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Abstract. By replacing the parametrization of a domain with polyhedral approximations we give
optimal extensions of theorems of Gauss, Green and Stokes’. Permitted domains of integration
range from smooth submanifolds to structures that may not be locally Euclidean and have no tangent
vectors defined anywhere. One may still calculate divergence and curl over a domain, and flux
across its boundary which itself may have no normal vectors defined anywhere.

Introduction

The real numbersR are a completion of the rationals via the Euclidean metric. Continuity
properties of real numbers, relative to the Euclidean metric, are at the heart of a real analysis.
Similarly, one may consider the vector space ofp-dimensional simplicial chains

∑k
i=1 aiσi in

Rn and their completion w.r.t. a norm†. The Banach space obtained on completion has limit
points that can be written as conditionally convergent series of simplicial chains,

A =
∞∑
i=1

aiσi

calledchainlets. In [H2] the author defined a family of norms giving geometric meaning to
these infinite series of weighted simplexes and thus to chainlets. (See section 1, below.)

The integral of a smooth formω over a chainlet
∑∞

i=1 aiσi is defined using term-by-term
integration ∫

∑∞
i=1 aiσi

ω =
∞∑
i=1

∫
aiσi

ω.

Examples of chainlets include smooth submanifolds, fractals, vector fields, Dirac delta masses,
Cantor sets, and stable manifolds and the theory shows how they all fit together continuously
into Banach spaces. Some examples are further described in sections 2 and 3. The author [H4]
has shown that a large subspace of distributions and currents corresponds to chainlets. This
not only provides a large source of examples, but can be used to show that a number of
generalizations of classical results are optimal. While distributions and currents are defined
abstractly as linear functionals on functions and differential forms, respectively, we emphasize
that chainlets have concrete geometric definition.

† One may also work with ambient spaces of Riemannian manifolds. (See [H5].)
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The classical theory of differential manifolds relies heavily on results of linear algebra of
tangent spaces. Much of the work involves taking partitions of unity or checking coherence in
the overlap maps. These techniques are not necessary or even valid for the theory of chainlets
which are not assumed to be locally Euclidean and thus may have no tangent spaces. Instead,
one replaces linear algebra on tangent spaces with analysis on simplexes. Parametrization is
replaced with simplicial approximation. Partitions of unity are replaced with algebraic sums
of chains. The unit normal bundle of a smooth submanifoldB is replaced with∗B, the chainlet
that is the geometric Hodge * ofB. (See section 3.) Because of the continuity of fundamental
operators, results such as Gauss/Green/Stokes’ theorems for simplexes carry immediately over
to chainlets. Other important results of calculus, algebraic topology, differential topology, and
measure theory extend to chainlets providing a common language for these theories.

The methods of this paper are distinct from those of geometric measure theory (GMT).
In GMT, one begins with spaces of differential forms and defines currents abstractly as dual
operators on forms. Inspired by the approach of Whitney [W] in his book Geometric Integration
Theory, we start with spaces of domains defined geometrically—chainlets—and in [H3] prove
that linear operators on them correspond uniquely to differential forms. In [H4] we complete
the picture by finding topologies on forms so that the resulting currents correspond uniquely to
chainlets. This leads to geometric methods for the study of distributions and currents as well
as many new examples. Our Gauss–Green theorems are more general than those proved by
Federer and de Giorgi [F, deG]. They worked with boundaries ofn-dimensional domains inRn
that are rectifiable and used the fact that rectifiable boundaries have measure-theoretic normals
defined almost everywhere. The domains of our extension may have unrectifiable boundaries
and may be of any codimension. Examples include compact surfaces with infinitely long
boundaries in three-space Our results also go beyond those of [H-N] where, again, the domains
are top dimensional and there is no geometric Hodge star operator.

1. Dipoles and norms

An orientedp-simplexin Rn is the oriented convex hull ofp + 1 points inRn. We assume
all simplexes are oriented henceforth. Asimplicial chainin Rn is a formal sum of simplexes
in Rn with real coefficients. We may assume that integration of smooth forms is defined over
simplexes and thus over simplicial chains, and that Stokes’ theorem is valid for simplicial
chains

∫
∂S
ω = ∫

S
dω. The mass of a simplicial chain

∑
i aiσi is simply the weighted sum

of masses of the simplexes|S|0 =
∑

i |ai |m(σi) wherem denotesp-dimensional Lebesgue
measure. Ifv ∈ Rn is a vector let|v| denotes its length. Ifσ is ap-simplex inRn andv ∈ Rn,
defineTvσ as the translate ofσ by v. Its orientation is naturally induced from the orientation
given onσ .

