "partial"

spanning sets for an arbitrary simplicial «-chain A . The natural norms take

into account the («+l)-massof these partial spanning sets C and the projected

«-mass of what is left over, namely, A - dC. (See Figure 1 on page 240.)

List the «-dimensional coordinate planes of Rm from 1 to N = ("). Let

%i be the projection onto the t'th coordinate plane in this list.

Let A be an «-chain in Rm . If 0 < k < « , define the k-natural norm of A

by
N

\A\\ = Y,Mx,n.(A).
i=\

Then \A^„ is proportional to the «-mass Mn(A).



STOKES' THEOREM FOR NONSMOOTH CHAINS 239

For « < k < m , k € R, define the A-natural norm of A by recursion on the

integer part of k - n :

\A\\ = f^inf{Ma,Xl{A~9C) + \C\\}.
1=1

Each term is infimized over all simplicial (« + 1 )-chains C in Rm . The flat

norm corresponds to k = « + 1 . It is interesting to observe that k may be an

integer much larger than « + 1. This allows us to work with domains that are

curves in R3, for example. The A-natural norm depends on the parameter k,

the topological dimension « of A , and the minimal ambient space dimension

m of A. However, if A is an «-chain in Rp and in Rp', the norms defined

are identical. For simplicity of notation the dependency on « and m are

suppressed. The definition is independent of choice of coordinates. That is,

under a Cx~n+l change of coordinates with bounded derivative, the A-natural

norm changes to an equivalent norm.

As does Whitney, we complete and obtain a Banach space X„tx of k-natural

n-chains and its dual space X"'x of k-natural n-cochains.

Remark. There is a one-parameter family of homology and cohomology groups

associated with the A-natural norm, H„x and H"x.

Now let co be a 1-form defined on Rm of class C1 and A e X{ j ■ We have

seen that the integral of co over A can be estimated using either arc length or

the flat norm, both of which may be very large. Theorem 1 shows that if co is

of class C2, the integral can also be estimated using the 3-natural norm which

may be much smaller.

(**) /wpMlljIMIz
\j A

To prove Theorem 1, we iterate a modified version of the Stokes' argument

as seen in (*) (see [5] for details; also see the example below). The reader

should take note that Stokes' theorem, as such, may be applied only once since

ddco = 0 and ddA = 0. However, the components of dco may not be exact,

and we may apply the exterior derivative to them. This means we may continue
to use the exterior derivative and iterate the "Stokes' process" in a nontrivial

fashion for as many times as co is differentiable. We also use partial spanning
sets of spanning sets.

Typically, an integral JA co is treated with two basic methods: If A = dB

and co is smooth, one may "go forward" and integrate dco over B. Alterna-

tively, if the form co = du , one may "go backward" and integrate v over dA .

Sometimes neither of the equivalent new integrals is easier to calculate. Our

methods allow one to go forward many times under suitable conditions, taking

the exterior derivatives of forms in the hopes of finding an equivalent integral
that may be calculated. It is worth mentioning that it is also possible, under

suitable conditions, to go backward, taking antiderivatives of forms many times,

and find an equivalent integral that may be calculated.

Example. There exists a self-similar Jordan curve y in the unit cube with Haus-

dorff dimension > 2 so that each projection n¡(y), i = 1, 2, 3, onto the ith

two-dimensional coordinate plane is an immersed curve bounding an infinite
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Figure 1

2-chain with finite 2-mass < 1 . (The curve y is constructed by adding ho-

mothetic replicas of the curve a to itself in Figure 1 so that y is embedded

and has Hausdorff dimension ~ log 11/log 3 > 2.) A simplicial 1-chain A
can be found approximating y along with simplicial 2-chains C, spanning A ,

i = 1, 2, 3, such that Miy1t¡(Ci) < 1 . (Each surface C, is a sum of homothetic

replicas of the surfaces a and t in Figure 1, chosen to minimize the projected

2-mass of C,.) Furthermore, the simplicial 3-chains Dfj spanning C, + C,

have Mi(Djj) < 1 . Even though the norms M\(A) and \Af are both large, the

3-natural norm \A\\ is not, for

\C% < Y,W2,Kj{Cj) + \D,j\\) < 12     and thus   \A\\ < £ \Q\\ < 36.
j=i i=\

This curve y cannot be a domain for the classical Lebesgue integral and can-

not be treated using Whitney's methods. We show in §3 how to choose Ak

approximating y and define J co — lim JA co.

We verify that Theorem 1 (see (**)) is valid for this example,

to estimate | JA co, \ = | /c dco¡ | where co, is a component of co.

d + Cj = dDu . Thus

3

+

It suffices

Note that

/   dcoi <V   / (dcoi)j +   /    d(dco,)j
Jc, j=l JCj Jd„

<\A\\\\co\\2.

