
OPENING CLOSED LEAVES OF FOLIATIONS
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Novikov proved that every Cl codimension one foliation of S3 has a closed leaf
([5, Theorems 6.1 and 7.1]). In higher codimension, the situation is quite different.
According to Schweitzer, if a manifold M has a C foliation of codimension q ^ 3
with 0 ^ r ^ oo, then it possesses a foliation with no closed leaves ([6, Theorem
D]). To get the same result in codimension q — 2, Schweitzer uses the celebrated
Denjoy CMoroidal flow containing a proper minimal set with no closed trajectories
(see [1]). Since that phenomenon cannot occur in a C2 flow on a surface (see [1]) his
methods give only C1 results when q = 2.

In [3] the author topologically embeds the Denjoy C1 vector field in a C2 vector
field defined on a punctured, thickened torus, N = (T2\D2) x / to obtain a C2 "flow
plug". Much as in Schweitzer, but with an alternate exposition, this flow plug can be
modified and used to open closed leaves of C2 foliations.

Let M be a C00 smooth, paracompact manifold without boundary of dimension
k ^ 3, and ^ a C r foliation of M. A leaf of $F is closed, if it is closed as a subset
of M.

THEOREM A. If there exists a C foliation ^0 of M of codimension two, r = 0, 1
or 2, then there exists such a foliation $FX with no closed leaves.

In order to prove Theorem A, we reduce the problem to the case where the closed
leaves of #"0 have a locally finite family of disjoint neighborhoods in M. To do this,
we use the following lemma and corollary.

LEMMA 1 (Fuller [2]). There exists a C°° non-singular vector field Xl defined on a
neighborhood of the closed unit cube P in IR3 satisfying

(i) X^p) = —d/dzfor p in a neighborhood of

(ii) Xx has exactly one periodic trajectory;

(iii) every trajectory of Xx starting in some open subset of the top face of J3 enters
Int (/3) and never exits.

Sketch proof. Let Yx be a vector field on the annulus A = S1 x / 1 such that
Sl x {|} is its only periodic trajectory. Let Y = Yl x 0 be the trivial product vector
field on the thickened annulus Ax I. Smoothly embed Ax I in Int(/3) so that
A x {t} c I2 x {%t}. Let Z = — d/dz and suitably average Y and Z to obtain X^
satisfying (i)-(iii).

Received 15 October, 1982.

Bull. London Math. Soc, 15 (1983), 218-220



OPENING CLOSED LEAVES OF FOLIATIONS 219

COROLLARY 1. There exists a C°° codimension two foliation ^ defined on a
neighborhood of the closed unit cube Ik in Uk (k > 3) satisfying

(i) near dlk, the first two coordinates of a leaf of ^ are constant;

(ii) $! has exactly one compact leaf;

(iii) there exists an open subset Wk ofdlk such that if a leaf L of^x meets Wk then
L n Ik is not closed.

Proof. We use the vector field Xx of Lemma 1 to construct a foliation with
corresponding properties. Let n = k — 2, let D" denote the unit disk in Uk~2 and let
D"o = Dn-{0). Let p : D" -» / be the Euclidean norm p(x) = ||x||. Then

Idxpo:I
2xDn

o-^ I2x ( 0 , 1 ]

is a submersion since pQ = p | Dn
Q is. Let Jf1 be the C2 foliation of / 3 by trajectories

of the vector field Xx. It follows from results of Wilson [7] that Jfx induces a C2

foliation {Id x po)~
x 3^x of I2 x Dn

0. Near / 2 x {0} the leaves have the same form as
x x DQ, x e I2 (see Lemma 2 (ii)) and thus the foliation extends uniquely to a C2

foliation 9\ of J 2 x D ° c /fc and then trivially to a C2 foliation ^ of /k.
The leaves of ^\ have the form (Id x p)~l(L) where L is a leaf of 2tfx. Thus the

desired properties (i)-(iii) of the leaves of <SX follow from the corresponding
properties of Xlt and therefore of J^x given by Lemma 1.

PROPOSITION 1 (Wilson). Every C {r ^ 0) codimension two foliation #"0 is
homotopic to a C foliation #"'o whose closed leaves have a locally finite family of
disjoint neighborhoods.

Proof Using elementary techniques as in [7] one can construct a locally finite
family {Ua} of disjoint foliation charts such that each leaf of ^ passes through some
open subset Va of dUa homeomorphic to R*"1.

Let ha: I
k -> Ua be a diffeomorphic embedding such that ha(Wk) contains Va. If

k > 3, use ha to pull over the foliation % of Corollary 1 onto Ua, for each a, to
obtain a new foliation ^'0.

Consider any leaf L of #"0. Since L n dUa is connected and the only changes are
made inside Ua, then L corresponds to a leaf L of ^'0 such that L = L outside U^a-
By construction L meets some Va cz ha( Wk). Hence L is not closed. Thus there is one
closed leaf inside each Ua and no others.

If k = 3, use ha to pull over Xx of Lemma 1. In this dimension L n dUa is not
connected, but part (iii) of Lemma 1 enables us to use the preceding argument.

The next step is to use the C2 "flow plug" of [3] to open the closed leaves of ^ ' 0 .

LEMMA 2. There exists a C2 non-singular vector field X defined on a
neighborhood of I3 in U3 satisfying

(i) X(p) = —d/dzfor p in a neighborhood o

(ii) X has no periodic trajectories;
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(iii) if an orbit of X enters at (x,y, 1) in the top face of I3 and exits I3 at
(x\ y', — 1) in the bottom face of I3, then x = x' and y = y';

(iv) at least one orbit enters I3 at (0,0,1), say, and never exits.

Proof See [3, §4].

We construct a similar "plug" for codimension two foliations with isolated closed
leaves.

COROLLARY 2. There exists a C2 codimension two foliation & defined on a
neighborhood of Ik in Uk (k > 3) satisfying

(i) near dlk the first two coordinates of a leaf of $ are constant;

(ii) $ has no compact leaves;

(iii) at least one leaf of & meeting dlk is not closed as a subset of Ik.

Proof. In the proof of Corollary 1, replace J ^ by jf , X1 by X, % by 0 and
Lemma 1 by Lemma 2.

Proof of Theorem A. Apply Proposition 1 to obtain SF'Q with only isolated
closed leaves. Recall the isolated closed leaves La c Ua of Proposition 1. Let Wa c Ua

be a flow box meeting La in its interior. If k > 3 apply Corollary 2 to give a new
foliation structure to Wa which "opens" La (see Corollary 2, parts (i) and (iii)) and
introduces no new closed leaves (part (ii)). If k = 3 use Lemma 2.
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