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Abstract. By replacing the parametrization of a domain with polyhedral approximations we give
optimal extensions of theorems of Gauss, Green and Stokes’. Permitted domains of integration
range from smooth submanifolds to structures that may not be locally Euclidean and have no tangent
vectors defined anywhere. One may still calculate divergence and curl over a domain, and flux
across its boundary which itself may have no normal vectors defined anywhere.

Introduction

The real number® are a completion of the rationals via the Euclidean metric. Continuity
properties of real numbers, relative to the Euclidean metric, are at the heart of a real analysis.
Similarly, one may consider the vector spacgealimensional simplicial chainEle a;o; in

R" and their completion w.r.t. a normt. The Banach space obtained on completion has limit
points that can be written as conditionally convergent series of simplicial chains,

00
A= E a;o;
i=1

calledchainlets In [H2] the author defined a family of norms giving geometric meaning to
these infinite series of weighted simplexes and thus to chainlets. (See section 1, below.)
The integral of a smooth form over a chainle} ;" ; g;0; is defined using term-by-term

integration
o0
[ o=X] o
Z?ila,’o',‘ i—1 Jaio;

Examples of chainlets include smooth submanifolds, fractals, vector fields, Dirac delta masses,
Cantor sets, and stable manifolds and the theory shows how they all fit together continuously
into Banach spaces. Some examples are further described in sections 2 and 3. The author [H4]
has shown that a large subspace of distributions and currents corresponds to chainlets. This
not only provides a large source of examples, but can be used to show that a number of
generalizations of classical results are optimal. While distributions and currents are defined
abstractly as linear functionals on functions and differential forms, respectively, we emphasize
that chainlets have concrete geometric definition.

Tt One may also work with ambient spaces of Riemannian manifolds. (See [H5].)
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The classical theory of differential manifolds relies heavily on results of linear algebra of
tangent spaces. Much of the work involves taking partitions of unity or checking coherence in
the overlap maps. These techniques are not necessary or even valid for the theory of chainlets
which are not assumed to be locally Euclidean and thus may have no tangent spaces. Instead,
one replaces linear algebra on tangent spaces with analysis on simplexes. Parametrization is
replaced with simplicial approximation. Partitions of unity are replaced with algebraic sums
of chains. The unit normal bundle of a smooth submanifld replaced with: B, the chainlet
that is the geometric Hodge * df. (See section 3.) Because of the continuity of fundamental
operators, results such as Gauss/Green/Stokes’ theorems for simplexes carry immediately over
to chainlets. Other important results of calculus, algebraic topology, differential topology, and
measure theory extend to chainlets providing a common language for these theories.

The methods of this paper are distinct from those of geometric measure theory (GMT).
In GMT, one begins with spaces of differential forms and defines currents abstractly as dual
operators onforms. Inspired by the approach of Whitney [W]in his book Geometric Integration
Theory, we start with spaces of domains defined geometrically—chainlets—and in [H3] prove
that linear operators on them correspond uniquely to differential forms. In [H4] we complete
the picture by finding topologies on forms so that the resulting currents correspond uniquely to
chainlets. This leads to geometric methods for the study of distributions and currents as well
as many new examples. Our Gauss—Green theorems are more general than those proved by
Federer and de Giorgi [F, deG]. They worked with boundariesdimensional domains iR”
that are rectifiable and used the fact that rectifiable boundaries have measure-theoretic normals
defined almost everywhere. The domains of our extension may have unrectifiable boundaries
and may be of any codimension. Examples include compact surfaces with infinitely long
boundaries in three-space Our results also go beyond those of [H-N] where, again, the domains
are top dimensional and there is no geometric Hodge star operator.

1. Dipoles and norms

An oriented p-simplexin R" is the oriented convex hull gf + 1 points inR"”. We assume

all simplexes are oriented henceforth.sinplicial chainin R” is a formal sum of simplexes

in R" with real coefficients. We may assume that integration of smooth forms is defined over
simplexes and thus over simplicial chains, and that Stokes’ theorem is valid for simplicial
chainsf,;w = [, dw. The mass of a simplicial chaix', a;0; is simply the weighted sum

of masses of the simplexéS|o = ), |a;|m(o;) wherem denotesp-dimensional Lebesgue
measure. Ib € R" is a vector letv| denotes its length. B is ap-simplex inR” andv € R”,
defineT,o as the translate ef by v. Its orientation is naturally induced from the orientation
given ono.

The mass of simplicial chains does not naturally measure geometric continuity. For
example, the simplicial chain — 7;,0 has mass that is twice the massrafinless = 0. This
problem is partially circumvented with polyhedral chains.

