OPENING CLOSED LEAVES OF FOLIATIONS

J. C. HARRISON

Novikov proved that every C^1 codimension one foliation of S^3 has a closed leaf ([5, Theorems 6.1 and 7.1]). In higher codimension, the situation is quite different. According to Schweitzer, if a manifold M has a C^r foliation of codimension $q \ge 3$ with $0 \le r \le \infty$, then it possesses a foliation with no closed leaves ([6, Theorem D]). To get the same result in codimension q = 2, Schweitzer uses the celebrated Denjoy C^1 -toroidal flow containing a proper minimal set with no closed trajectories (see [1]). Since that phenomenon cannot occur in a C^2 flow on a surface (see [1]) his methods give only C^1 results when q = 2.

In [3] the author topologically embeds the Denjoy C^1 vector field in a C^2 vector field defined on a punctured, thickened torus, $N = (T^2 \ D^2) \times I$ to obtain a C^2 "flow plug". Much as in Schweitzer, but with an alternate exposition, this flow plug can be modified and used to open closed leaves of C^2 foliations.

Let M be a C^{∞} smooth, paracompact manifold without boundary of dimension $k \ge 3$, and \mathscr{F} a C' foliation of M. A leaf of \mathscr{F} is *closed*, if it is closed as a subset of M.

THEOREM A. If there exists a C' foliation \mathcal{F}_0 of M of codimension two, r = 0, 1 or 2, then there exists such a foliation \mathcal{F}_1 with no closed leaves.

In order to prove Theorem A, we reduce the problem to the case where the closed leaves of \mathscr{F}_0 have a locally finite family of disjoint neighborhoods in M. To do this, we use the following lemma and corollary.

LEMMA 1 (Fuller [2]). There exists a C^{∞} non-singular vector field X_1 defined on a neighborhood of the closed unit cube I^3 in \mathbb{R}^3 satisfying

- (i) $X_1(p) = -\partial/\partial z$ for p in a neighborhood of ∂I^3 ;
- (ii) X_1 has exactly one periodic trajectory;
- (iii) every trajectory of X_1 starting in some open subset of the top face of I^3 enters Int (I^3) and never exits.

Sketch proof. Let Y_1 be a vector field on the annulus $A = S^1 \times I^1$ such that $S^1 \times \{\frac{1}{2}\}$ is its only periodic trajectory. Let $Y = Y_1 \times 0$ be the trivial product vector field on the thickened annulus $A \times I$. Smoothly embed $A \times I$ in Int (I^3) so that $A \times \{t\} \subset I^2 \times \{\frac{1}{2}t\}$. Let $Z = -\partial/\partial z$ and suitably average Y and Z to obtain X_1 satisfying (i)-(iii).

Received 15 October, 1982.

COROLLARY 1. There exists a C^{∞} codimension two foliation \mathscr{G}_{i} defined on a neighborhood of the closed unit cube I^{k} in \mathbb{R}^{k} (k > 3) satisfying

- (i) near ∂I^k , the first two coordinates of a leaf of \mathscr{G}_1 are constant;
- (ii) \mathscr{G}_1 has exactly one compact leaf;
- (iii) there exists an open subset W_k of ∂I^k such that if a leaf L of \mathscr{G}_1 meets W_k then $L \cap I^k$ is not closed.

Proof. We use the vector field X_1 of Lemma 1 to construct a foliation with corresponding properties. Let n = k-2, let D^n denote the unit disk in \mathbb{R}^{k-2} and let $D_0^n = D^n - \{0\}$. Let $\rho: D^n \to I$ be the Euclidean norm $\rho(x) = ||x||$. Then

$$Id \times \rho_0 : I^2 \times D_0^n \to I^2 \times (0, 1]$$

is a submersion since $\rho_0 = \rho \mid D_0^n$ is. Let \mathscr{H}_1 be the C^2 foliation of I^3 by trajectories of the vector field X_1 . It follows from results of Wilson [7] that \mathscr{H}_1 induces a C^2 foliation $(Id \times \rho_0)^{-1} \mathscr{H}_1$ of $I^2 \times D_0^n$. Near $I^2 \times \{0\}$ the leaves have the same form as $x \times D_0^n, x \in I^2$ (see Lemma 2 (ii)) and thus the foliation extends uniquely to a C^2 foliation \mathscr{G}'_1 of $I^2 \times D^n \subset I^k$ and then trivially to a C^2 foliation \mathscr{G}_1 of I^k .

The leaves of \mathscr{G}'_1 have the form $(Id \times \rho)^{-1}(L)$ where L is a leaf of \mathscr{H}_1 . Thus the desired properties (i)-(iii) of the leaves of \mathscr{G}_1 follow from the corresponding properties of X_1 , and therefore of \mathscr{H}_1 given by Lemma 1.

