RUELLE ZETA FUNCTION AS PRODUCT OF ZETA FUNCTIONS OVER FORMS

CHARLES HADFIELD

ABSTRACT. The standard calculation turning a Ruelle zeta function into a product of zeta functions over differential forms.

1. The Calculation

Let Σ be a negatively curved closed manifold of dimension n + 1. The Selberg zeta function is

$$\zeta_S(\lambda) := \prod_{\gamma^{\#}} \prod_{k \in \mathbb{N}_0} \left(1 - e^{-(\lambda+k)\ell_{\gamma^{\#}}} \right)$$

and the Ruelle zeta function is

$$\zeta_R(\lambda) := \prod_{\gamma^{\#}} \left(1 - e^{-\lambda \ell_{\gamma^{\#}}} \right)$$

which converge for Re $\lambda \gg 1$. Here, the product is over all primitive geodesics, denoted $\gamma^{\#}$, and $\ell_{\gamma^{\#}}$ denotes the length of a given primitive geodesic $\gamma^{\#}$. Closed geodesics (not necessarily primitive) are denoted simply as γ .

Denoting by \mathcal{P}_{γ} the linearised Poincaré map associated with a closed geodesic γ , we remark

$$|\det(I - \mathcal{P}_{\gamma})| = (-1)^n \det(I - \mathcal{P}_{\gamma})$$

as dim $E_s = n$. Where E_s is the stable subbundle of T^*M and $M = S^*\Sigma$ is the unit cotangent bundle of the original manifold Σ . Linear algebra (of endomorphisms on \mathbb{C}^{2n}) implies

$$\det(I - \mathcal{P}_{\gamma}) = \sum_{k=0}^{2n} (-1)^k \operatorname{tr} \wedge^k \mathcal{P}_{\gamma}.$$

The Ruelle zeta function may be developed as:

$$\log \zeta_R(\lambda) = \sum_{\gamma^{\#}} \log(1 - e^{-\lambda \ell_{\gamma^{\#}}})$$

$$= -\sum_{\gamma^{\#}} \sum_{k=1}^{\infty} \frac{1}{k} e^{-\lambda k \ell_{\gamma^{\#}}}$$

$$= -\sum_{\gamma} \frac{\ell_{\gamma^{\#}}}{\ell_{\gamma}} e^{-\lambda \ell_{\gamma}}$$

$$= \left(\frac{(-1)^n \sum_{k=0}^{2n} (-1)^k \operatorname{tr} \wedge^k \mathcal{P}_{\gamma}}{|\det(I - \mathcal{P}_{\gamma})|} \right) \left(-\sum_{\gamma} \frac{\ell_{\gamma^{\#}}}{\ell_{\gamma}} e^{-\lambda \ell_{\gamma}} \right)$$

$$= \sum_{k=0}^{2n} (-1)^{n+k+1} \sum_{\gamma} \frac{\operatorname{tr} \wedge^k \mathcal{P}_{\gamma}}{|\det(I - \mathcal{P}_{\gamma})|} \frac{\ell_{\gamma^{\#}}}{\ell_{\gamma}} e^{-\lambda \ell_{\gamma}}$$

$$= \sum_{k=0}^{2n} (-1)^{n+k} \log \zeta_k(\lambda)$$

where

$$\log \zeta_k(\lambda) = -\sum_{\gamma} \frac{\operatorname{tr} \wedge^k P_{\gamma}}{|\det(I - \mathcal{P}_{\gamma})|} \frac{\ell_{\gamma^{\#}}}{\ell_{\gamma}} e^{-\lambda\ell_{\gamma}}.$$

The following function is meromorphic:

$$\frac{\zeta_k'(\lambda)}{\zeta_k(\lambda)} = \frac{d}{d\lambda} \log \zeta_k(\lambda) = \sum_{\gamma} \frac{e^{-\lambda \ell_{\gamma}} \ell_{\gamma^{\#}} \operatorname{tr} \wedge^k P_{\gamma}}{|\det(I - \mathcal{P}_{\gamma})|}$$

Restricting to the case that Σ is a surface implies

$$\zeta_R(\lambda) = rac{\zeta_1(\lambda)}{\zeta_0(\lambda)\zeta_2(\lambda)}$$

and the zero of ζ_R at $\lambda = 0$ has multiplicity given by $m_1(0) - m_0(0) - m_2(0)$ where $m_k(\lambda)$ is the multiplicity of the zero of $\zeta_k(\lambda)$.