The mass of simplicial chains does not naturally measure geometric continuity. For
example, the simplicial chainσ −Ttvσ has mass that is twice the mass ofσ unlesst = 0. This
problem is partially circumvented with polyhedral chains.

Polyhedral chainsare equivalence classes of simplicial chains satisfying

S ∼ T ⇐⇒
∫
S

ω =
∫
T

ω

for all smoothω. WriteA = [S] and define
∫
A
ω = ∫

S
ω. For example,−σ is identified with

the same simplex asσ but with the opposite orientation. This definition takes into account
overlapping simplexes with the opposite sign. The region of overlap is cancelled. Polyhedral
chains have naturally defined mass

|A|0 = inf {|S|0 : A = [S]}.
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Figure 1. A simple two-dipole, or quadrupole.

The mass of ann-dimensional polyhedral chainA = [σ −Ttvσ ] in Rn is a continuous function
of t . Because of the cancellation of overlapping oppositely oriented simplexes, the mass tends
to zero ast → 0.

Unfortunately, mass alone is not enough to conclude that a chain and its nearby translate
are close to each other. Consider a two-simplexσ in R3 andv a vector not in the plane ofσ .
Thenσ andTtvσ are disjoint ift 6= 0. The mass of [σ − Ttvσ ] is again exactly twice the mass
of σ , until t = 0, at which point the mass becomes 0. We need finer norms than mass to be
sensitive to geometric continuity.

Dipoles. A simplep-dimensional zero-dipolein Rn is defined to be ap-simplexσ 0 with
diameter6 1. A simplep-dimensional one-dipoleis ap-chain of the form

σ 1 = σ 0 − Tv1σ
0

where|v1| 6 1 andσ 0 is disjoint fromTv1σ
0. We inductively define simplej -dipoles. Given

a vectorvj with |vj | 6 1 and a simple(j − 1)-dipoleσ j−1 disjoint fromTvj σ
j−1, define the

simplep-dimensionalj -dipoleσ j as the simplicialp-chain

σ j = σ j−1− Tvj σ j−1.

Thusσ j is generated by vectorsv1, . . . , vj , each with norm6 1, and a simplexσ 0, where all
translations ofσ 0 through the vectorsvi are disjoint. (See figure 1.)

A j -dipole inRn, is a simplicial chain of simplej -dipoles,Dj = [
∑k

i=1 aiσ
j

i ] with real
coefficientsai .

Dipole mass. Given a simplej -dipoleσ j , generated by a simplexσ 0 and constant vector
fieldsv1, . . . , vj , with |vi | 6 |vj | 6 1, 16 i 6 j , define itsj -dipole mass

‖σ j‖j = |σ 0|0|v1| . . . |vj |.
For example, supposeσ 1 is a one-dimensional one-dipole, forming the oppositely oriented
sides of a parallelogram. If each of these sides has lengthε and each of the other sides has
lengthδ then the dipole mass‖σ 1‖1 = εδ, regardless of the angle formed by the parallelogram.
Even if the parallelogram is degenerate, the dipole mass is the same.

For j -dipolesDj =∑k
i=1 aiσ

j

i definej -dipole massas

‖Dj‖j =
k∑
i=1

|ai |‖σ ji ‖j .
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r-norms. LetA be a polyhedral chain inRn andr ∈ Z, r > 1. Define

|A|r = inf

{ r∑
s=0

‖Ds‖s + |C|r−1

}
(1)

where the infimum is taken over all dipole decompositions

A =
r∑
s=0

[Ds ] + ∂C.

These norms in this form were introduced in [H3], although earlier versions appeared
in [H1]. We denote the Banach space ofp-dimensional polyhedral chains completed with the
r-norm byArp.

Lemma 1.1. If A is polyhedral,|A|s 6 |A|r for all r 6 s.

