
RESEARCH SUMMARY

JENNY HARRISON

This summary of my research is in two parts. The first regards differential chains and their applica-
tions to pure and applied mathematics. The second part is a summary of my work in the calculus
of variations.

1. Differential Chains

1.1. Approximations by simplicial chains. My papers during 1993-2005 used simplicial chains
to approximate all sorts of domains of integration [Har93, Har94, Har97, Har98a, Har98b, Har99b,
Har05a, Har05b, Har06]. They established an isomorphism between cochains and differential forms
[Har98b] and provided continuous operators [Har98a] that yield concise generalizations of the classi-
cal integral theorems of calculus [Har93,Har99b,Har06], applying to both smooth and rough domains.
There have been a number of attempts to do this, but an important operator, product, or relation
is usually missing.

Whitney [Whi57] first thought his “sharp norm” on simplicial chains had a continuous boundary
operator, but he withdrew that claim and introduced his “flat norm” to replace the sharp norm.
The flat norm, by definition, has a continuous boundary operator, but no continuous Hodge star
operator. Jim Eells was Whitney’s student and told me, “Whitney spent the better part of twenty
years trying to reconcile his two norms.” His book [Whi57] was a disjoint amalgamation of his
sharp and flat theories. In his thesis, Eells himself [Eel55] tried to work around these problems,
but his approach also failed to have a continuous boundary operator. I built upon and modified
Whitney’s sharp norm to obtain both boundary and Hodge star continuous operators. The Russian
analyst Boris Aleksandrovich Kats [Kat14] went so far as to say, “The idea of the approximation by
polygonal constructions was essentially developed by Harrison [Har05a].” The approximations Kats
refers to are within a topological vector space in which smooth and rough domains are represented
as elements.

As further continuous operators were discovered and point masses were represented as limits of
simplicial chains, the work evolved into a theory of generalized functions [Har06, Har11a, HP12,
Har14a] which we now call “differential chains” (see below for further discussion.) Generalized
functions of various types had been developed by Schwartz, de Rham, Sobolev, Sato, Colombeau, and
others to make rigorous the celebrated “Dirac deltas” of Paul Dirac. A natural question was whether
differential chains offer any advantages over prior theories, but that has now been answered by wide-
ranging applications, e.g., [Seg03,Bos05,Mar05,Lyo06,Bos06,EF14,FS14,Kat14,Pug16,Sal16].

The space of differential k-chains is defined as the inductive limit (also called the direct limit) of a
sequence of Banach spaces of simplicial k-chains and is endowed with a particular strong topology so
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that one can take limits and find new, non-pathological, and naturally arising models1 amenable to
classical methods of analysis. The topological dual of the space of differential k-chains is the space
of differential k-forms each with uniform bounds on its derivatives. The Banach spaces are defined
without reference to differential forms and we conclude that differential forms pair with differential
chains to provide a non-trivial integral [Har98a,Har98b].

If an operator on differential chains is continuous and dualizes to an analytically defined classical
operator on differential forms, then the resulting integral relation is also non-trivial. An example
is a general form of Stokes’ theorem [Har93]. This arises from a well-defined continuous boundary
operator B on differential chains whose topological dual is the exterior derivative d of forms ω. Thus
the relation

(1) dω “ ωB

is a proper theorem and not a “weak definition” as it is for currents.

The words of André Weil in his autobiography [Wei92] tell us some important history of the search
for a general version of Stokes’ theorem:

In his book on invariant integrals, Elie Cartan, following Poincaré in emphasizing
the importance of this [Stokes’] formula, proposed to extend its domain of validity.
Mathematically speaking, the question was of a depth that far exceeded what we [Henri
Cartan and André Weil] were in a position to suspect...“Why don’t we [with several
friends] get together and settle such matters once and for all.” Little did I know that
at that moment Bourbaki was born.

Another example is the geometric Hodge star operator K which is a continuous operator on differen-
tial chains. Its topological dual is the classical Hodge star operator ‹ on differential forms yielding
the theorem

(2) ‹ ω “ ω K .

Combining these two results yields

d ‹ ω “ ωB K and ‹ dω “ ω K B

which are concise and general versions of the Gauss-Green divergence theorem and the Kelvin-
Stokes’ curl theorem, respectively [Har99a, Har06]. These results apply equally well to classical
smooth domains and rough domains with no tangent spaces defined anywhere. For example, the
oriented graph of the Weierstrass nowhere differentiable function supports a differential chain. Even
though this set is not rectifiable and has no measure theoretic tangent or normal vectors, one can
still calculate net flux across a boundary which is a union of such curves.