Polyhedral chainsre equivalence classes of simplicial chains satisfying

SNT(:}/w:/a)
s T

for all smoothw. Write A = [S] and definef, w = [, w. For example;-o is identified with

the same simplex as but with the opposite orientation. This definition takes into account
overlapping simplexes with the opposite sign. The region of overlap is cancelled. Polyhedral
chains have naturally defined mass

|Alo = inf{ISlo : A = [S]}.
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Figure 1. A simple two-dipole, or quadrupole.

The mass of an-dimensional polyhedral chaith = [0 — T;,0] in R" is a continuous function
of t. Because of the cancellation of overlapping oppositely oriented simplexes, the mass tends
tozeroas — 0.

Unfortunately, mass alone is not enough to conclude that a chain and its nearby translate
are close to each other. Consider a two-simplér R andv a vector not in the plane of.
Theno andT;,o are disjoint ift # 0. The mass ofd — T;,0] is again exactly twice the mass
of o, until t = 0, at which point the mass becomes 0. We need finer norms than mass to be
sensitive to geometric continuity.

Dipoles. A simple p-dimensional zero-dipolen R is defined to be @-simplexo® with
diameter< 1. A simplep-dimensional one-dipolis a p-chain of the form

ol=00— Tvlao

where|v;| < 1 ando? is disjoint fromT,,,°. We inductively define simplg-dipoles. Given
a vectorv; with |v;| < 1 and a simpléj — 1)-dipolec/~* disjoint from 7,0/ 1, define the
simplep-dimensionalj-dipoles/ as the simpliciap-chain

ol =gl = Tvlaffl.

Thuso/ is generated by vectos, ..., v;, each with norm< 1, and a simplex®, where all
translations of° through the vectors; are disjoint. (See figure 1.) A

A j-dipole inR", is a simplicial chain of simplg-dipoles,D’/ = [Zf:l a;o]] with real
coefficients; .

Dipole mass. Given a simplej-dipole o/, generated by a simplex? and constant vector
fieldsvy, ..., v, with Jv;| < |v;| < 1, 1< i < j, define itsj-dipole mass

j 0
lo’ll; = lo"lolval . ... [vjl.

For example, suppose! is a one-dimensional one-dipole, forming the oppositely oriented
sides of a parallelogram. If each of these sides has lengtid each of the other sides has
lengths then the dipole magsr!||1 = £8, regardless of the angle formed by the parallelogram.
Even if the parallelogram is degenerate, the dipole mass is the same.

For j-dipolesD/ = Y°*_, 4,0/ definej-dipole massas

k
ID711; =" lailllo] Il
i=1
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r-norms. Let A be a polyhedral chain iR” andr € Z, r > 1. Define

|Al, = inf { > IDe|+ |C|,.1} ()

s=0

where the infimum is taken over all dipole decompositions
A=) [D]+dC.
s=0

These norms in this form were introduced in [H3], although earlier versions appeared
in [H1]. We denote the Banach spacepstiimensional polyhedral chains completed with the
r-norm by A7,.

Lemma 1.1.If A is polyhedral,|A|; < |A|, forall r <.

Proof. This follows directly from the definitions of the norms. |

In [HE] the author shows that thenorm of a chainlet ind, is well-defined by taking
suitable limits of polyhedral chains and lower semi-continuous. This implies that the Banach
spacesd’ are nested and become larger and larger, including more and more strange and
pathological elements asincreases. For example, we see in section 2 that the Dirac delta
function is represented by a chainletdd, its rth derivative (in the sense of distributions) by
a chainlet in4;*.

Forr € Z*, let Bf,’“” denote the real linear space pfforms inR”* with bounded norm
lwllcreir. That is, ther derivatives of each component functionofexist, have uniformly
bounded sup norm and satisfy a uniform Lipschitz condition.

The norms defined here have fractional counterparts [H2, H6] that lead to a definition of a
fractal dimension which is more naturally tied to classical theorems of calculus than are other
definitions of dimension.

Integration over chainlets

Theorem 1.2.For A a polyhedralp-chain inR” andw € B, *"” then

/a)‘ < wller-1ein| Al
A

This is proved in [H5]. (See also [H2].)
The integral of a formw ¢ B;,_l'“p over a chainletim e A’ is defined by taking limits.
If Ay — A are polyhedral chains iR" converging taA in ther-norm, define

/ w= lim .