Relation to the Lebesgue integral. Our integral of smooth forms contains as

a special case the Lebesgue integral: First associate an L1 function /: R1 —►

R1 with an element of X\2 as follows. Assume for simplicity that / is the

characteristic function of a bounded, measurable set E. Let S denote the

region under the graph r of / and above the x-axis, oriented positively. Let

m„ denote «-dimensional Lebesgue measure. Since f e Ll , m2(S) < oc.

For each k there exists a union Pk of disjoint intervals such that E c Pk

and m\(Pk) < c». Furthermore, f\Pk = E except for a zero set. Subdivide

each of the rectangles of Pk x I into finitely many 2-simplices and orient each

positively. Denote the formal sum of these oriented 2-simplices by Qk . Since

m2(Pk x I) < oo, each Qk is an element of X2¡2. Since m2(S) < co, the

sequence {Qk} is Cauchy and thus converges to Af e X2>2. It can be shown

that dAf € X¡,2 is canonically associated with /. Now it is well known (see

Saks [12]) that the Lebesgue integrals JRf and Js dxdy are equal. Since S is
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canonically represented by Af e X212, the Lebesgue integral Js dx dy equals

our integral JA  dxdy.  Since ydx is analytic and dAf e X\,2, Theorem 2

implies the Lebesgue integral /R / equals our integral Jrydx. (This example

can be treated with the flat norm alone.)

3. Domains of integration

Which oriented «-dimensional topological submanifolds M c Rm with

boundary can serve as domains for integrals of smooth forms co of class Cx~n ,

« <k < ml The idea is to choose appropriate simplicial approximators Ak for
M that converge in Xnl for k sufficiently large and define JMco-\imJA co.

(See [4] for some numerical methods.) But choosing Ak takes care. For exam-

ple, let M\ be a Jordan curve in R2 with positive Lebesgue area. Any Cauchy

sequence of simplicial 1-chains inside M\ will have different limit point in

X\ti from a Cauchy sequence of 1-chains outside M\ . The area of M\ itself
contributes an unavoidable error.

Consider a compact oriented «-manifold M c Rm with boundary. There

is an algorithm for constructing a particular sequence of simplicial «-chains in

the nerves of coverings of M by boxes in cubic lattices, the inverse limit of

these chains representing the fundamental Cech homology class of (M, dM).

If this sequence of binary approximators converges to some y/(M) € X„ ;/t(Rm),

then M is a (k, n)-set. The algorithm commutes with the boundary operator

on chains. Examples of (k, «)-sets include some planar Jordan curves with

positive Lebesgue area and the above example of a Jordan curve in 3-space with

Hausdorff dimension > 2. If M is a (k, «)-set and co is an «-form of class

Cx~n , we can define JM co = L(A/) co and apply Theorem 2 to conclude:

Theorem 3 (Stokes' theorem for (k, «)-sets). If M is a (k, n)-set and co e
Cx~n+l, then

/    co =      dco.
JdM JM

Theorem 3 extends the classic Green's theorem for codimension one bound-

aries y and C1 forms co. Holder versions of the classic Green's theorem
relating the box dimension of y to the Holder exponent of co are proved in [7,
8, 10].

There are many examples of (k, «)-sets:

(i) There exist Jordan curves in R" with Hausdorff dimension d that are
(d, l)-sets for every 1 < d < « .

(ii) Every hypersurface immersed in Rm with Hausdorff dimension < m is

an (m, m- l)-set.

(iii) Compact oriented «-manifolds immersed in Rm that are locally Lips-
chitz graphs are («, «)-sets.

(iv) Compact oriented 1-manifolds immersed in R2 that are locally graphs

of Holder functions with exponent a are (2/(1+a), l)-sets.

Remark. Compactness in examples (ii), (iii), and (iv) can be relaxed. An arc in

R2 that spirals to the origin passing through the x-axis at x„ — l/y/ñ, « > 1,
is not a (k, 1 )-set for any 1 < k < 2. Other domains of integration include

boundaries of open sets such as the topologist's since circle and the Denjoy
Cantor set.
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Integration on manifolds. We pass to smooth manifolds by way of local co-

ordinates, since the A-natural norm changes to an equivalent norm under a

(k - « + l)-smooth change of coordinates with bounded derivative. One must

also extend the definition of these norms to chains in proper open subsets of

Rw as Whitney did for his flat norm. The integral can then be defined for

smooth forms defined on smooth compact w-manifolds M over domains that

are "rough" subsets of M.
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