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A Toy Example

Consider all smooth functions on the unit interval
C>([0,1; R)
How can we (minimally) describe a function?

f:00,1] =R
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Taylor approximation
(to some approximation)

Harmonic approximation
(to some approximation)

Low/High pass filter

(within some thresholds)



A Toy Example

Consider all smooth functions on the unit interval
C>([0,1; R)
How can we (minimally) describe a function?

f:[0,1] = R

Decompose the space with respect to an operator A

And record the coefficients of the dominant
eigenfunctions
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Taylor approximation

A = —(20,)*

Harmonic approximation

A =02

x
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single frames input vectors

Berkes, Wiskott

Slow feature analysis yields a rich

repertoire of complex cell properties

Journal of Vision, 2005 9



The problem statement of SFA B Quantum

Given a high dimensional input signal, find a transformation into a low dimensional output signal which varies
slowly and carries significant information.

t) Minimise: E = Z ((1:)%)s
I
1€[K]
Input signal « ~ : c RY x [0,T]
(1) subject to: (y;): =0

Dimensional reduction transformation G : RY — RE

What kind of G will we allow? (y?); =1
Output signal y(t) = G(z(t))

(Yi - yj>t = 0ij
Minimise Energy subject to:
unit variance (and zero mean) T
decorrelation (o) = /o dt e (t) = time average of e 10
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Linear dimensional reductions

Assume that G is a linear transformation. G = W consisting of weights W = (w1, ..., wx). And to
simplify the problem, assume the input data has already been whitened. B = (zx'); = I € Matg (N, N)
azl(t)
| e Ei = (i) = ((wl)?)e
N
T /. T
= W, (T w;
G RN —>RK (3 < >t 2
— w! Aw;
y(t) = Gla(®)) = w; Aw,
) This is an eigenvalue problem for the weights with respect to A
min Y E;, B = (i) T, T
etk 0ij = (Yiyj)t = w; (2T )rwj = w; wy

So minimise the energy by choosing the lowest eigenvectors of A

17



Low-degree-polynomial dimensional reductions ™" ™"

BEFORE

Assume that G is a linear transformation. G = W7 consisting of weights W = (wy, ..., wg ). And to
simplify the problem, assume the input data has already been whitened. B = (xz'); = I € Matg (N, N)

NOW

Assume that G is a linear transformation in the space of low-degree-polynomials Polygee<q(T1,---,7N)
Now solve the problem as we did before.

Warning 1: Even for low degree, the dimension of this space is very big. >_ (5) ~N*

1€[d)

Warning 2: 1t is even worse for the covariance matrices where are of dimension ~ N2d
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Part 2: Clustering with SFA

Quantum Machine Learning
Dimensional Reduction via Slow Feature Analysis
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METHOD % ERRORS
Linear classifier 12.0
K-Nearest-Neighbors 5.0
1000 Radial Basis Functions, linear classifier 3.6
Best Back-Propagation NN 2.95
(3 layers with 500 and 150 hidden units)
Reduced Set SVM (5 deg. polynomials) 1.0
LeNet-1 (16 x 16 input) 1.7
LeNet-5 0.95
Tangent Distance (16 x 16 input) 1.1
Slow Feature Analysis 1.5

(3 deg. polynomials, 35 input dim)

original

error rate
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The problem statement of SFA Clustering

Given high dimensional data labelled with one of a fixed number of patterns, construct a classifier

: N

P patterns {7, },c[p] and n data points x € R Minimise: E — Z B,
ke[K]

1 1 . . 2
=~ > 5 > ((Gaw.i) - Glam)),)
Classifier G : RN — RE pE[P] i,j€[np]

Lemma: K =P —1

Labelling {(p, %) }icin,]

think of ¢ € [n,] as t € [0,T Ek

Minimise energy subject to
- (zero mean and) unit variance
- decorrelation

Z = Z (np) = number of pairs of labelled data 26
PE[P] 2



The problem statement of SFA Clustering

Given high dimensional data labelled with one of a fixed number of patterns, construct a classifier

P patterns {m, },c[p] and n data points x € RN

Labelling {(p, %) }icin,]

think of ¢ € [n,] as t € [0,T

Classifier G : RY — R¥

Lemma: K =P —1

Minimise energy subject to
- (zero mean and) unit variance
- decorrelation

Minimise: ' = Z E
ke[K]

IBM Quantum

Bi=y Y 5 3 ((Glaln.i) - Galpi),)”

Subject to

LYY Gl

pe[Plig[ny)

LYY Gl =1

pe[P]i€[ny)

- Z . G (@(p,i))e = O

pG[P] i€lny)

27



IBM Quantum

Eigenvalue problem of SFA Clustering

P patterns Assume that G is a linear transformation consisting of weights
Labelling{z(p, ) }ic[n,]

g N K .
Classifier G : R — R § E wkx Pyt x(p,J))2

o . pEP]wenp]
Minimise sum of energies:

By =~ Z > ((Glx(p,i) ) — Gx(p, ), ( Z Z z(p, j)) (ﬂc(p,i) —:c(p,j))T> Wy

p€e[P] z]G[np] pE[P] i,jE€[np)

Subject to: = w! Awy,

zero mean, unit variance,

decorrelation Let’s assume the data has been whitened. So the constraint is
Oy = wkTng where B = Z Z =7

€[P]i€[nyp]
This is an eigenvalue problem for the weights with respect to A
So minimise the energy by choosing the lowest eigenvectors of A 30
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Scaling considerations of SFA Clustering

P ~ number of patterns Fixed
N ~ input data size Fixed, but can reduce with PCA
K ~ output data size Fixed (P-1)
. : o : . N N +d ;
d ~ degree of polynomial expansion Free, effectively increases input size: N — Z 7 )= P = O(N%)

deld)
n =) ,cp) M ~ size of test set ...

computational complexity of matrix A requiring diagonalisation:

. N +d\* _
number of entries: ( ;d) = O(N?%) number of rank 1 entries: » _ n2 = O(n?)

pE([P]

31



Scaling considerations of SFA Clustering

0.14-

0.12

P ~ number of patterns Fixed

0.1

N ~ input data size Fixed, (reduce with PCA)

0.08

error rate

0.06

K ~ output data size Fixed

0.04

d ~ degree of polynomial expansion Free
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Part 3: Clustering with Quantum SFA
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Quantised SFA Clustering IBM Quantum

Goal: Quantise (a part of) the SFA Clustering algorithm to improve run-time.

Some assumptions from our classical setting which we shall keep:
- input data {z(p, ) }ic[n,] associated with patterns{m,},¢(p]
- total of n data points in dimension N
- assume this dimension already refers to:
- data has been PCA reduced
- data has been polynomially expanded
- data has been whitened

Final step: use quantum SVD to obtain classifier G : RV — RF~!

Remember: G is matrix weights which are lowest eigenvalues of the covariance matrix associated with the
“derivative” of the input vectors.

Kerenidis, Luongo

Quantum classification of the MNIST dataset via Slow Feature Analysis 34
PRA, 2020 (arXiv, 2018)



Quantised SFA Clustering IBM Quantum

Goal: Quantise (a part of) the SFA Clustering algorithm to improve run-time.

Final step: use quantum SVD to obtain classifier G : RV — RF~!

Advantages:
- quantum-speedup from SVD calculation
- if time kept constant, then higher initial PCA and/or higher polynomial expansion may be performed

Challenges:

- data must be in QRAM

- output data is quantum state (which must be projected to one of P classes)

- requires knowledge of value of K-1, K eigenvalues (in order for SVD to project onto lowest eigenvalues)
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Ingredients in quantum SVD

- Phase estimation

(Kitaev, Quantum measurements and the Abelian Stabilizer Problem, Electronic Colloquium on Computational Complexity, 1996)

- Amplitude amplification and estimation

(Brassar Hgyer Mosca Tapp, Quantum Amplitude amplification and estimation, Quantum Computation and Information, AMS, 2000)

-SVD

(Kerenidis Prakash, Quantum gradient descent for linear systems and least squares, PRA, 2020 (arXiv 2017))

- Matrix algebra (multiplication, division, projection, composition)

(qubitisation, block encodings)

(Chakraborty Gilyén Jeffery, The power of block encoded matrix powers, arXiv 2018)
(Gilyén Su Low Wiebe, Quantum singular value transformation and beyond, arXiv 2018)
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Part 4: Is that I1t!?

Quantum Machine Learning
Dimensional Reduction via other techniques
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Other dimensional reduction techniques

Quantum Principle Component Analysis
Lloyd, Mohseni, Rebentrost

Nature Physics 2014
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Other dimensional reduction techniques

Quantum Discriminant Analysis for Dimensionality
Reduction and Classification

Cong, Duan

New Journal of Physics 2016
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Other dimensional reduction techniques

Quantum Algorithms for Topological and Geometric Review of a Quantum Algorithm for Betti Numbers

Analysis of Data
Gunn, Kornerup

Lloyd, Garnerone, Zanardi _
arXiv 1906.07673

Nature Communications 2016
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Other dimensional reduction techniques

Variational Quantum Algorithms for Dimensionality Variational Quantum Singular Value Decomposition

Reduction and Classification
Wang, Song, Wang

Liang, Shen, Li, Li )
arXiv2006.02336

PRA 2020
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Other dimensional reduction techniques

Limitations on quantum dimensionality reduction
Harrow, Montanaro, Short

International Colloquium on Automata, Languages,
and Programming 2011
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