A k—o00 Ay

This is well defined because of theorem 1.2. This is equivalentt to the alternative definition
given in the introduction. 1A = Y2, a;0; then

o0
[o=3] o
A i=1 Jao;

T Itis worth noting that if an infinite series is conditionally convergent w.r.t. a given norm then the sequence of partial
sums converges w.r.t. the norm. Conversely,if> x is a sequence converging w.r.t. a norm, then the infinite series
xo+ Z,fil x; — xr—1 conditionally converges w.r.t. the norm.
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Another consequence of theorem 1.2 is thal, isanorm. Supposé # Ois a polyhedral
chain. Then there exists an-smooth formw such that/, » # 0. Thus

K

Hence|A|, # 0. The other properties of a norm are immediate.

0< < (p+ Dllwlcrrer| Al

2. Examples

We have chosen four far-ranging examples to illustrate chainlets.

Support of a chainlet. Thesupportof a polyhedral chai is a closed setpt (A) defined as
follows: x € R"\spt(A) iff there exists a neighbourhodd of x in R” such that ifw is any
smooth form supported ity then [, » = 0. Thesupportspz(A) of a chainletA € Al is the
set of pointg; € R” such that for every > 0 there exists a differential form € B” such that
[, @ # 0 andw(p) = 0 outsideB, (¢), the ball of radiug abouty.

It is important to keep in mind that there is much more to a chainlet than the subset of

R”" that forms its support. We will see that there may be many chainlets supported in a given

set. For a trivial example, consider a positively oriented two simpléx R2. The chains
1o, A € R, are distinct chains, with the same support. A more interesting example is the
solenoid, seen below, which naturally supports quite different chainlets.

1. Van Koch snowflakeOne may write the snowflake aftas a sum of simplicial chains
Y oo Sk Where fork > 1, Sy is the sum of 4 boundaries of triangles, each of side
length 3. We show this series converges w.r.t. to the one-norm. The partial sums satisfy
Sk+"'+Sj 23(0k+-~-+0j).ThUS

k a2k
[Sk+---+Sjl1 <loklo+ - +]ojlo < 47/37.

Sincetherhstendsto0&ks; — oo, we know the infinite sunf is a well-defined chainlet.
We conclude that the snowflake is a current and we may integrate Lipschitz differential
forms over it. (See figure 2.)

2. Dirac delta function and its derivativesWe work in dimension one for simplicity of
notation, but the construction can be extended to any dimensionp EiR?. For each
k > 0, let Q; be a positively oriented interval with lengthr2and centred ap. We
claim that the sequence of polyhedral chails= 2 Q; converges w.r.t. the one-norm.
Notice that the mass of each chain is one. It suffices to estipiate- D;+1|1 We show
the differenceD, — D,+1 is a one-dimensional one-dipole, a sum of four weighted simple
dipoles. DivideD; into two intervalsQ; with disjoint interiors, of length 2¢*Y and
weighted by 2. Now Dy.; can also be written as the sum of two interv&jsof length
2-*+1 and weight 2, but the line segments are identical to each other. Since the distance
between the line segments Bf and those oD, is less than 2* we deduce

|Di — Dyaaly < 2274202700 = 27%,

We conclude that the sequenbg is Cauchy in the one-norm and its lindit has support
p. The limit is canonically associated to the Dirac delta functions. Sihce A%, we
may integrate smooth one-formslx over it. Hence

/qsdx:klim ¢ dv = p(p) = 5(@).
D —oo Jp,
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Figure 2. The snowflake as a sum of simplexes

The derivative of the Dirac delta function can also be realized geometrically, but as
a chainletB € .A%. One considers the quadrupoles (or two-dipoles) formed by small
oppositely oriented intervals centred at the endpoints ofxhdt is left as an exercise to
show that these two-dipoles limit to a chainléande ¢ dx = 8'(¢).

3. Toral solenoid Let T be the two-torus ifR® and f : T — T a smooth hyperbolic
mapping that contracts the torus in one direction, expands it in the other and then wraps
the torus around inside itself twice. The solenoid is defined as the intersggfion/” T
It is a set of points that supports many chainlets. For exampl& le¢ the solid torus
positively oriented andig = Q/|Qlo. Fork > 0, letAg+1 = f(Ar) /| f(Ap)lo. Since the
mass stays constant, the analysis here is similar to that for the Dirac delta function and one
can use dipoles to show thaj converges to a nonzero chainlet.i with support the
solenoid. One can also find chainletsA@ with support the solenoid as follows. L8t
be the oriented core circle in the torus which is not null homotopic kEer0, let By+1 =
f(By)/|f(B)lo- ThenB, forms a Cauchy sequence,«iti and thus converges to a chainlet
B e A},. It is also possible to find chainlets i, with support the solenoid by choosing
a countable dense subset and forming a Dirac mass at each of these points so that their
total mass is finite. In the next section we find a chainle&l%nNith support the solenoid.