The concise simplicity of these statements should not diminish their importance. Compare d ‹ ω “
ωB K [Har06] with the generalization of the Gauss-Green theorem due to Federer and De Giorgi

1Differential chains were originally called “chainlets.” Both spaces are inductive limits of the same Banach spaces, but

use different topologies on the inductive limit. Differential chains have better properties than chainlets if applications
are sought on the full inductive limit. However, all applications to date have only required several of the initial
Banach spaces in which chainlets, differential chains and their operators are identical. Spectral analysis requires the
full inductive limit for some operators such as boundary.
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[Fed69]. Their proof requires a good fraction of [Fed69]. Their result is not optimal, because their
domains are assumed to have boundaries with measure theoretic exterior normals. Federer wrote

A striking application of our theory is the Gauss-Green type theorem discovered by E.
De Giorgi and the author, which makes use of a measure theoretic concept of exterior
normal. (p. 4 [Fed69])

We present an elementary version of the Gauss-Green theorem in 4.1.31, and per-
haps optimal results in 4.5.6,4.5.11. Research on the problem of finding the most
natural and general form of this theorem has contributed greatly to the development
of geometric measure theory. (p. 343 [Fed69])

and

Using these concepts we prove an essentially optimal version of the Gauss-Green
theorem in 4.5.6. (p. 484 [Fed69])

1.2. Approximations by monopole chains. There are several dense subspaces of differential k-
chains which provide methods of approximation with different flavors. In 2004, I began to transition
from simplicial k-chains to “monopole k-chains.” The latter are elements of the free space of the kth

power of the exterior algebra over Rn denoted by ΛkpRnqxRny. Both simplicial k-chains and monopole
k-chains are “discrete” since each is determined by a finite amount of data, but a monopole k-chain
is also “infinitesimal” since its support is finite. That both subspaces are dense in the space of
differential chains leads to a unification of discrete and continuum mathematics in what Ogus called
“a novel way.” The key idea is that a k-vector based at a point is represented as the limit of small
simplexes containing the point, each with unit mass. This representation can be made rigorous
in the space of differential k-chains. On the other hand, a k-simplex can be written as a limit of
monopole k-chains.

Some might find it striking that the relations (1), (2) and their corollaries apply to monopole k-
chains supported at a single point. One can define the boundary of a k-vector based at a point
by taking suitable limits of pk ´ 1q-dimensional simplexes, or even pk ´ 1q-vectors, in the space of
differential chains. Infinitesimal flux can then be calculated across the infinitesimal boundary of a
k-vector. By taking limits of monopole approximators, one can immediately calculate flux across
the boundary of a submanifold or across rough boundaries such as the lungs. In this way, the new
domains of integration represented as differential chains become amenable to techniques of analysis
and geometry based on classical differential calculus of smooth manifolds. As with the Riemann
integral, all that one needs to do is approximate a domain with simplicial or monopole chains,
calculate the integrals on the approximators and then take a limit. Tangent spaces are replaced
by monopoles which opens the door to analysis on non-smooth domains. Examples include point
masses, fractals, soap films with triple junctions, manifolds with singularities and surfaces with no
tangent defined anywhere.

1.3. Applications of differential chains.
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‚ Continuum mechanics
(a) Reynolds’ transport

Fried and Seguin used differential chains to prove a broad generalization of Reynolds’
transport theorem permitting domains of integration that might, at times, be highly
irregular, split into pieces, develop holes or whose fractal dimension may evolve with
time. They write that their results are “of potential value in continuum physics and
the calculus of variations.” They include a substantial review of the underlying theory
of differential chains and point out that new computational methods arise which are
applicable to the classical setting [EF14,FS14].

(b) Stress and strain
Alfredo Marzocchi’s paper “Singular Stresses and Nonsmooth Boundaries in Continuum
Mechanics” [Mar05] relies heavily on chainlets and contains numerous references to my
papers.

(c) Yevgeniy Guseynov wrote in [Gus16] “Whitneys approach was significantly extended in
[24-26] where the surface integral was defined for a wide family of non-regular or fractal
boundaries.”
Note that [24-26] consist of my 2005 arxiv post “Lecture notes on chainlet geometry”
[Har05a] and two papers I published with Norton [Nor91,Nor92].

