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Predicting many properties of a quantum system
from very few measurements

Hsin-Yuan Huang ©®'2%2, Richard Kueng'?* and John Preskill"#

Predicting the properties of large-scale q y is essential for d quantum t gies. We pres-
ent an efficient method for constructing an approximate classical description of a quantum state using very few measurements
of the state. This description, called a ‘classical shadow’, can be used to predict many different properties; order log (M) mea-
surements suffice to accurately predict M different functions of the state with high success probability. The number of mea-

u is independent of the sy size and saturates infor th tic lower E ds. M , target properties to
predict can be selected after the ts are pleted. We support our theoretical findings with extensive numerical
experiments. We apply cl; I shad to predict g fidelities, entanglement entropies, two-point correlation func-
tions, expectation values of local observables and the energy variance of many-body local Hamiltonians. The numerical results
highlight the ad of classical shad relative to previously known method
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Classical shadows

Given an n qubit state and M expectation values to estimate, how many copies of the state are required?

Today’s notion of a “shadow”:




Classical shadows

IBM Quantum

Given an n qubit state and M expectation values to estimate, how many copies of the state are required?

Today’s notion of a “shadow”:

prepare p

randomly apply unitary
U

from some distribution

measure

in computation basis

And record the outcomes in a classically-efficient data structure.



Random Clifford measurements
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Given an n qubit state and M expectation values to estimate, how many copies of the state are required?

Today’s notion of a “shadow”:

prepare p

randomly apply
Clifford circuit

measure

in computation basis

And record the outcomes in a classically-efficient data structure.



Random Clifford measurements

IBM Quantum

Given an n qubit state and M expectation values to estimate, how many copies of the state are required?

Today’s notion of a “shadow”:

prepare p

randomly apply
Clifford circuit

measure

in computation basis

And record the outcomes in a classically-efficient data structure. (Symplectic representation over F,)



Random Paull measurements
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Given an n qubit state and M expectation values to estimate, how many copies of the state are required?

Today’s notion of a “shadow”:

prepare p

randomly apply

Pauli operator

measure

in computation basis

And record the outcomes in a classically-efficient data structure. (Symplectic representation over F,)



The shallow-circuit measurement problem
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Shallow circuits tor VOE IBM Quantum

Our Hamiltonian will be on n qubits

HZZO&PP P = ®;cn b P el{l,X,Y, Z}
P

Once a state rho has been prepared, no entangling gates may be applied.

Measurement bases willbe B = ®;¢(n) Bi B, € {X,Y, 7}

How does one best choose the choice of measurement bases in order to estimate the energy, given the state,
to accuracy epsilon, with as few as possible preparations of the state?
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Algorithm 1 Estimation of Energy

for measurement m € [M] do
Prepare state p
Choose measurement basis B according to your algorithm

Measure p in basis and estimate Pauli operators
return energy estimate

M Pauli measurements

n qubits

12



Shallow circuits for VOE

Every algorithm’s goal will be to build an unbiased estimator
E(v) = Tr(Hp)
whose single-shot variance is proportional to the required number of preparations of the state

Var(v)
M

E =

IBM Quantum
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Shallow circuits tor H,O on 14 qubits

A back of the envelope demonstration of time-advantages:

Chemical accuracy requires additive-error accuracy of ~ 1 mHartree

IBM Quantum

So if I finally get a candidate density close to the true ground state, how many shots (x10¢) are required to get

an average error of 1 mHartree?
Ell-1 sampling (2015)
LDF grouping* (2017)
Classical shadows (2020)
Locally-biased CS (2020)
Globally-biased CS (2021)
Derandomized CS (2021)
Adaptive Pauli shadows (2021)

Overlapped grouping (2021)

4 400
1000
2800
250
300
15
12
16

Multiply this by how many different guesses
in VQE are required before reaching an
accurate representation of the ground state...
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Other molecules

LiH

BeH,

NH3

JW

BK

BK

JW

BK
JW

BK

Qiskit
55
85
75
140
240
200
1000
2700
2100
900
2600
2150

LBCS
15
30
70
70
130
240
260
430
1400
350
630
380

GBCS
10
15
15
30
40
60
300
430
530

Caltech
1
1
1.6
3.6
8.1
3.6
14
50
40
32
44
14

APS
1.6
2.5
5
3.6
3.6
3.6
12
12
10
16
19
12

IBM Quantum
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Solution 1: Locally-biased classical shadows
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Locally-biased classical shadows

