CONTINUED FRACTALS AND THE SEIFERT CONJECTURE

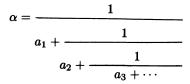
BY JENNY HARRISON¹

In 1950 Herbert Seifert posed a question today known as the Seifert Conjecture:

"Every C^r vector field on the three-sphere has either a zero or a closed integral curve."

Paul Schweitzer published his celebrated C^1 counterexample in 1971 [Sch]. We show how to obtain a $C^{3-\epsilon}$ counterexample X by using techniques from number theory, analysis, fractal geometry, and differential topology [H1 and **H2**]. X is C^2 and its second derivative satisfies a $(1 - \varepsilon)$ -Hölder condition.

1. Continued fractions and quasi-circles. Any irrational number α , $0 < \alpha < 1$, can be expressed as a continued fraction



where the a_i are positive integers. One writes $\alpha = [a_1, a_2, a_3, \ldots]$. The truncation $[a_1, \ldots, a_n] = p_n/q_n$ is the best approximation to α among all rational numbers p/q with $0 < q \leq q_n$. The growth rate of the a_i tells "how irrational" $\alpha = [a_i]$ is. At one extreme is the Golden Mean, $\gamma = [1, 1, ...]$; at the other are Liouville numbers such as $\lambda = [1^{1!}, 2^{2!}, 3^{3!}, \ldots]$. The former is "very irrational" while the latter is "almost rational".

To study α dynamically it is standard to consider R_{α} , the rigid rotation of the circle S^1 of unit length through angle α . Choose $x \in S^1$ and consider its R_{α} -orbit $O_{\alpha}(x)$. Since α is irrational, $O_{\alpha}(x)$ is dense in S^1 . But how is it dense? For Liouville λ , $O_{\lambda}(x)$ contains long strings $\{R_{\lambda}^{n}(x), R_{\lambda}^{n+1}(x), \ldots, \}$ $R_{\lambda}^{m}(x)$ that are poorly distributed. They "bunch up". In contrast, the Golden Mean's orbit distributes itself fairly evenly throughout S^1 .

Unfortunately, it is hard to distinguish visually (and hence geometrically) between bunched-up dense orbits and well distributed ones. After many iterates, the orbit picture becomes blurred. This is due in fact to the picture's being drawn on the circle. As a remedy, we "unfold" S^1 onto a canonically constructed curve Q_{α} in the 2-sphere S^2 as follows. Choose a "Denjoy" projection $\rho: S^1 \to S^1$; that is, ρ is onto and continu-

ous, $\rho^{-1}\langle n\alpha \rangle$ is an interval I_n for all $n \in \mathbb{Z}$, the I_n are disjoint, and ρ is 1-1

Received by the editors January 13, 1982 and, in revised form, April 25, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F25, 34C35, 10K10.

¹Partially supported by NSF grant no. MCS-8302062.

^{©1985} American Mathematical Society 0273-0979/85 \$1.00 + \$.25 per page

away from $\bigcup I_n$. By $\langle n\alpha \rangle$ we mean the fractional part of $n\alpha$. The discrepancy of α is

$$D_n(lpha) = \sup_I \left\{ rac{1}{n} \left| \sum_{m=0}^{n-1} \chi_I \langle m lpha
angle - |I|
ight|
ight\}$$

where I is an interval in $S^1 = \mathbf{R}/\mathbf{Z}$ and χ_I is its characteristic function. Choose weights $w_n > 0$ so that $\sum w_n D_n(\alpha)$ converges and $w_n D_n(\alpha)$ is monotone decreasing as $|n| \to \infty$. For any $x \in S^1 \setminus \bigcup I_n$ define $h_\alpha(x) = (h_1(x), h_2(x))$ in $S^1 \times \mathbf{R}$ by

$$egin{aligned} h_1(x) &=
ho(x) + \sum_{|n|=0}^\infty w_n(
ho(x) - \chi_{[0,
ho(x))}\langle nlpha
angle) \ h_2(x) &= \sum_{|n|=0}^\infty \{w_{2n+1}\chi_{[0,
ho(x))}\langle (2n+1)lpha
angle - w_{2n}\chi_{[0,
ho(x))}\langle 2nlpha
angle\} \end{aligned}$$

The mapping h_{α} is uniformly continuous. Its extension to the closure of $S^1 \setminus \bigcup I_n$ sends the endpoints of I_n onto points p_n , q_n in the cylinder $S^1 \times \mathbb{R}^1$ joined by a line segment Δ_n of slope ± 1 . Extend h_{α} to S^1 so it sends I_n onto Δ_n homeomorphically.

