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Consider an observable O = ZQ agQ where the summation is over n-qubit Pauli operators Q € {I, X,Y, Z}®". For such
a Pauli operator @ and for a given qubit i € {1,2,...,n} we shall write @; for the i*" single-qubit Pauli operator so that
Q = ®;Q;. We denote the support of such an operator supp(Q) = {i|Q; # I} and its weight wt(Q) = |supp(Q)|. An n-qubit
Pauli operator @ is said to be full-weight if wt(Q) = n.

Given a full-weight Pauli operator P, we let u(P,4) € {1} denote the eigenvalue measurement when qubit ¢ is measured
in the P; basis. For a subset A C {1,2,...,n} declare u(P, A) = [, 4 #(P, i) with the convention that u(P, @) = 1.

Let 8 be a probability distribution on full-weight Pauli operators: §: {X,Y, Z}®™ — R* with >, (P) = 1. For a Pauli
operator (), define

Lift(Q) = {P € {X,Y, Z}*" | P, = Q; for every i € supp(Q)} , (1)
(@B = Y, B(P). (2)
PELift(Q)

We shall also use the characteristic function x where xq(x) returns 1 if z € Q and 0 if = & 2.

Algorithm 1 Classical shadows with general probability distribution
Prepare p;
Randomly pick P € {X,Y, Z}®" from S-distribution;
for qubit i € {1,2,...,n} do
Measure qubit i in P; basis providing evalue measurement pu(P, i) € {£1};

Estimate observable expectation

v=> aq: XLg?éQ)B()P) - (P, supp(Q))
Q )

return v.

Lemma 1. The estimator v from Algorithm[1] satisfies

E(v) = Y aq tr(pQ). (3)
Q

Proof. Let Ep denote the expected value over the distribution S(P). Let E,,(p) denote the expected value over the measure-
ment outcomes for a fixed Pauli basis P. By definition, the expected value in Eq. is a composition of the expected values
over a Pauli basis P and over the measurement outcomes p(P), that is, E = EpE,,p).

Consider Q € {I,X,Y, Z}®". Whenever P € Lift(Q), we observe E,pyu(P,supp(Q)) = tr(pQ).

Combining these observations implies

E(v) = ErEyp)v )
1
=Y ag=~ = EpxLif(Q) (P)Eupyu(P,supp(Q)) (5)
% (@, ) M@ RE)
1
=S ag——— B(P) - tr(pQ) (6)
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For Pauli operators Q, R, define

1 1
9(Q.R,B) = AP o
¢(@Q.B) C(R, B) peLift(%;Lift(R)

This function simplifies greatly when 8 is a product distribution. Specifically, if 8 = []_, #; with 8, : {X,Y,Z} — R™,
then ¢(Q, R, 8) is non-zero only when @, R agree with each-other on A = supp(Q) Nsupp(R) and in which case ¢(Q, R, ) =

(e B:(@1)

Lemma 2. The estimator v from Algorithm[1] satisfies

E(?) =Y agarg(Q, R, B) tr(pQR) (9)
Q,R

Proof. We use the same notation as in the preceding lemma. Consider Q, R € {I, X,Y, Z}®™. As operators, we obtain the
identity
XLife(Q) (P) Xvits(r) (P)

BPl@.8) (R, B)

:g(QaRaﬁ) (10)
and, whenever P € Lift(Q) N Lift(R),

To get the last equality, observe that u(P, A)u(P, A") = p(P, A @ A’) for any subsets of qubits A, A’, where A @ A’ is the
symmetric difference of A and A’. The assumption that P is in the lift of both @ and R implies that supp(Q) @ supp(R) =
supp(QR).

Combining these observations implies

E(v*) = EpE,p)° (12)
7 ZO‘ E XLt (@) (P) XLift(R)(P)E P P R 13
= QQRILp C(Q B) C(R 6) M(P)N( asupp(Q))lu‘( ,Supp( )) ( )

Q R ) )
=Y aqgarg(Q, R, B) tr(pQR) (14)
Q,R
O