MEASUREMENTS OF QUANTUM HAMILTONIANS WITH LOCALLY-BIASED
CLASSICAL SHADOWS

CHARLES HADFIELD, SERGEY BRAVYI, RUDY RAYMOND, AND ANTONIO MEZZACAPO

ABSTRACT. Obtaining precise estimates of quantum observables is a crucial step of variational
quantum algorithms. We consider the problem of estimating expectation values of molecular
Hamiltonians, obtained on states prepared on a quantum computer. We propose a novel estimator
for this task, which is locally optimised with knowledge of the Hamiltonian and a classical ap-
proximation to the underlying quantum state. Our estimator is based on the concept of classical
shadows of a quantum state, and has the important property of not adding to the circuit depth for
the state preparation. We test its performance numerically for molecular Hamiltonians of increas-
ing size, finding a sizable reduction in variance with respect to current measurement protocols that
do not increase circuit depths.

IBM Quantum
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How do we choose our measurement bases?

M Pauli measurements

n qubits
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How do we choose our measurement bases?

| L
0 0.2 0.4 0.6 0.8 1

Probabilities [ X Y Z

FIGURE 1. Probability distributions over the first 7 of 14 qubits for HoO Hamil-
tonian using the Jordan-Wigner encoding. The probability distributions have been
optimised according to Eq. .
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Locally-biased classical shadows

Can knowledge of the coefficients locally improve random guessing a la classical shadows

B = (H ﬁz‘) AX)Y, Z}" — RT Var(v) < E(v?) = Zapan(P,Q,ﬁ)Tr(PQp)
P,Q
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Locally-biased classical shadows

Can knowledge of the coefficients locally improve random guessing a la classical shadows
B = ( I1 @) {X,Y,Z}" 5 RY Var(v) <E(v?) = Y apagg(P.Q, 8)Tr(PQp)
P,Q

cost(Blpur) = ...
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Locally-biased classical shadows

Can knowledge of the coefficients locally improve random guessing a la classical shadows

B = (H ﬁz‘) AX)Y, Z}" — RT Var(v) < E(v?) = Zapan(P,Q,ﬁ)Tr(PQp)
P,Q

1
tdia — I
costains(9) = DO — 5 p)




Solution 3: Globally-biased classical shadows
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Decision Diagrams for Quantum Measurements with Shallow Circuits

Stefan Hillmich,l’F Charles Hadﬁeld,z’ﬂ Rudy Raymond,3’4’m Antonio Mezzacapo,? and Robert Wille!:®

1 Johannes Kepler University Linz, 4040 Linz, Austria
2IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
3IBM Quantum, IBM Japan, 19-21 Nihonbashi Chuo-ku, Tokyo, 103-8510, Japan
4 Quantum Computing Center, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
°Software Competence Center Hagenberg (SCCH) GmbH, 4232 Hagenberg, Austria

We consider the problem of estimating quantum observables on a collection of qubits, given
as a linear combination of Pauli operators, with shallow quantum circuits consisting of single-
qubit rotations. We introduce estimators based on randomised measurements, which use decision
diagrams to sample from probability distributions on measurement bases. This approach generalises
previously known uniform and locally-biased randomised estimators. The decision diagrams are
constructed given target quantum operators and can be optimised considering different strategies.
We show numerically that the estimators introduced here can produce more precise estimates on
some quantum chemistry Hamiltonians, compared to previously known randomised protocols and
Pauli grouping methods.