Proof. This follows directly from the definitions of the norms. �

In [H6] the author shows that thes-norm of a chainlet inArp is well-defined by taking
suitable limits of polyhedral chains and lower semi-continuous. This implies that the Banach
spacesArp are nested and become larger and larger, including more and more strange and
pathological elements asr increases. For example, we see in section 2 that the Dirac delta
function is represented by a chainlet inA1

1, its rth derivative (in the sense of distributions) by
a chainlet inAr+1

1 .

For r ∈ Z+, let Br,Lipp denote the real linear space ofp-forms inRn with bounded norm
‖ω‖Cr,Lip . That is, ther derivatives of each component function ofω exist, have uniformly
bounded sup norm and satisfy a uniform Lipschitz condition.

The norms defined here have fractional counterparts [H2, H6] that lead to a definition of a
fractal dimension which is more naturally tied to classical theorems of calculus than are other
definitions of dimension.

Integration over chainlets

Theorem 1.2.For A a polyhedralp-chain inRn andω ∈ Br−1,Lip
p then∣∣∣∣∫

A

ω

∣∣∣∣ 6 ‖ω‖Cr−1,Lip |A|r .

This is proved in [H5]. (See also [H2].)
The integral of a formω ∈ Br−1,Lip

p over a chainlet inA ∈ Arp is defined by taking limits.
If Ak → A are polyhedral chains inRn converging toA in ther-norm, define∫

A

ω = lim
k→∞

∫
Ak

ω.

This is well defined because of theorem 1.2. This is equivalent† to the alternative definition
given in the introduction. IfA =∑∞i=1 aiσi then∫

A

ω =
∞∑
i=1

∫
aiσi

ω.

† It is worth noting that if an infinite series is conditionally convergent w.r.t. a given norm then the sequence of partial
sums converges w.r.t. the norm. Conversely, ifxn → x is a sequence converging w.r.t. a norm, then the infinite series
x0 +

∑∞
k=1 xk − xk−1 conditionally converges w.r.t. the norm.
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Another consequence of theorem 1.2 is that| |r is a norm. SupposeA 6= 0 is a polyhedral
chain. Then there exists an∞-smooth formω such that

∫
A
ω 6= 0. Thus

0<

∣∣∣∣∫
A

ω

∣∣∣∣ 6 (p + 1)‖ω‖Cr−1,Lip |A|r .

Hence|A|r 6= 0. The other properties of a norm are immediate.

2. Examples

We have chosen four far-ranging examples to illustrate chainlets.

Support of a chainlet. Thesupportof a polyhedral chainA is a closed setspt (A) defined as
follows: x ∈ Rn\spt (A) iff there exists a neighbourhoodU of x in Rn such that ifω is any
smooth form supported inU then

∫
A
ω = 0. Thesupportspt (A) of a chainletA ∈ Arp is the

set of pointsq ∈ Rn such that for everyε > 0 there exists a differential formω ∈ Br such that∫
A
ω 6= 0 andω(p) = 0 outsideBε(q), the ball of radiusε aboutq.

It is important to keep in mind that there is much more to a chainlet than the subset of
Rn that forms its support. We will see that there may be many chainlets supported in a given
set. For a trivial example, consider a positively oriented two simplexσ in R2. The chains
λσ, λ ∈ R, are distinct chains, with the same support. A more interesting example is the
solenoid, seen below, which naturally supports quite different chainlets.

1. Van Koch snowflake.One may write the snowflake arcS as a sum of simplicial chains∑∞
k=0 Sk where fork > 1, Sk is the sum of 4k boundaries of trianglesσk each of side

length 3−k.We show this series converges w.r.t. to the one-norm. The partial sums satisfy
Sk + · · · + Sj = ∂(σk + · · · + σj ). Thus

|Sk + · · · + Sj |1 6 |σk|0 + · · · + |σj |0 < 4k/32k.

Since the rhs tends to 0 ask, j →∞, we know the infinite sumS is a well-defined chainlet.
We conclude that the snowflake is a current and we may integrate Lipschitz differential
forms over it. (See figure 2.)