PROPOSITION 1 (Wilson). Every C^r $(r \ge 0)$ codimension two foliation \mathcal{F}_0 is homotopic to a C^r foliation \mathcal{F}'_0 whose closed leaves have a locally finite family of disjoint neighborhoods.

Proof. Using elementary techniques as in [7] one can construct a locally finite family $\{U_{\alpha}\}$ of disjoint foliation charts such that each leaf of \mathscr{F}_0 passes through some open subset V_{α} of ∂U_{α} homeomorphic to \mathbb{R}^{k-1} .

Let $h_{\alpha}: I^k \to U_{\alpha}$ be a diffeomorphic embedding such that $h_{\alpha}(W_k)$ contains V_{α} . If k > 3, use h_{α} to pull over the foliation \mathscr{G}_1 of Corollary 1 onto U_{α} , for each α , to obtain a new foliation \mathscr{F}'_0 .

Consider any leaf L of \mathscr{F}_0 . Since $L \cap \partial \overline{U}_{\alpha}$ is connected and the only changes are made inside U_{α} , then L corresponds to a leaf L of \mathscr{F}'_0 such that L = L outside $\bigcup U_{\alpha}$. By construction L meets some $V_{\alpha} \subset h_{\alpha}(W_k)$. Hence L is not closed. Thus there is one closed leaf inside each U_{α} and no others.

If k = 3, use h_{α} to pull over X_1 of Lemma 1. In this dimension $L \cap \partial \overline{U}_{\alpha}$ is not connected, but part (iii) of Lemma 1 enables us to use the preceding argument.

The next step is to use the C^2 "flow plug" of [3] to open the closed leaves of \mathcal{F}'_0 .

LEMMA 2. There exists a C^2 non-singular vector field X defined on a neighborhood of I^3 in \mathbb{R}^3 satisfying

- (i) $X(p) = -\partial/\partial z$ for p in a neighborhood of ∂I^3 ;
- (ii) X has no periodic trajectories;

- (iii) if an orbit of X enters at (x, y, 1) in the top face of I^3 and exits I^3 at (x', y', -1) in the bottom face of I^3 , then x = x' and y = y';
- (iv) at least one orbit enters I^3 at (0, 0, 1), say, and never exits.

Proof. See [3, §4].

We construct a similar "plug" for codimension two foliations with isolated closed leaves.

COROLLARY 2. There exists a C^2 codimension two foliation \mathcal{G} defined on a neighborhood of I^k in \mathbb{R}^k (k > 3) satisfying

- (i) near ∂I^k the first two coordinates of a leaf of \mathscr{G} are constant;
- (ii) *G* has no compact leaves;
- (iii) at least one leaf of \mathscr{G} meeting ∂I^k is not closed as a subset of I^k .

Proof. In the proof of Corollary 1, replace \mathscr{H}_1 by \mathscr{H} , X_1 by X, \mathscr{G}_1 by \mathscr{G} and Lemma 1 by Lemma 2.

Proof of Theorem A. Apply Proposition 1 to obtain \mathscr{F}'_0 with only isolated closed leaves. Recall the isolated closed leaves $L_{\alpha} \subset U_{\alpha}$ of Proposition 1. Let $W_{\alpha} \subset U_{\alpha}$ be a flow box meeting L_{α} in its interior. If k > 3 apply Corollary 2 to give a new foliation structure to W_{α} which "opens" L_{α} (see Corollary 2, parts (i) and (iii)) and introduces no new closed leaves (part (ii)). If k = 3 use Lemma 2.

References

- 1. A. DENJOY, 'Sur les courbes définies par les équations différentielles à la surface du tore', J. Math. Pures Appl., 11 (1932), 333-375.
- 2. F. B. FULLER, 'Note on trajectories on a solid torus', Ann. of Math. (2), 59 (1952), 438-439.
- 3. J. HARRISON, 'A C²-counterexample to the Seifert conjecture', preprint, Center for Pure and Applied Mathematics, University of California, Berkeley.
- 4. J. MILNOR, 'Foliations and foliated vector bundles', Notes, Institute for Advanced Study, Princeton 1970.
- 5. S. P. NOVIKOV, 'Topology of foliations', Trans. Moscow Math. Soc., 14 (1965), 248-278. (Russian; Amer. Math. Soc. Transl. (1967), 268-304).
- 6. P. SCHWEITZER, 'Counterexamples to the Seifert conjecture and opening closed leaves of foliations', Ann. of Math., 100 (1971), 386-400.
- 7. F. W. WILSON, Jr., 'On the minimal sets of non-singular vector fields', Ann. of Math. (2), 84 (1966), 529-536.

Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, France. Present address: Mathematics Department, University of California, Berkeley CA. 94720, U.S.A.