Classical shadows with general probability distribution

Charles Hadfield

July 2020

Consider an observable $O = \sum_{Q} \alpha_{Q} Q$ where the summation is over *n*-qubit Pauli operators $Q \in \{I, X, Y, Z\}^{\otimes n}$. For such a Pauli operator Q and for a given qubit $i \in \{1, 2, ..., n\}$ we shall write Q_i for the ith single-qubit Pauli operator so that $Q = \otimes_i Q_i$. We denote the support of such an operator supp $(Q) = \{i|Q_i \neq I\}$ and its weight $\text{wt}(Q) = |\text{supp}(Q)|$. An *n*-qubit Pauli operator Q is said to be full-weight if $wt(Q) = n$.

Given a full-weight Pauli operator P, we let $\mu(P, i) \in \{\pm 1\}$ denote the eigenvalue measurement when qubit i is measured in the P_i basis. For a subset $A \subseteq \{1, 2, ..., n\}$ declare $\mu(P, A) = \prod_{i \in A} \mu(P, i)$ with the convention that $\mu(P, \emptyset) = 1$.

Let β be a probability distribution on full-weight Pauli operators: $\beta: \{X, Y, Z\}^{\otimes n} \to \mathbb{R}^+$ with $\sum_P \beta(P) = 1$. For a Pauli operator Q, define

$$
Lift(Q) = \left\{ P \in \{X, Y, Z\}^{\otimes n} \mid P_i = Q_i \text{ for every } i \in \text{supp}(Q) \right\},\tag{1}
$$

$$
\zeta(Q,\beta) = \sum_{P \in \text{Lift}(Q)} \beta(P). \tag{2}
$$

We shall also use the characteristic function χ where $\chi_{\Omega}(x)$ returns 1 if $x \in \Omega$ and 0 if $x \notin \Omega$.

Algorithm 1 Classical shadows with general probability distribution

Prepare ρ ;

Randomly pick $P \in \{X, Y, Z\}^{\otimes n}$ from β -distribution;

for qubit $i \in \{1, 2, \ldots, n\}$ do

Measure qubit i in P_i basis providing evalue measurement $\mu(P, i) \in \{\pm 1\}$;

Estimate observable expectation

$$
\nu = \sum_{Q} \alpha_Q \cdot \frac{\chi_{\text{Lift}(Q)}(P)}{\zeta(Q,\beta)} \cdot \mu(P,\text{supp}(Q))
$$

return ν .

Lemma [1](#page-0-0). The estimator ν from Algorithm 1 satisfies

$$
\mathbb{E}(\nu) = \sum_{Q} \alpha_Q \operatorname{tr}(\rho Q). \tag{3}
$$

Proof. Let \mathbb{E}_P denote the expected value over the distribution $\beta(P)$. Let $\mathbb{E}_{\mu(P)}$ denote the expected value over the measurement outcomes for a fixed Pauli basis P . By definition, the expected value in Eq. [\(3\)](#page-0-1) is a composition of the expected values over a Pauli basis P and over the measurement outcomes $\mu(P)$, that is, $\mathbb{E} = \mathbb{E}_P \mathbb{E}_{\mu(P)}$.

Consider $Q \in \{I, X, Y, Z\}^{\otimes n}$. Whenever $P \in \text{Lift}(Q)$, we observe $\mathbb{E}_{\mu(P)}\mu(P, \text{supp}(Q)) = \text{tr}(\rho Q)$. Combining these observations implies

$$
\mathbb{E}(\nu) = \mathbb{E}_P \mathbb{E}_{\mu(P)} \nu \tag{4}
$$

$$
= \sum_{Q} \alpha_Q \frac{1}{\zeta(Q,\beta)} \mathbb{E}_P \chi_{\text{Lift}(Q)}(P) \mathbb{E}_{\mu(P)} \mu(P, \text{supp}(Q)) \tag{5}
$$

$$
= \sum_{Q} \alpha_Q \frac{1}{\zeta(Q,\beta)} \sum_{P \in \text{Lift}(Q)} \beta(P) \cdot \text{tr}(\rho Q) \tag{6}
$$

$$
=\sum_{Q}\alpha_{Q}\operatorname{tr}(\rho Q). \tag{7}
$$

 \Box

For Pauli operators Q, R , define

$$
g(Q, R, \beta) = \frac{1}{\zeta(Q, \beta)} \frac{1}{\zeta(R, \beta)} \sum_{P \in \text{Lift}(Q) \cap \text{Lift}(R)} \beta(P)
$$
\n(8)

This function simplifies greatly when β is a product distribution. Specifically, if $\beta = \prod_{i=1}^n \beta_i$ with $\beta_i : \{X, Y, Z\} \to \mathbb{R}^+$, then $g(Q, R, \beta)$ is non-zero only when Q, R agree with each-other on $A = \text{supp}(Q) \cap \text{supp}(R)$ and in which case $g(Q, R, \beta) =$ $\left(\prod_{i\in A}\beta_i(Q_i)\right)^{-1}.$

Lemma 2. The estimator ν from Algorithm [1](#page-0-0) satisfies

$$
\mathbb{E}(\nu^2) = \sum_{Q,R} \alpha_Q \alpha_R g(Q, R, \beta) \operatorname{tr}(\rho QR) \tag{9}
$$

Proof. We use the same notation as in the preceding lemma. Consider $Q, R \in \{I, X, Y, Z\}^{\otimes n}$. As operators, we obtain the identity

$$
\mathbb{E}_P \frac{\chi_{\text{Lift}(Q)}(P)}{\zeta(Q,\beta)} \frac{\chi_{\text{Lift}(R)}(P)}{\zeta(R,\beta)} = g(Q,R,\beta)
$$
\n(10)

and, whenever $P \in \text{Lift}(Q) \cap \text{Lift}(R)$,

$$
\mathbb{E}_{\mu(P)}\mu(P,\text{supp}(Q))\mu(P,\text{supp}(R)) = \text{tr}(\rho PQ). \tag{11}
$$

To get the last equality, observe that $\mu(P, A)\mu(P, A') = \mu(P, A \oplus A')$ for any subsets of qubits A, A' , where $A \oplus A'$ is the symmetric difference of A and A'. The assumption that P is in the lift of both Q and R implies that $\text{supp}(Q) \oplus \text{supp}(R) =$ $supp(QR)$.

Combining these observations implies

$$
\mathbb{E}(\nu^2) = \mathbb{E}_P \mathbb{E}_{\mu(P)} \nu^2 \tag{12}
$$

$$
= \sum_{Q,R} \alpha_Q \alpha_R \mathbb{E}_P \frac{\chi_{\text{Lift}(Q)}(P)}{\zeta(Q,\beta)} \frac{\chi_{\text{Lift}(R)}(P)}{\zeta(R,\beta)} \mathbb{E}_{\mu(P)} \mu(P, \text{supp}(Q)) \mu(P, \text{supp}(R)) \tag{13}
$$

$$
=\sum_{Q,R}\alpha_Q\alpha_R g(Q,R,\beta)\operatorname{tr}(\rho QR)\tag{14}
$$

 \Box