The curve $Q_{\alpha} = h_{\alpha}(S^1)$ is the *continued fractal* corresponding to α . It depends only on α and the choice of weights; different Denjoy projections just give it different parametrizations. When α is of constant type (its a_i are bounded) we take w_n of the form $1/(1 + |n|^{\mu})$ with $\frac{1}{2} < \mu < 1$. In that case, Q_{α} turns out to be an Ahlfors quasi-circle [**Ah**]. In any case,

Think of the continued fractal Q_{α} as a picture of α .

Its geometry embodies not only the early patterns apparent from the circle rotation but also much of its long-term behavior.

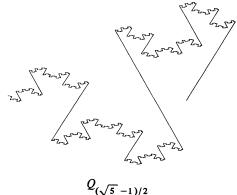
In Figure 1 are three examples drawn on the open cylinder with x = 0and x = 1 identified. The quasi-circle Q_{α} with $\alpha = [4, 4, 4, \ldots,]$ leads to a $C^{2+\delta}$ Seifert counterexample with δ small. To raise the differentiability from $C^{2+\delta}$ to $C^{3-\varepsilon}$ we take $\alpha = [2N, 2N, \ldots]$ with N large and prove a sharpened Denjoy-Koksma inequality for such numbers α [H6]. The choice $\alpha = \sqrt{21}$ also leads to a $C^{2+\delta}$ example but $(\sqrt{5}-2)^{1/2}$ does not.

2. Fractal geometry of Q. When α is of constant type, the continued fractal $Q = Q_{\alpha}$ can be exhibited as the nested intersection of connected closed sets A^n called β -diamond chains, as in Figure 2. Formally, $A^n = \Delta_1^n \cup T_1^n \cup \cdots \cup \Delta_m^n \cup T_m^n$, where m = m(n) and (suppressing the superscript n as appropriate)

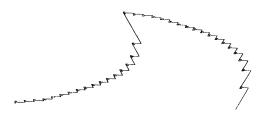
(a) Δ_i is a segment of slope ± 1 with respect to the cylinder's coordinates. The Δ_i are *diagonals* of A^n , $1 \le i \le m$.

(b) T_i is a parallelogram with interior, whose edges have slope $\pm\beta$. In practice, $\beta \ll 1$. The T_i are β -diamonds of A^n , $1 \le i \le m$.

(c) Δ_i slopes backwards and joins the right-hand vertex of T_{i-1} to the left-hand vertex of T_i , $1 \le i \le m$. We call $T_0 = T_m$ to take care of the case i = 1.



 $Q_{\sqrt{21}}$



 $Q_{(\sqrt{5}-2)^{1/2}}$

FIGURE 1. Continued Fractals.

(d) $A^1 \supset A^2 \supset \cdots \supset A^n \supset \cdots$ and the diameters of the diamonds in A^n tend to zero as $n \to \infty$.

(e) $\operatorname{diam}(\Delta_1^n) \leq \operatorname{diam}(T_j^n)$ if $1 \leq i, j \leq m$ and Δ_1^n is a diagonal of A^n but not of A^{n-1} .

The intersection $C = \bigcap A^n$ is a Jordan curve consisting of all the diagonals Δ_1^n of all the A^n plus a Cantor set Γ ,

$$C = \Delta \cup \Gamma, \qquad \Delta = \bigcup \Delta_1^n.$$

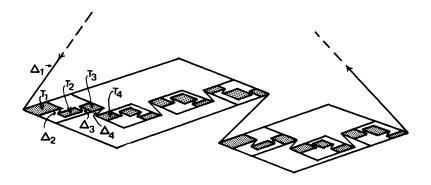


FIGURE 2. A diamond circle.

Such a C is called a *diamond circle*. All continued fractals Q_{α} with α of constant type are diamond circles and all diamond circles are quasi-circles.

As a degenerate case, suppose all the diagonals of a diamond circle C are points. Then C is the graph of a Lipschitz function $S^1 \to \mathbf{R}$ having Lipschitz constant β (and conversely). In the nondegenerate case and when α is of constant type, its continued fractal $Q = Q_{\alpha}$ turns out to have Hausdorff dimension > 1, so it cannot be a graph. Nevertheless, Q has the following

Graph-like property. There exist angles $\eta', \eta, 0 < \eta' < \eta < \pi$, a neighborhood U of Q in the cylinder, and a family of disjoint open sets D_i , $i \in \mathbb{Z}$, such that

(a) Each D_i is a homothetic replica of a fixed hexagon and contains the interior of the diagonal Δ_i . We denote $D = \bigcup D_i$.