‚ Electrical engineering The French analysis Alain Bossavit, a student of Jacques-Louis
Lions, became especially interested in the theory from the viewpoint of monopole chains
because of his interest in electromagnetism. He wrote in his book [Bos05],

We shall also need a topology on the space of p-chains, in order to define differential
forms as continuous linear functionals on this space. As we shall argue later,
physical observables such as electromotive force, flux, and so forth, can be conceived
as the values of functionals of this kind, the chain operand being the idealization of
some measuring device. Such values dont change suddenly when the measurement
apparatus is slightly displaced, which is the rationale for continuity. But to make
precise what slightly displaced means, we need a notion of nearness between chains
- a topology. What follows is an attempt to bypass, rather than to face, this difficult
problem, to which Harrisons work on “chainlet” spaces (nested Banach spaces which
include chains and their limits with respect to various norms, Harrison [1998]),
provides a much more satisfactory solution.

When H. Pugh and I found a more useful topology on the inductive limit [HP12] and
convinced Bossavit that this made no difference to applications in engineering, he wrote
[Bos06],

Remark. Not only linearity, but continuity, of maps e, b, h, etc., is an issue, es-
pecially in convergence proofs. Hence a need, fortunately satisfied by recent mathe-
matical developments [4]2, for topologies on chain spaces, a subject computer users
can safely ignore.

‚ Material science The Israeli materials and civil engineer R. Segev based his paper [Seg03]
entirely on my generalized Gauss-Green theorem [Har99a, Har06] which I told him about
before publication. He remarked, “Harrison made important extensions to Whitneys work”
Segev’s paper has 21 citations.

‚ Probabilty theory Terry Lyons wrote in “On Gauss-Green theorem and boundaries of
a class of Hölder domains” [Lyo06] “In conclusion, our work demonstrates an alternative

2Reference [4] refers to [Har].
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approach, which is also complementary, to that by Harrison and Norton3 on how to do
calculus and geometric analysis on fractals”

‚ Finite Element Method
Joe Salamon’s 2016 Ph.D. thesis in Physics (UCSD, adviser Melvin Leok), [Sal16] contains

a ten page summary of chainlets and cites several of my papers, including two arxiv papers
[Har05a] [Har] and two published papers [Har06], [HP12].

‚ Riemann boundary value problems
B.A. Kats, [Kat14] 2014 (cited by 10) This paper cites four of my papers [Nor91] [Nor92],

[Har93], [Har05a].
‚ Pugh’s theorem

Notation: B “ BpMq is the topological vector space of smooth differential forms with
bounded derivatives defined over a manifold M , B1 “ B1pMq is its continuous dual, 1B “
1BpMq is a continuous predual. (See [HP12], [Har14a] for more information about the specific
predual we use and its topology.)

H. Pugh [Pug16] has recently discovered a continuous completed coproduct

∆ : 1B Ñ 1Bb̂ 1B

which dualizes to wedge product on forms. In Sweedler notation: ∆pJq “
ř

Jp1qbJp2q where
Jp1q, Jp2q, J P

1B and the sum may be an infinite series converging in the projective tensor
product topology.

Explicitly, the duality statement is

Theorem 1.3.1 (H. Pugh 2016). Given J P 1BpMq and differential forms α, β P BpMq,

ż

J

α^ β “
ÿ

i,j

ż

Ji

α

ż

Jj

β.

It is not obvious that the right hand side is well-defined when viewed alone since Ji and
Jj are not uniquely determined and neither are α and β. Furthermore, Pugh shows that the
boundary operator commutes with the completed coproduct, making 1B into a topological
differential graded completed coalgebra. It dualizes to the classical differential graded algebra
of differential forms. (See [Pug16] for a draft.)

1.4. Postscript to differential chains. The philosophical view of my postdoc adviser Hassler
Whitney drove him to search for the most fundamental concepts and results of mathematics which
would then yield powerful theories as a consequence. One might call these foundational concepts
“ansatz of mathematics.” In the introduction to Geometric Integration Theory [Whi57], Whitney
wrote,

The discovery... that flat cochains ... correspond to differential forms caused a fun-
damental change in the point of view. The study [of flat chains] in Euclidean space
now became primary; having found that the theory of cochains could be built on norms
of chains, these norms became the basic tool.

3My student Norton only worked on two simple early papers [Nor91, Nor92] establishing a Stokes’ theorem for top
dimensional domains. Kats proved the same results before us, but he wrote his papers in Russian and we learned

about them years later. The higher codimensional theory was much deeper and Norton had no role in it.
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Differential chains are of this nature. Whitney would have been pleased to see that our cochains
correspond to differential forms, our coboundary operator corresponds to exterior derivative, there
is a geometric predual to Hodge star, and the dual of completed coproduct corresponds to wedge
product.

