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Consider an observable O =
∑
Q αQQ where the summation is over n-qubit Pauli operators Q ∈ {I,X, Y, Z}⊗n. For such

a Pauli operator Q and for a given qubit i ∈ {1, 2, . . . , n} we shall write Qi for the ith single-qubit Pauli operator so that
Q = ⊗iQi. We denote the support of such an operator supp(Q) = {i|Qi 6= I} and its weight wt(Q) = | supp(Q)|. An n-qubit
Pauli operator Q is said to be full-weight if wt(Q) = n.

Given a full-weight Pauli operator P , we let µ(P, i) ∈ {±1} denote the eigenvalue measurement when qubit i is measured
in the Pi basis. For a subset A ⊆ {1, 2, . . . , n} declare µ(P,A) =

∏
i∈A µ(P, i) with the convention that µ(P,∅) = 1.

Let β be a probability distribution on full-weight Pauli operators: β : {X,Y, Z}⊗n → R+ with
∑
P β(P ) = 1. For a Pauli

operator Q, define
Lift(Q) =

{
P ∈ {X,Y, Z}⊗n |Pi = Qi for every i ∈ supp(Q)

}
, (1)

ζ(Q, β) =
∑

P∈Lift(Q)

β(P ). (2)

We shall also use the characteristic function χ where χΩ(x) returns 1 if x ∈ Ω and 0 if x 6∈ Ω.

Algorithm 1 Classical shadows with general probability distribution

Prepare ρ;
Randomly pick P ∈ {X,Y, Z}⊗n from β-distribution;
for qubit i ∈ {1, 2, . . . , n} do

Measure qubit i in Pi basis providing evalue measurement µ(P, i) ∈ {±1};
Estimate observable expectation

ν =
∑
Q

αQ ·
χLift(Q)(P )

ζ(Q, β)
· µ(P, supp(Q))

return ν.

Lemma 1. The estimator ν from Algorithm 1 satisfies

E(ν) =
∑
Q

αQ tr(ρQ). (3)

Proof. Let EP denote the expected value over the distribution β(P ). Let Eµ(P ) denote the expected value over the measure-
ment outcomes for a fixed Pauli basis P . By definition, the expected value in Eq. (3) is a composition of the expected values
over a Pauli basis P and over the measurement outcomes µ(P ), that is, E = EPEµ(P ).

Consider Q ∈ {I,X, Y, Z}⊗n. Whenever P ∈ Lift(Q), we observe Eµ(P )µ(P, supp(Q)) = tr(ρQ).
Combining these observations implies

E(ν) = EPEµ(P )ν (4)

=
∑
Q

αQ
1

ζ(Q, β)
EPχLift(Q)(P )Eµ(P )µ(P, supp(Q)) (5)

=
∑
Q

αQ
1

ζ(Q, β)

∑
P∈Lift(Q)

β(P ) · tr(ρQ) (6)

=
∑
Q

αQ tr(ρQ). (7)



For Pauli operators Q,R, define

g(Q,R, β) =
1

ζ(Q, β)

1

ζ(R, β)

∑
P∈Lift(Q)∩Lift(R)

β(P ) (8)

This function simplifies greatly when β is a product distribution. Specifically, if β =
∏n
i=1 βi with βi : {X,Y, Z} → R+,

then g(Q,R, β) is non-zero only when Q,R agree with each-other on A = supp(Q)∩ supp(R) and in which case g(Q,R, β) =(∏
i∈A βi(Qi)

)−1
.

Lemma 2. The estimator ν from Algorithm 1 satisfies

E(ν2) =
∑
Q,R

αQαRg(Q,R, β) tr(ρQR) (9)

Proof. We use the same notation as in the preceding lemma. Consider Q,R ∈ {I,X, Y, Z}⊗n. As operators, we obtain the
identity

EP
χLift(Q)(P )

ζ(Q, β)

χLift(R)(P )

ζ(R, β)
= g(Q,R, β) (10)

and, whenever P ∈ Lift(Q) ∩ Lift(R),

Eµ(P )µ(P, supp(Q))µ(P, supp(R)) = tr(ρPQ). (11)

To get the last equality, observe that µ(P,A)µ(P,A′) = µ(P,A ⊕ A′) for any subsets of qubits A,A′, where A ⊕ A′ is the
symmetric difference of A and A′. The assumption that P is in the lift of both Q and R implies that supp(Q)⊕ supp(R) =
supp(QR).

Combining these observations implies

E(ν2) = EPEµ(P )ν
2 (12)

=
∑
Q,R

αQαREP
χLift(Q)(P )

ζ(Q, β)

χLift(R)(P )

ζ(R, β)
Eµ(P )µ(P, supp(Q))µ(P, supp(R)) (13)

=
∑
Q,R

αQαRg(Q,R, β) tr(ρQR) (14)
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