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Kitaev’s a pretty smart guy

In physics, an example of this design science approach is Kitaev’s notion of a topological
quantum computer. This is one of the most radical new ideas of the past hundred years.
Rather than building a computer out of component parts, the aspiration is to create
a novel phase of matter that wants to compute. Fluids want to flow; solids want to
maintain a stable shape; topological quantum computers want to compute. Indeed, not
only do they want to compute, they want to quantum compute, and to do so in a way
that protects the quantum state against the effects of noise!

- Michael Nielsen



Kitaev sometimes has his head in the clouds

The results of Sec. 5 suggest that fermions have slightly more computational power
than qubits. The logarithmic slowdown in simulation of fermions seems to be inevitable
in the general case. However, in the physical world fermions (e.g. electrons) interact
locally not only in the sense that the interaction is pairwise, but also in the geometric
sense: a particle can not instantly jump to another position far away. Such physical
interactions might be easier to simulate. In this section we study an abstract model of
geometrically local interactions. The result is that geometrically local gates can indeed
be simulated without any substantial slowdown, i.e. the simulation cost is constant.
Therefore one can speculate that, in principle, electrons might not be fundamental
particles but, rather, excitations in a (nonperturbative) system bosons. Of course, this
is only a logical possibility which may or may not be true.

- Sergey Bravyi, Alexei Kitaev
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Proposition 3.8. Let Ω be a set of subspaces of Ν orthogonal to one another.
Then for any pair of mixed states p, 7

Proof. The left hand side of this inequality can be represented as Tr((p — *γ)Β),
where Β — Σν& ι(± ΐ1ν)  It is clear that ||i?|| < 1. Now use the properties (19) of
the norms.

A natural norm on the space of transformations is given by

\ \TX\ \ i \ \T'X\ \
i =  sup =  sup "

\ \ X 11
=  sup

\ \ X 111 ΧφΟ \ \X\ \
U nfortunately, this norm is unstable relative to the tensor product. Example:
we consider the transformation Τ : \ i)(j\  M· \ j)(i\  (i,j = 0,1). I t is clear that
||T ||i =  1, however \ \T ® / 3H1 =  2. (Apply the transformation Τ <g> 7 S to the
operator X = Σί j I M ) 0 > j |· ) This is why we shall use another norm on the space
of transformations Τ (IN, M ) :

\ \T\ \ <>=mi{\ \A\ \ \ \B\ \ :Tr?(A B*)=T}, A,B e L(K,M  Θ Τ). (21)

H ere J is an arbit ra ry u n it a ry space of dimension > (dim  ) (dim M ) . T h e following
result implies t h a t th is is indeed a n orm .

P ro po s it io n 3.9. ||Γ||<> =  | |Γ® / 3 | | ι > | |T | | i , where d i m S > dim>J".

Proof. T h e inequality | |Τ | |φ ^ \ \T ® / g||i is t h e only non  obvious fact. We t ake
||T||<> =  1 with ou t loss of generality. T h e in n m u m in (21) is a t t a in ed when

=  1. Let X = Ker(A^A   l x ) , L· = Kei(B^B   1 N ) , an d

Ε = {ΤΓΜ(Αρ^) : ρ e D(3C)}, F =  { νΜ(Β Β^) : 7

The number || A|| | |β | | is minimal with respect to infinitesimal variations of the scalar
product δ(·\ ·) =  (·|2 ) on 5". It follows that no Hermitian operator Ζ £ L(3r) exists
such that TrXZ > TrYZ for any X £ Ε and Υ £ F. Since Ε and F are compact
convex sets, Ε Π F Φ 0.

Let TrM(ApAt) =  ΤΓΜΪ  Β ^ ) , where ρ e D(3C) and 7 e D(£,). We shall
represent ρ and 7 as ρ =  Trg(|f)(£|) and 7 =  Trg(|7/ )(^|), where |ξ), |TJ) e N ® S
are unit vectors. We put X =  \ξ)(η\ . Then ||(T®  I$)X\ \ i = \ \X\ \ i = 1.

From (21) and Proposition 3.9 it follows that

| |Τ®Λ| |φ = | |2ΊΙ<>Ρϊ| Ιθ> ΙΙΓϋΙΙο < IITIIolliZHo. (22)

The norm of an admissible transformation is always equal to one. If V and W  are
unitary embeddings, then ||V · V<   W •  W*U < 2\ \V   W\ \ .

- Kitaev. 1997
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lemma 11 ∥ρ1 − ρ2∥1 = maxO

{

|pO
ρ1
− pO

ρ2
|
}

.

Proof: Let N =
⊕

j Sj , where the subspaces Sj are mutually orthogonal. Let Pj be the

orthogonal projection onto Sj. Then, for any pair of mixed states ρ1 and ρ2,
∑

j

∣

∣

∣Tr(Pjρ1) −
Tr(Pjρ2)

∣

∣

∣ ≤ ∥ρ1 − ρ2∥1. To see this, present the left hand side of this inequality as Tr((ρ1 −
ρ2)B), where B =

∑

j ±Pj . It is obvious that ∥B∥ = 1. Then use lemma 10. To see that
the trace distance can be achieved by some measurement, let O project on the eigenvectors of
ρ1 − ρ2.