4. Graphs ofL! functions The grapH" of a non-negativé.! function over an interval], 5]
supports a chainlet. One merely approximdtewith graphs of monotone increasing
step functiond”,. Thesel', are naturally oriented to form simplicial chains and these
form a Cauchy sequence in the one-norm. The differéhce I',,.+1 is a dipole and so its
one-norm is bounded above by the area between the two gfapéisdl",,. Thus{I',}
forms a Cauchy sequence in the one-norm, converging to a chRimébse support is
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Figure 3. Toral solenoid.

in the graph off. One can think of" as thex-component of the graph of.

3. Div, grad, and curl for fractals

Banach spaces of chainlets have standard operators defined on them. In this paper we consider
the boundary, pushforward, and geometric Hodge * operators. Each is first defined for
simplexes and extended to simplicial chains by linearity. Differential forms are used to prove
the operators are well defined on polyhedral chains. Finally, the operators are proved to be
continuous w.r.t. the norms, showing that they are defined on chainlets. In practice, most of
the work comes in establishing the first and last steps. For each operator there is a duality
theorem relating chainlets to differential forms. We demonstrate this method of proof for the
boundary operator.

3.1. Boundary operator

The boundary of a simplicial chain is defined in the standard way. 4 T are simplicial
chains we apply Stokes’ theorem for simplicial chains to deduce

fw:/dw:/dw:/ .
as s T 3T

HencedS ~ aT, implying that the boundary operator is well defined on polyhedral chains.
The boundary operator on polyhedral chains is bounded w.r.t-tioems.

Lemma 3.1.
[0A];+1 < |Al

Proof. This follows immediately from the definition of thenorms. |

We may thus define the boundadyl of a chainletA € A’. In particular, theboundary
operator

31 A, — A
is defined forr > 0. It restricts to the usual boundary operator on polyhedral chains and
satisfies Stokes’ theorem. The boundary operator is dual to the exterior derivative of forms,
leading to Stokes’ theorem for chainlets.

Theorem 3.2 (Generalized Stokes’ theorem)Letr > 0. If A € A} andw is a differential
(p — 1)-form of class8"** then

/dw:/ .
A A



5324 J Harrison

Proof. By Stokes’ theorem for simplexes, continuity of the boundary operator and of the
integral,

fA do = fzfgla,-a, do =377, a fa,. do =3 "1 fag,. ‘U
= fzzla;?)a; w

= fa >R aio; w

= Jaa @-
O

In [H4] it is shown that this generalization of Stokes’ theorem is optimal for integrands
of smooth forms. That is, all possible domaibsof integration arise as chainlets satisfying
continuity: if ||wg|l — O thenfD wy — 0. For one-dimensional chains Stokes’ theorem
implies that the fundamental theorem of calculus is valid for all one-dimensional chainlets,
e.g., fractal arcs. Here, is taken to be a functiorf and df is its gradient. For arcd with
endpointsp andg, this is usually writtenf;’ fydx = [, df.

3.2. Pushforward operator

If 7 is a mapping of clasg’*!,» > 0, one can define the pushforward operator or change
of variables operatof, : A}, — A’,. The pushforward operator on chainlets is dual to the
pullback operator on forms leading tahange of variabletheorem for chainlets.

Theorem 3.3.Letr > 0. If A € A, € B and f € B™* then

Joo= L

(See [H2] for more details.)

Several new operators are defined on chainlets. The main one we discuss here is the
geometric Hodge * operatar. This, along with the generalized Stokes’ theorem, leads to
optimal Green and Gauss theorems for chainlets. Combinations and modifications of the
operatorsd and x leads to geometric Laplace operators, Dirac operators, and coboundary
operators on chainlets.

3.3. Geometric Hodge star operator

* 1 AL —> A, _ is defined in [H5] forr > 0. To give the idea, figure 3.2 illustrates
a polyhedral approximation teR whereR is the oriented rectangle depictedR3. R is
found by taking a limit in the one-norm of similar sums of tiny equally spaced one-simplexes,
orthogonal toR and whose total length for each sum is the same as the arRa Bffen in

this simplest example of a rectangi® is not locally Euclidean, showing that fractal-like

structures are naturally associated to smooth ones. (See figure 4.)

Theorem 3.4 (Hodge star theorem)If A € A7, andw € B" then

A *A

For the proof, see [H5]. Using a combinatorial definition, others have defined a local dual
to the Hodge star operator, but the integral equation of theorem 3.4 does not hold.