2. Plateau’s problem

In its simplest form, Plateau’s problem asks if there exists a surface of least area amongst all surfaces
whose boundary is a given closed curve in R3. There are a variety of meanings of “surface,” “area,”
and “boundary,” giving rise to different statements of Plateau’s problem in higher dimension and
codimension. The word “area” most often refers to mass or Hausdorff measure. For those interested
in soap films, size minimization4 is more natural than mass minimization because multiplicities
do not arise in physically realistic soap films. Furthermore, two soap films do not cancel if they
overlap for films have no sense of orientation. In mass minimization problems, though, two surfaces
with opposite orientation do cancel where they meet. The most progress in Plateau problems has
been with regard to mass minimization problems. One reason is that oriented submanifolds have
the cancellation property. Another is that mass is lower semicontinuous and Hausdorff measure is
not which makes size minimization problems more difficult to solve. However, the bulk of physical
applications of the calculus of variations do not exhibit the cancellation property. For example,
when two roads coincide, they do not cancel.

2.1. Early ideas. After I found a concise statement of the Gauss-Green theorem, I wondered if
other aspects of [Fed69] might be elucidated by the direct geometrical approach of differential chains.
Plateau’s problem using mass minimization is the other major application in [Fed69] and I started
to work to understand what I could from the viewpoint of differential chains. My first papers
[Har04a, Har04b] got me started. My first new idea used dipole surfaces to model films and solved
what we call the “Y-problem.” Simplicial chains introduce an extra boundary element where the
three surfaces meet, but dipole chains do not (see Figure 1). They also model Moebius strips nicely
so that the boundary operator is defined and produces a dipole chain whose support is the simple
closed curve at the edge of the Moebius strip (see 2.) My papers were limited to codimension one
and assumed a universal upper bound on the length of triple junctions. It was a good start, but I
was not altogether satisfied with either assumption.

Figure 1. Triple junctions that do not contribute to the boundary of the film

4Hausdorff measure is used for size minimization.
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Figure 2. Dipole surfaces model Moebius strips and gave a well-defined dipole
boundary curve

Meanwhile, I realized that the norm topology I had chosen for chainlets had every property that I
had wanted, but its dual space of differential forms was too small5. I decided to try the inductive
limit topology instead and Pugh offered to help prove that it had the properties we wanted. We
learned from Grothendieck [Gro73] that the inductive limit topology, unlike the projective limit
topology, is notoriously difficult to work with and establish fundamental properties. But if it is
Hausdorff, complete, bornological, etc., it can have very nice applications because it behaves much
like a finite dimensional vector space. For example, the Heine-Borel property holds. Much as with
Schwartz distributions, one can use the properties of the space and ignore the particular topology
chosen.

After absorbing several books on topological vector spaces, we knew enough to prove what we wanted
and published [HP12]. Pugh and I turned back to Plateau’s problem. We hoped we now had the
tools to treat both of the limitations on my previous work. We had the old models of dipole surfaces
in hand, and realized that differential chains had nice compactness properties since the linking maps
between the Banach spaces were compact.

Around the same time as we wrote [HP12], I had the idea of using linking numbers to define spanning
conditions in codimension one, and no longer made the artificial assumption on triple junctions.
In [Har11b,Har14b] I proposed using simple links to test whether or not a closed set spans a given
closed loop (although no regularity is addressed.) Assume for simplicity that B is a Jordan curve
in R3. We say that a closed set X spans B if every simple link of B meets X. It is astonishing
that no one ever thought of using this simple definition before. It has kindergarten simplicity and
requires no boundary operator.

2.2. Soap films via differential chains - concrete representations of films with a coherent
boundary operator. Pugh and I decided to try and tackle the size minimization problem together.
In [HP13] we also used linking numbers to specify spanning conditions, but we developed them

5But this was not a mistake, as such. All of the applications which have relied on chainlets only made use of the
first few Banach spaces used to define the inductive limit. Theses spaces have never changed since their inception

[Har05a,Har05b].
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more thoroughly. This time we proved a result that others are coming to appreciate as breaking
new ground. It establishes existence and a.e. regularity of size minimizing Plateau problems in
codimension one. It marked a breakthrough for the problem had not been previously solved for
more than one prescribed boundary component, e.g., Borromean rings. In 2013 Ogus wrote, “We
look forward to hearing news of its acceptance, which would signal a major achievement.”

Theorem [HP13]

Let M be an oriented, compact pn´2q-dimensional submanifold of Rn and S the collection of compact
sets spanning M . There exists an X0 in S with smallest size. Any such X0 contains a “core” X˚0 P S
with the following properties: It is a subset of the convex hull of M and is a.e. (in the sense of
pn´ 1q-dimensional Hausdorff measure) a real analytic pn´ 1q-dimensional minimal submanifold.