2. Dirac delta function and its derivatives.We work in dimension one for simplicity of
notation, but the construction can be extended to any dimension. Fixp ∈ R1. For each
k > 0, letQk be a positively oriented interval with length 2−k and centred atp. We
claim that the sequence of polyhedral chainsDk = 2kQk converges w.r.t. the one-norm.
Notice that the mass of each chain is one. It suffices to estimate|Dk −Dk+1|1 We show
the differenceDk −Dk+1 is a one-dimensional one-dipole, a sum of four weighted simple
dipoles. DivideDk into two intervalsQk with disjoint interiors, of length 2−(k+1) and
weighted by 2k. NowDk+1 can also be written as the sum of two intervalsPk of length
2−(k+1) and weight 2k, but the line segments are identical to each other. Since the distance
between the line segments ofPk and those ofQk is less than 2−k we deduce

|Dk −Dk+1|1 6 22−k2k2−(k+1) = 2−k.

We conclude that the sequenceDk is Cauchy in the one-norm and its limitD has support
p. The limit is canonically associated to the Dirac delta functions. SinceD ∈ A1

1, we
may integrate smooth one-formsφ dx over it. Hence∫

D

φ dx = lim
k→∞

∫
Dk

φ dx = φ(p) = δ(φ).
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Figure 2. The snowflake as a sum of simplexes

The derivative of the Dirac delta function can also be realized geometrically, but as
a chainletB ∈ A2

1. One considers the quadrupoles (or two-dipoles) formed by small
oppositely oriented intervals centred at the endpoints of theDk. It is left as an exercise to
show that these two-dipoles limit to a chainletB and

∫
B
φ dx = δ′(φ).

3. Toral solenoid. Let T be the two-torus inR3 andf : T → T a smooth hyperbolic
mapping that contracts the torus in one direction, expands it in the other and then wraps
the torus around inside itself twice. The solenoid is defined as the intersection

⋂∞
n=1 f

nT .

It is a set of points that supports many chainlets. For example, letQ be the solid torus
positively oriented andA0 = Q/|Q|0. Fork > 0, letAk+1 = f (Ak)/|f (Ak)|0. Since the
mass stays constant, the analysis here is similar to that for the Dirac delta function and one
can use dipoles to show thatAk converges to a nonzero chainlet inA1

3 with support the
solenoid. One can also find chainlets inA1

1 with support the solenoid as follows. LetB0

be the oriented core circle in the torus which is not null homotopic. Fork > 0, letBk+1 =
f (Bk)/|f (Bk)|0.ThenBk forms a Cauchy sequence inA1

1 and thus converges to a chainlet
B ∈ A1

p. It is also possible to find chainlets inA1
0 with support the solenoid by choosing

a countable dense subset and forming a Dirac mass at each of these points so that their
total mass is finite. In the next section we find a chainlet inA1

2 with support the solenoid.

4. Graphs ofL1 functions. The graph0 of a non-negativeL1 function over an interval [a, b]
supports a chainlet. One merely approximates0 with graphs of monotone increasing
step functions0n. These0n are naturally oriented to form simplicial chains and these
form a Cauchy sequence in the one-norm. The difference0n −0n+1 is a dipole and so its
one-norm is bounded above by the area between the two graphs0n and0m. Thus{0n}
forms a Cauchy sequence in the one-norm, converging to a chainlet0 whose support is
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Figure 3. Toral solenoid.

in the graph off . One can think of0 as thex-component of the graph off .

3. Div, grad, and curl for fractals

Banach spaces of chainlets have standard operators defined on them. In this paper we consider
the boundary, pushforward, and geometric Hodge * operators. Each is first defined for
simplexes and extended to simplicial chains by linearity. Differential forms are used to prove
the operators are well defined on polyhedral chains. Finally, the operators are proved to be
continuous w.r.t. the norms, showing that they are defined on chainlets. In practice, most of
the work comes in establishing the first and last steps. For each operator there is a duality
theorem relating chainlets to differential forms. We demonstrate this method of proof for the
boundary operator.

3.1. Boundary operator

The boundary of a simplicial chain is defined in the standard way. IfS ∼ T are simplicial
chains we apply Stokes’ theorem for simplicial chains to deduce∫

∂S

ω =
∫
S

dω =
∫
T

dω =
∫
∂T

ω.

Hence∂S ∼ ∂T , implying that the boundary operator is well defined on polyhedral chains.
The boundary operator on polyhedral chains is bounded w.r.t. ther-norms.

Lemma 3.1.

|∂A|r+1 6 |A|r .