(b) If $x \in U \setminus D$ lies on the north side of Q then any point $y \in Q$ nearest x lies in the downward pointing sector of angle η at x. If x lies near the bottom edge of D_i then y lies in the downward pointing sector of angle η' at x. Symmetric conditions prevail south of Q. See Figure 3.

If C is a Lipschitz graph with Lipschitz constant β this property is obvious; D is empty and $\eta = 2 \arctan \beta$. When C is a general diamond curve the proof is tricky.

3. Denjoy homeomorphisms of Q and the Whitney extension theorem. To introduce dynamics on Q_{α} we consider any Denjoy homeomorphism \mathcal{D} of S^1 satisfying $\rho \mathcal{D} = R_{2\alpha}\rho$ (recall ρ from §1). Then we lift $\mathcal{D}: S^1 \to S^1$ to $f: Q_{\alpha} \to Q_{\alpha}$ via the embedding $h_{\alpha}: S^1 \to Q_{\alpha}$. Let $\varepsilon > 0$ be given. Choose a large integer N and set $\alpha = [2N, 2N, \ldots]$. The right choice of weights w_n in the definition of h_{α} gives

(*)
$$||f(x) - f(y) - (x - y)|| < C||x - y||^{3-\varepsilon}$$

for some constant C and all x, y in the Cantor set Γ . Using only (*), the Whitney Extension Theorem [**W**, **AR**] and the fact that Q_{α} is a quasi-circle,

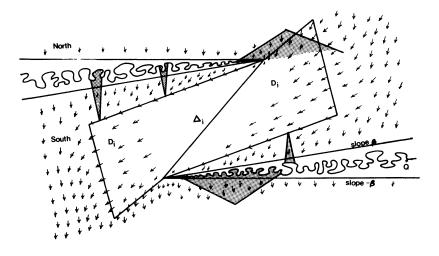


FIGURE 3. Imposing semistability.

we find a $C^{3-\varepsilon}$ diffeomorphism $F: S^2 \to S^2$ fixing the poles of S^2 such that $F|\Gamma = f|\Gamma, F(Q_\alpha) = Q_\alpha, DF|\Gamma = \text{Id}, D^2F|\Gamma = 0 \text{ and } F(D_i) = D_{i+2}$. In particular, F is a $C^{3-\varepsilon}$ Denjoy rotation of Q_α , cf. [Ha, Kn].

Since no quasi-circles have C^3 Denjoy rotations [H4], one is led to wonder if the differentiability class C^3 separates Seifert counterexamples from a Seifert Theorem, much as happens in KAM theory [He, M]. It is also interesting to speculate about the relation between ε and the Hausdorff dimension of Γ . Our F turns out to be of class $C^{3-\varepsilon}$ and our Γ has $HD(\Gamma) = 2 - \varepsilon$, cf. [N]. Must $HD(\Gamma)$ be large if the distortion of Df at Γ is small? Cf. [H4, H5].

4. Semistability of g at Q. We want a modification G of the Whitney extension F in §3 so that G = F on Q, G is a $C^{3-\varepsilon}$ diffeomorphism of S^2 and Q is G-semistable: under forward G-iterates Q attracts the north side of $S^2 \setminus Q$ and the reverse holds south of Q.

North of Q we want to push F(x) closer to Q than x was. The crucial fact that lets us do so (in a C^2 fashion near Γ) is the C^2 -flabby condition $DF|\Gamma = \text{Id}$ and $D^2F|\Gamma = 0$. The Denjoy examples of Knill [Kn], Hall [Ha] and Herman [He] do not have this property and that is what prevents their use against the Seifert Conjecture.

In Figure 3 we indicate the directions in which we push F(x) toward Q. Since $DF|\Gamma = \text{Id}$ and $D^2F|\Gamma = 0$, such pushing meets little resistance. At this stage of the construction we use the downward-pointing sector (shaded) from the graphlike property (§2), the fact that the quasi-slope β of Q is small, and the fact that the diagonals Δ_i slope backward. Under the resulting diffeomorphism G, Q is semistable. North of $Q, G(D_i) \subsetneq D_{i+2}$, while south of $Q, G^{-1}(D_i) \subsetneq D_{i-2}$. Seifert counterexamples and loxodromic diffeomorphisms. The diffeomorphism G constructed in §4 sends some $x_0 \in U \setminus D$ north of Q into D_0 . Under G its α -limit is the north pole N and its ω -limit is Γ . Similarly, some $y_0 \in D_0$ south of Q is sent into $U \setminus D$ by G; its α -limit is Γ and its ω -limit is the south pole S. Compose G with a C^{∞} motion M of S^2 such that $M(G(x_0)) = y_0$ and M leaves all points of $S^2 \setminus D_0$ fixed. The resulting $C^{3-\epsilon}$ diffeomorphism $H = M \circ G \colon S^2 \to S^2$ has the following properties:

(a) The only periodic points of H are its fixed-point poles, N and S. They are a source and sink, respectively.