The boundary and geometric Hodge star operators lead to generalized Green and Gauss
theorems. Le§ be a smooth, oriented surface with boundari# The usual way to integrate



Flux across nonsmooth boundaries and fractal divergence theorem5325

A

LAV VAR Y AW
X RRANRRR

Figure 4. A polyhedral approximation teR

the curl of a vector field( overS is to integrate the dot product of ciriwith the unit normal
vector field toS. According to Green’s theorem, this quantity equals the integral@fera S.

We have already seen that we do not require the existence of tangeérstddaalculate the
integral ofX over it. By working with the differential one-form associated t& via Euclidean
coordinates and the geometric Hodge * operatore no longer require the existence of any
unit normals taS to integrate culX overA. Instead we use the geometric Hodge star operator
applied toA, which is always defined iff is a chainlet. Ifw is the differential one-form
representing the vector fielk it is well known thatx dw represents cutk. We see now that

/ x dw represents the integral of the cMrbverS.
*S

Theorem 3.5 (Fractal Green’s theorem).If § is an chainlet in4), andw € B! then

/a):/ *dow.
EN *S

Proof. By theorems 3.2and 3.4, w = [; dw = [, ¢ *dw. O

For smooth surfaces with smooth boundary, we hayeX - nds = [, w. Sincexdw
corresponds to cukl. It follows that [, xdw = [, curlX - ndA. Therefore, the preceding
theorem generalizes and simplifies Green’s theornourlX - ndA = [, X - nds.

If A is a chainlet themxd A plays the role of a normal vector field on its boundary, even
though the boundary of may have no normal vectors defined. Thus one may calculate flux
across fractal boundaries and obtain a fractal divergence theorem.

The usual way to calculate the flux of a vector fidddacross a boundary of a smooth
solid regionD in space is to integrate the dot productofwith the unit normal vector field
to a D over the domaid D. According to Gauss’ divergence theorem, this quantity equals the
integral of the divergence of over D. By working with the differential forrm associated
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Figure 5. Polyhedral approximation to the coboundary of a line segment.

to X via Euclidean coordinates and the operatgmnwe no longer require the existence of any
unit normals tod D to calculate the flux ok acrossaD. We see that

/ o represents the flux of acrossiD.
*0D

Theorem 3.6 (Fractal divergence theorem)If D is a chainlet in4’, andw is of classB*!

then
f w:/d*w.
*dD D

Proof. [ o= [, o= [, dxo. O

For smooth surfaces, we hajegX -ndA = [, ; w. Itis well known that dk » corresponds
to div X. Therefore, the preceding theorem generalizes and simplifies the divergence theorem
of Gauss:f;,, X - ndA = [, divxdv.

Some authors have defined the integral over fractal boundaries using the integral of the
derived form over the interior, i.e., using the generalized Stokes’ theorem, as the definition.
Instead, the integrals in the preceding five theorems are defined independently and are shown
to satisfy the generalized Stoke’s theorem.

3.4. Examples revisited

1. Van Koch snowflakeOne may calculate flux of a vector field across the snowflakg
as [, @ Wherew is the one-form determined by using the Euclidean inner product.

2. Dirac delta function and its derivative®istributions and their derivatives can be realized
more systematically using the operatatefined in section 3 below. We say a distribution
c is associatedo a chainletA if ¢(¢) = fA ¢ dx for all test functionsp. In [H5] it is
shown that ifc is a distribution associated to the chaintethen¢’ is associated ted A.

3. Toral solenoid Recall the chainleB in A} found by iterating the core circle via the
mappingf. supported in the solenoid. A two-chainlet.jt} can be found by applying
thex operator toB. In some real sense, thid? acts as a normal bundle &

4. GraphofanL!function One may calculate flux of a vector fiegftlacross the-component
of the graphl’ of a non-negative.! function as/, .  where, againg is the one-form
determined byF. We give an important example. L&t = ye, where{e;, e} is the
Euclidean basis dR?. Thenw = ydy corresponds td&. Applying Stokes’ theorem we
calculate the flux of" acrosd" to be

1
[ ydy:—/ydx:/dxdy:/ f(x)dx.
I r N 0

Here,S denotes the subgraph @f This links Lebesgue theory to chainlets.
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Geometric Laplace operator The geometric Hodge * operater leads immediately to
definitions of the geometric coboundary operaton chainlets, defined @s= (—1)"?*D*1 «
dx* (see figure 3), and the geometric Laplace operater §0+35. If A € A/, thendA e Al

p+l
andAA € A
It follows readily from theorems 3.4 and 3.2 that fore B/ andA e A,

/80):/(0
A SA

and forw € B'*2 then

/Aa):/ w.
A AA
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