RUELLE ZETA FUNCTION AS PRODUCT OF ZETA FUNCTIONS
OVER FORMS

CHARLES HADFIELD

ABSTRACT. The standard calculation turning a Ruelle zeta function into a product
of zeta functions over differential forms.

1. THE CALCULATION

Let X be a negatively curved closed manifold of dimension n + 1. The Selberg zeta
function is

Cs(A) = H H (1 — e_()‘HMW#)
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and the Ruelle zeta function is
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which converge for Re A > 1. Here, the product is over all primitive geodesics, denoted
~#, and {.+ denotes the length of a given primitive geodesic v#. Closed geodesics (not
necessarily primitive) are denoted simply as 7.

Denoting by P, the linearised Poincaré map associated with a closed geodesic v, we
remark

|det(I —P,)| = (—1)" det(I — P,)

as dim £, = n. Where E, is the stable subbundle of T*M and M = S*Y is the unit
cotangent bundle of the original manifold ¥. Linear algebra (of endomorphisms on
C?") implies
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The Ruelle zeta function may be developed as:

log (r(A Z log(1 — %)
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The following function is meromorphic:
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Restricting to the case that X is a surface implies
G(A)
3\) = R\
T = GG

and the zero of (g at A = 0 has multiplicity given by m;(0) — mg(0) — m2(0) where
my(A) is the multiplicity of the zero of (x(\).
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