(b) $\lim_{n\to\infty} H^n(x_0) = N$ and $\lim_{n\to\infty} H^n(x_0) = S$ for some x_0 .

(c) H has a minimal set other than the poles.

(a) follows from disjointness of the $G^n(D_0)$, $n \in \mathbb{Z}$; (b) is by construction; (c) is clear— Γ is the minimal set.

A suspension similar in spirit to Schweitzer's [Sch] lets us use H to construct a $C^{3-\epsilon}$ flow ϕ on S^3 with no compact orbits. By Hart's Smoothing Theorem [Ht], ϕ is conjugate to a flow ψ whose generating vector field X is also of class $C^{3-\epsilon}$.

This vector field X is a $C^{3-\epsilon}$ counterexample to the Seifert conjecture. The same procedure applied to any C^r diffeomorphisms $H: S^2 \to S^2$ obeying conditions (a), (b), (c) above would produce a counterexample to the C^r Seifert Conjecture.

It is not known if X is C^2 structurally stable. By Pugh's Closing Lemma it is not C^1 structurally stable [**P**]. Any diffeomorphism of S^2 obeying (a) and (b) but having no minimal set except the poles is topologically conjugate to the standard loxodromic diffeomorphism $z \to \frac{1}{2}z$ of the closed complex plane $\mathbf{C} \cup \infty = S^2$. Thus we put forward the

CONJECTURE. Every C^3 diffeomorphism of S^2 satisfying conditions (a), (b) above is loxodromic.

This is a dissipative analogue of Birkhoff's conjecture that any measurepreserving diffeomorphism of S^2 whose only periodic points are the two fixed point poles must be topologically conjugate to a rigid irrational rotation of S^2 .

REFERENCES

[AR] R. Abraham and J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967.

[Ah] L. V. Ahlfors, Lectures on quasi-conformal mappings, Van Nostrand, Princeton, N.J., 1966.

[D] A. Denjoy, Sur les courbes definies par les équations differentielles à la surface du tore, J. Math. Pures Appl. 11 (1932), 333–375.

[Ha] G. R. Hall, $A C^{\infty}$ Denjoy counterexample, Ergodic Theory and Dynamical Systems, Vol. 1 (1981), 261–272.

[H1] J. Harrison, Denjoy fractals, (preprint).

[H2] \ldots , $C^{2+\delta}$ Counterexamples to the Seifert conjecture, (preprint).

[H3] ____, Opening closed leaves of foliations, Bulletin LMS, 1982.

[H4] _____, Topological transitivity for Ahlfors quasi-circles, (preprint).

[H5] _____, Bounded distortion and an n-dimensional Denjoy Theorem (in preparation).

[H6] ____, Diophantine type and the Denjoy-Koksma inequality, (in preparation).

[HN1] J. Harrison and A. Norton, An improved sampling procedure for the uniform distribution of $\{na\}$, (preprint).

[HN2] _____, Denjoy quasi-circles in \mathbb{R}^n with Hausdorff dimension $n - \varepsilon$ (in preparation).

[HY] J. Harrison and J. A. Yorke, Vector fields on S^3 and R^3 without periodic-points, Proc. Simposio Internac. de Sistemas Dinamicos, Springer Lecture Notes.

[Ht] D. Hart, On the smoothness of generators, Topology 22 (1983), 357-363.

[He] M. Herman, Contre-exemples de Denjoy et contre-exemples de classe $C^{3-\epsilon}$ au théorème des courbes invariantes ayant un nombre de rotation fixe, (preprint).

[Kh] A. Khintchine, *Continued fractions*, translated by P. Wynn (1963) Groningen, Nordhoff.

[Kn] R. J. Knill, A C^{∞} flow on S^3 with a Denjoy minimal set, J. Differential Geom. 16 (1981), 271-280.

[KN] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974.

[M] J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, (preprint).

[N] A. Norton, A critical set with non-null image has large Hausdorff dimension, (preprint).

[P] C. Pugh, The Closing Lemma, Amer. J. Math. 89 (1967), 956-1021.

[Sch] P. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1971), 386-400.

[Sei] H. Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer. Math. Soc. 1 (1950), 287-302.

[W] H. Whitney, Analytic extensions of differentiable functions defined on closed sets, Trans. Amer. Math. Soc. 36 (1934), 369–387.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, EVANS HALL, BERKELEY, CALIFORNIA 94720