2.3. Plateau’s problem for soap films via classical measure theory. Higher codimension
was much more difficult and required several new methods of our next paper [HP16b]. This paper
generalizes [HP13] to arbitrary codimension and also permits boundaries with multiple components.
In this paper we minimize with respect to a Hölder density function which appears to be new. Our
methods are now developed in the language of classical measure theory and a few set theoretic
constructions.

H. Pugh saw that linking number was a special case of cohomology (via Alexander duality) and
proved about twenty necessary and nontrivial lemmas to establish closure properties. These are
contained in the first part of our paper. However, there is much more. A second novel aspect is a
newly identified concept we call “Reifenberg regularity” which we adapted from a technique deeply
buried in a book-length proof of Reifenberg. This definition is a substantial improvement over the
notion of quasiminimality (QM) of Almgren and promoted by a number of modern mathematicians.
(QM is difficult to establish and has been never proven useful for solving Plateau problems, despite
decades of effort by Almgren, David, and others. See below for more details.) Considerable work
was needed from us both to define Reifenberg regularity, articulate and establish its basic properties,
prove lower semicontinuity, rectifiability and tie everything together, once cohomology was set up
properly. It is noteworthy that our methods only rely on some set theoretic constructions and
classical measure theory. There is no need to introduce varifolds, currents or Whitney’s flat norm,
as required in Almgren’s work.

Indeed, our review article on Plateau’s problem [HP16a] demonstrates that Almgren’s proof in
[Alm68] is incorrect. At a key point in his proof he assumes that his minimizing sequence is uniformly
quasiminimal in order to deduce rectifiability of his minimizing set. However, this step of his proof
is unjustified and presents a gap that has not been filled to date. It is easy to produce examples of
minimizing sequences that are not uniformly quasiminimal and there is no known method to convert
such minimizing sequences into uniformly quasiminimal ones.

H. Pugh and I have thus published the first proof of existence and a.e. regularity of size minimizing
solutions to Plateau’s Problem for m-rectifiable surfaces in Rn that span an arbitrary prescribed
compact set A. We used Čech cohomological spanning conditions [HP16b] since the original Čech
homological spanning conditions of [Rei60] do not apply well to boundaries with more than one
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component. (See Theorem 2 of [Rei60]). The topological boundaries of our surfaces are only required
to be contained in the compact set A and can slide around within A (see Figure 3).

(a)

(b) (c)

bounding sets

Figure 3. Sliding boundaries. In each of the three figures there are three com-
petitors, including a shaded one with minimal area. Figure (a) depicts the classical
Plateau problem where the bounding set is a prescribed curve. The bounding set of
both Figures (b) and (c) is a 2-torus and boundaries of competing surfaces are not
constrained, apart from being contained in the torus. This permits elliptic prob-
lems with “sliding boundaries” to be solved. In (a) we chose a spanning test using
linking numbers. In (b) and (c) we chose a spanning test relative to one of the two
generators of 1-dimensional homology.

3. Recent work

In our most recent paper [HP16c], which has not yet been formally accepted, we provide general
methods in the calculus of variations for the anisotropic Plateau problem in arbitrary dimension
and codimension. Given a collection of competing “surfaces,” which span a given “bounding set” in
an ambient metric space, we produce one minimizing an elliptic area functional. The collection of
competing surfaces is assumed to satisfy a set of geometrically-defined axioms. These axioms hold
for collections defined using any combination of homological, cohomological or linking spanning
conditions. A variety of minimization problems can be solved, including sliding boundaries.

Our axioms are very simple: If our ambient space is a smooth manifold M and A Ă M is a fixed
bounding set, we assume that a collection C of compact rectifiable sets is closed under diffeomor-
phisms of M which keep A invariant and is also closed under rectifiable Hausdorff limits6. If f is an el-
liptic integrand, then there exists a minimizing solution in C with respect toX ÞÑ

ş

X
fpp, TpXqd|H

m.

6For technical reasons, we also assume that all sets are “reduced.” Roughly speaking, there are no points where the
local Hausdorff measure of a set is zero. In particular, there are no isolated points
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H. Pugh [HP16c] generalized elliptic integrands to “elliptic measures” which are sensitive to the germ
of a surface at a.e. point, not just the position and tangent direction. Interesting applications can
take into account external forces such as gravity and variable wind. This extension was due solely
to H. Pugh and is being developed by him in a separate new paper. This opens the door to solving
Plateau problems, both mass and size minimizing, to take into account general types of external
forces. This result has the potential for solving a number of problems in the physical sciences which
have never been touched before.
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