5.3 The Diamond Metric on Quantum Gates

The natural norm on the space of super-operators is

∥T∥1 = sup
X ̸=0

∥TX∥1

∥X∥1

Unfortunately, this norm is not stable with respect to tensoring with the identity. Counterex-
ample: T : |i⟩⟨j| &→ |j⟩⟨i| (i, j = 0, 1). It is clear that ∥T∥1 ≤ 1. However ∥T ⊗ IB∥1 ≥ 2.
(Apply the super-operator T ⊗ IB to the operator X =

∑

i,j |i, i⟩⟨j, j| ). For this reason, we
have to define another norm on super-operators

definition 8 Let T : L(N ) → L(M) and A, B ∈ L(N , M ⊗ F), where F is an arbitrary
Hilbert space of dimensionality ≥ (dimN )(dimM).

∥T∥♦ = inf
{

∥A∥ ∥B∥ : TrF(A · B†) = T
}

This definition seems very complicated. However it is worthwhile using this norm because it
satisfies very nice properties, and provides powerful tools for proofs regarding quantum errors.
Here are some properties which are satisfied by the diamond norm. The first property is that
the diamond norm is the stabilized version of the “naive” norm ∥ · ∥1. The proof of this is
complicated and non-trivial. It implies also that ∥ · ∥♦ is a norm.

lemma 12

1. ∥T∥♦ = ∥T ⊗ IG∥1 ≥ ∥T∥1, where, dimG ≥ dimN .

2. ∥Tρ∥♦ ≤ ∥T∥♦ ∥ρ∥1

3. ∥TR∥♦ ≤ ∥T∥♦ ∥R∥♦

4. ∥T ⊗ R∥♦ = ∥T∥♦ ∥R∥♦

5. The norm of any physically allowed super-operator T is equal to 1.

16

- Aharonov, Kitaev, Nisan. 1997



A classical problem

Consider two probability distributions p0, p1 on an alphabet X .

Consider a binary space C = {0, 1} where Antoinette chooses

I 0 with probability λ;

I 1 with probability 1− λ,

and dependent on the outcome k , Antoinette prepares pk and gives it to Bonaparte.
Bonaparte then observes x ∈ X , and he is asked to guess which binary variable had
been chosen by Antoinette.
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(1− λ)p1(x)
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Bonaparte should choose the binary variable {0, 1} dependent on whichever probability
is larger.
More interestingly, how often will he get this choice right?
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1
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0two remarks: λ = 1/2, p0 = p1, and also p0, p1 distinct



A quantum problem on states

Consider two density matrices ρ1, ρ2 on a complex vector space X . Consider a binary
space C = {0, 1} where Antoinette chooses

I 0 with probability λ;

I 1 with probability 1− λ
and dependent on the outcome k , Antoinette prepares ρk and gives it to Bonaparte.
Bonaparte’s goal is to measure the system to best determine which binary variable had
been chosen by Antoinette.



Holevo-Helstrom theorem

P(Success) = λ
∑

x∈zero
p0(x) + (1− λ)

∑
x∈one

p1(x)
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Holevo-Helstrom theorem
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In fact, HH tells Bonaparte how to attain this limit.
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HH has a pretty easy proof (like all nice theorems)

I Begin by making two mixed “states”ρ± = λρ0 ± (1− λ)ρ1.
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I The probability of success now calculates to
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I To get equality, use a Jordan-Hahn decomposition of ρ− = P −Q and set

µ(0) = ΠimP , µ(1) = 1−ΠimP .



A quantum problem on channels

Consider two channels Φ1,Φ2 : L(X )→ L(Y )

Bonaparte prepares a state σ ∈ L(X ) and gives it to Antoinette who

I flips a biased coin C = {0, 1} whose bias is λ, 1− λ,

I prepares Φk (σ) dependent on the outcome k ∈ {0, 1},
I returns the state Φk (σ) to Bonaparte.

And it’s now Bonaparte’s turn to guestimate what value the coin took by cunningly
measuring Φk (σ)
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Werner-Holevo channels

Naively, from our state discrimination exercise, Bonaparte chooses σ to maximise

‖λρ0 − (1− λ)ρ1‖1

for ρk = Φk (σ).

but . . .

With n = dim(X ) and λ = n+1
2n

and
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1
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(
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)
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)
we find, for all states σ, that
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Werner-Holevo channels

However if we couple X with itself and produce a MES:

τ =
1

n

n∑
i,j=1

|i〉 〈j | ⊗ |i〉 〈j |

and get Antoinette to use the channels Φk ⊗ 1L(X ), then the states that Bonaparte
receives

ρk = (Φk ⊗ 1L(X ))(τ)

are orthogonal. So they can be discriminated perfectly (irrespective of λ) and

‖λ(Φ0 ⊗ 1L(X )(τ)− (1− λ)(Φ1 ⊗ 1L(X ))(τ)‖1 = 1
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Diamond norm. . . finally

Consider a channel Φ : L(X )→ L(Y ). You might write Φ ∈ T (X ,Y ).

‖Φ‖� = ‖Φ⊗ 1L(X )‖L(X⊗X )→L(Y⊗X )

where L(X ⊗X ),L(Y ⊗X ) both use the 1-norm ‖ · ‖1
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Equality may be attained if dim(Z ) ≥ dim(X ).



tl;dr

why diamond

. . .

because entanglement
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