Proof. This follows immediately from the definition of ther-norms. �
We may thus define the boundary∂A of a chainletA ∈ Arp. In particular, theboundary
operator

∂ : Arp −→ Ar+1
p−1

is defined forr > 0. It restricts to the usual boundary operator on polyhedral chains and
satisfies Stokes’ theorem. The boundary operator is dual to the exterior derivative of forms,
leading to Stokes’ theorem for chainlets.

Theorem 3.2 (Generalized Stokes’ theorem).Let r > 0. If A ∈ Arp andω is a differential
(p − 1)-form of classBr+1 then∫

A

dω =
∫
∂A

ω.
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Proof. By Stokes’ theorem for simplexes, continuity of the boundary operator and of the
integral, ∫

A
dω = ∫∑∞

i=1 aiσi
dω =∑∞i=1 ai

∫
σi

dω =∑∞i=1 ai
∫
∂σi
ω

= ∫∑∞
i=1 ai∂σi

ω

= ∫
∂
∑∞

i=1 aiσi
ω

= ∫
∂A
ω.

�

In [H4] it is shown that this generalization of Stokes’ theorem is optimal for integrands
of smooth forms. That is, all possible domainsD of integration arise as chainlets satisfying
continuity: if ‖ωk‖cr → 0 then

∫
D
ωk → 0. For one-dimensional chainsA Stokes’ theorem

implies that the fundamental theorem of calculus is valid for all one-dimensional chainlets,
e.g., fractal arcs. Here,ω is taken to be a functionf and df is its gradient. For arcsA with
endpointsp andq, this is usually written

∫ q
p
f (x) dx = ∫

A
df.

3.2. Pushforward operator

If f is a mapping of classBr+1, r > 0, one can define the pushforward operator or change
of variables operatorf∗ : Arp → Arp. The pushforward operator on chainlets is dual to the
pullback operator on forms leading to achange of variablestheorem for chainlets.

Theorem 3.3.Let r > 0. If A ∈ Arp, ω ∈ Br andf ∈ Br+1 then∫
f∗A

ω =
∫
A

f ]ω.

(See [H2] for more details.)
Several new operators are defined on chainlets. The main one we discuss here is the

geometric Hodge * operator∗. This, along with the generalized Stokes’ theorem, leads to
optimal Green and Gauss theorems for chainlets. Combinations and modifications of the
operators∂ and ∗ leads to geometric Laplace operators, Dirac operators, and coboundary
operators on chainlets.

3.3. Geometric Hodge star operator

∗ : Arp −→ Arn−p is defined in [H5] forr > 0. To give the idea, figure 3.2 illustrates
a polyhedral approximation to∗R whereR is the oriented rectangle depicted inR3. ∗R is
found by taking a limit in the one-norm of similar sums of tiny equally spaced one-simplexes,
orthogonal toR and whose total length for each sum is the same as the area ofR. Even in
this simplest example of a rectangle∗R is not locally Euclidean, showing that fractal-like
structures are naturally associated to smooth ones. (See figure 4.)

Theorem 3.4 (Hodge star theorem).If A ∈ Arp, andω ∈ Br then∫
A

∗ω =
∫
∗A
ω.

For the proof, see [H5]. Using a combinatorial definition, others have defined a local dual
to the Hodge star operator, but the integral equation of theorem 3.4 does not hold.

The boundary and geometric Hodge star operators lead to generalized Green and Gauss
theorems. LetS be a smooth, oriented surface with boundary inR3. The usual way to integrate
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Figure 4. A polyhedral approximation to∗R

the curl of a vector fieldX overS is to integrate the dot product of curlX with the unit normal
vector field toS. According to Green’s theorem, this quantity equals the integral ofX over∂S.
We have already seen that we do not require the existence of tangents to∂S to calculate the
integral ofX over it. By working with the differential one-formω associated toX via Euclidean
coordinates and the geometric Hodge * operator∗, we no longer require the existence of any
unit normals toS to integrate curlX overA. Instead we use the geometric Hodge star operator
applied toA, which is always defined ifA is a chainlet. Ifω is the differential one-form
representing the vector fieldX it is well known that∗ dω represents curlX. We see now that∫

∗S
∗ dω represents the integral of the curlX overS.

Theorem 3.5 (Fractal Green’s theorem).If S is an chainlet inArp andω ∈ Br+1 then∫
∂S

ω =
∫
∗S
∗ dω.