IBM Quantum
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Decision diagrams

Figure 6: The Decision Diagram of LBCS

IBM Quantum
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Decision diagrams

Figure 6: The Decision Diagram of LBCS

IBM Quantum

'
£ O RO9Q

Figure 7: The unoptimised decision diagram of
LDF-based Pauli Grouping of Hy (4 qubits) in
Jordan-Wigner encoding
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Decision diagrams

Algorithm 2 Construction of a decision diagram (DD) from Hamiltonian H

Take absolute values of coefficients in H
Merge compatible terms to get reduced positive Pauli list R(H) > Preprocessing
for Each term and coefficient in R(H) do > Initialisation of DD
Take existing path covering the longest prefix of term
Create new edges for remaining Pauli operators up to the last
Create edge to terminal with the last Pauli op and coefficient as edge weight
for Vertex in decision diagram in breadth-first order from terminal do > Normalisation of DD
Calculate sum of weights on out-going edges
Divide weights on out-going edges by sum and multiply sum to in-coming edge weights
for Vertex in decision diagram in breadth-first order from terminal do > Merge equivalent vertices in DD
Calculate hash of vertex and if equivalent vertex exists, merge both
Remove identities in DD
Replace “lonely” identity edges with virtual edges
Remove identity edges where other edge with same source and target exists
Merge targets of identity edges with target vertices of other edge
for Vertex in decision diagram in breadth-first order from terminal do > Merge equivalent vertices in DD
Calculate hash of vertex and if equivalent vertex exists, merge both
return decision diagram

IBM Quantum
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Solution 4: Adaptive Pauli shadows
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ADAPTIVE PAULI SHADOWS FOR ENERGY ESTIMATION

CHARLES HADFIELD

ABSTRACT. Locally-biased classical shadows allow rapid estimation of energies of quantum Hamil-
tonians. Recently, derandomised classical shadows have emerged claiming to be even more accu-
rate. This accuracy comes at a cost of introducing classical computing resources into the energy
estimation procedure. This present note shows, by adding a fraction of this classical comput-
ing resource to the locally-biased classical shadows setting, that the modified algorithm, termed
Adaptive Pauli Shadows is state-of-the-art for energy estimation.

IBM Quantum
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Adaptive Paull shadows

IBM Quantum
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Adaptive Paull shadows

Let’s choose each qubit’s probability on-the-fly.

1

t ia, = P BB
costdiag () XP:O‘P [ L p,zr Bi(P2)

IBM Quantum
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Adaptive Paull shadows

costdiag ()

1

= 2 _—
%O‘P [Tiypzr Bi(P)

Let’s choose each qubit’s probability on-the-fly.

Let’s start with the first qubit:

Cx Cy Cz

cost(f1) = B, (X) + B, (Y) + 5,(2)

Subject to beta being a probability distribution.

IBM Quantum
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Adaptive Paull shadows

costdiag ()

1

= 2 _—
%O‘P [Tiypzr Bi(P)

Let’s choose each qubit’s probability on-the-fly.

Let’s start with the first qubit:

Cx Cy Cz

cost(f51) =

(X)) B(Y) | A(Z)

Subject to beta being a probability distribution.

This cost function has an analytical solution!
Pick the basis B, from this distribution.

IBM Quantum
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Adaptive Paull shadows

costdiag ()

1

= 2 _—
%O‘P [Tiypzr Bi(P)

IBM Quantum

Let’s choose each qubit’s probability on-the-fly.

For ith qubit, only look at Pauli terms for which it is still possible to
provide an estimate upon eventual measurement

cost(f3;) = X s “Z

T BX) B B2
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Adaptive Paull shadows

costdiag ()

1

= 2 _—
%ap [Tiypzr Bi(P)

IBM Quantum

Let’s choose each qubit’s probability on-the-fly.

Algorithm 2 Choice of measurement basis for Adaptive Pauli Shadows

Randomly choose a bijection i : [n] — [n]

for j € [n] do
Set B;;) : B — R+ by solving the optimisation problem in Eq.
Choose B;(;) randomly according to distribution ;)

return B = ®;c[n) Bi.
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Time to run VOE for some molecules

LiH

BeH,

NH3

JW

BK

BK

JW

BK
JW

BK

Qiskit
55
85
75
140
240
200
1000
2700
2100
900
2600
2150

LBCS
15
30
70
70
130
240
260
430
1400
350
630
380

GBCS
10
15
15
30
40
60
300
430
530

Caltech
1
1
1.6
3.6
8.1
3.6
14
50
40
32
44
14

APS
1.6
2.5
5
3.6
3.6
3.6
12
12
10
16
19
12
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