Proof. By theorems 3.2 and 3.4
∫
∂S
ω = ∫

S
dω = ∫∗S ∗ dω. �

For smooth surfaces with smooth boundary, we have
∫
∂S
X · nds = ∫

∂S
ω. Since∗dω

corresponds to curlX. It follows that
∫
∗S ∗ dω = ∫

S
curlX · ndA. Therefore, the preceding

theorem generalizes and simplifies Green’s theorem:
∫
S

curlX · ndA = ∫
∂S
X · nds.

If A is a chainlet then∗∂A plays the role of a normal vector field on its boundary, even
though the boundary ofA may have no normal vectors defined. Thus one may calculate flux
across fractal boundaries and obtain a fractal divergence theorem.

The usual way to calculate the flux of a vector fieldX across a boundary of a smooth
solid regionD in space is to integrate the dot product ofX with the unit normal vector field
to ∂D over the domain∂D. According to Gauss’ divergence theorem, this quantity equals the
integral of the divergence ofX overD. By working with the differential formω associated



5326 J Harrison

Figure 5. Polyhedral approximation to the coboundary of a line segment.

toX via Euclidean coordinates and the operator∗, we no longer require the existence of any
unit normals to∂D to calculate the flux ofX across∂D. We see that∫

∗∂D
ω represents the flux ofX across∂D.

Theorem 3.6 (Fractal divergence theorem).If D is a chainlet inArp andω is of classBr+1

then ∫
∗∂D

ω =
∫
D

d ∗ ω.

Proof.
∫
∗∂D ω =

∫
∂D
∗ω = ∫

D
d ∗ ω. �

For smooth surfaces, we have
∫
S
X ·ndA = ∫∗S ω. It is well known that d∗ω corresponds

to divX. Therefore, the preceding theorem generalizes and simplifies the divergence theorem
of Gauss:

∫
∂D
X · ndA = ∫

D
divXdV.

Some authors have defined the integral over fractal boundaries using the integral of the
derived form over the interior, i.e., using the generalized Stokes’ theorem, as the definition.
Instead, the integrals in the preceding five theorems are defined independently and are shown
to satisfy the generalized Stoke’s theorem.

3.4. Examples revisited

1. Van Koch snowflake. One may calculate flux of a vector fieldF across the snowflakeS
as
∫
∗S ω whereω is the one-form determined byF using the Euclidean inner product.

2. Dirac delta function and its derivatives. Distributions and their derivatives can be realized
more systematically using the operator∗ defined in section 3 below. We say a distribution
c is associatedto a chainletA if c(φ) = ∫

A
φ dx for all test functionsφ. In [H5] it is

shown that ifc is a distribution associated to the chainletA thenc′ is associated to∗∂A.
3. Toral solenoid. Recall the chainletB in A1

1 found by iterating the core circle via the
mappingf . supported in the solenoid. A two-chainlet inA1

2 can be found by applying
the∗ operator toB. In some real sense, this∗B acts as a normal bundle toB.

4. Graph of anL1 function. One may calculate flux of a vector fieldF across thex-component
of the graph0 of a non-negativeL1 function as

∫
∗0 ω where, again,ω is the one-form

determined byF . We give an important example. LetF = ye2 where{e1, e2} is the
Euclidean basis ofR2. Thenω = ydy corresponds toF . Applying Stokes’ theorem we
calculate the flux ofF across0 to be∫

∗0
y dy = −

∫
0

y dx =
∫
S

dx dy =
∫ 1

0
f (x) dx.

Here,S denotes the subgraph off . This links Lebesgue theory to chainlets.
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Geometric Laplace operator. The geometric Hodge * operator∗ leads immediately to
definitions of the geometric coboundary operatorδ on chainlets, defined asδ = (−1)n(p+1)+1∗
∂∗ (see figure 3), and the geometric Laplace operator1 = δ∂+∂δ. If A ∈ Arp, thenδA ∈ Ar+1

p+1

and1A ∈ Ar+2
p .

It follows readily from theorems 3.4 and 3.2 that forω ∈ Br+1 andA ∈ Arp∫
A

δω =
∫
δA

ω

and forω ∈ Br+2 then∫
A

1ω =
∫
1A

ω.
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