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Abstract. We study the Ruelle zeta function at zero for negatively curved ori-
ented surfaces with boundary. At zero, the zeta function has a zero and its multi-
plicity is shown to be determined by the Euler characteristic of the surface. This
is shown by considering certain Ruelle resonances and identifying their multiplicity
with dimensions of the relative cohomology of the surface.

1. Introduction

Consider a compact smooth Riemannian surface (Σ, g) without boundary and ev-
erywhere strictly negative curvature. The Ruelle zeta function [Rue76] provides a
differential geometric analogy to the Riemann zeta function by replacing a count over
primes with a count over primitive closed geodesics {γ#} whose respective lengths
are {T#

γ }:

ζR(λ) :=
∏
γ#

(
1− e−λT

#
γ

)
.

Negative curvature implies this product converges for Reλ� 1.
This zeta function is related to the Selberg zeta function [Sel56, Sma67]

ζR(λ) =
ζS(λ)

ζS(λ+ 1)
, ζS(λ) :=

∏
γ#

∏
k∈N0

(
1− e−(λ+k)T#

γ

)
so results may be translated between the two settings. We will consider only the
Ruelle zeta function.

The meromorphic extension of this zeta function has long been known in the setting
of constant curvature thanks to the relationship with the Selberg zeta function [Fri86].
Only recently however has the meromorphic extension been obtained in the setting
of variable curvature. This result first appeared in [GLP13] and soon after, using a
microlocal approach, in [DZ16]. In the constant curvature setting, the zeta function
vanishes at λ = 0 and its order of vanishing is −χ(Σ) where χ(Σ) is the Euler
characteristic of the surface [Fri86]. This result holds true in variable curvature
indicating the topological invariance of the order of vanishing of the zeta function at
the origin [DZ17]. Unlike the constant curvature setting [Fri86, DGRS20], the value
of the first non-trivial term in the power series representation of the zeta function
about the origin is not understood in the variable curvature setting.
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Consider now a compact connected Riemannian surface (Σ, g) with strictly convex
boundary ∂Σ and everywhere strictly negative curvature. In this open setting, one
defines the Ruelle zeta function exactly as in the closed case. Strict convexity of the
boundary is geometrically appealing as it ensures that closed geodesics do not touch
the boundary. Again, negative curvature implies the convergence of the product for
Reλ� 1.

For constant curvature, the meromorphic extension of the zeta function has also
been understood via the Selberg zeta function and its order of vanishing at λ = 0 is
1−χ(Σ) [PP01, BJP05]. See also [Bor16, GHW18]. (The one exception to this is if the
surface has vanishing Euler characteristic. In this case, the surface is a hyperboloid
and the zeta function is a finite product consisting of the two primitive geodesics –
of equal length but opposite direction – hence the zeta function has a zero of order 2
at the origin.)

For variable curvature, the zeta function has a meromorphic extension due to
[DG16] which considerably extends the microlocal analysis performed in [DZ16] by
analysing dynamics at both spatial and frequency infinities. This result allows us to
consider the zeta function near the origin. Here, we show that the result concern-
ing the order of vanishing discovered in the constant curvature setting holds true in
variable curvature.

Theorem. Let (Σ, g) be an oriented connected Riemannian surface of negative cur-
vature with strictly convex boundary and negative Euler characteristic χ(Σ). Then
the Ruelle zeta function ζR(λ) has a zero at λ = 0 of multiplicity precisely 1− χ(Σ).

As with the closed setting, the attractive problem of studying the precise value of
the first non-trivial term in the power series representation remains untouched.

We conclude this introduction explaining the method. We also comment on the
closed setting for context.

Consider Σ a negatively curved compact surface with strictly convex boundary.
Let M = S∗Σ be the unit cotangent bundle, ϕt : M → M the geodesic flow, and
X ∈ C∞(M ;TM) the generator of said flow. Let ΛkT ∗0M be the kernel of ιX inside
ΛkT ∗M . The results of [DG16] imply that one may construct the resolvents

(LX + λ)−1 : L2(M ; ΛkT ∗0M)→ L2(M ; ΛkT ∗0M)

which are well-defined for Reλ � 1 and which extend meromorphically to λ ∈ C
(upon a delicate change in the domain and range of said operators). For fixed
k ∈ {0, 1, 2} and a pole λ of the meromorphic extension of the resolvent, the associ-
ated residue is a projection operator of finite rank whose image defines (generalised)
resonant states. These are distributions (or currents for k > 0) satisfying certain
wave-front conditions, support conditions, and are in the kernel of some power of
LX + λ. Simultaneously the rank of the projection operator is precisely the order of
vanishing at λ for a certain zeta function ζk associated with LX acting on ΛkT ∗0M .



ZETA FUNCTION AT ZERO 3

The relevance of this result is via a factorisation of ζR giving

ζR(λ) =
ζ1(λ)

ζ0(λ)ζ2(λ)

hence one can study the order of vanishing of ζR by studying the space of generalised
resonant states. Before proceeding, we remark that in all cases of interest, the poles at
λ = 0 are simple hence all generalised resonant states are in the kernel of LX (rather
than a power thereof); a result known in [DZ17] as semisimplicity to which we will
return shortly. Due to semisimplicity, we drop the adjective generalised. Denote by
mk(0) the multiplicity of the zero of ζk at λ = 0.

Remark 1. Let us briefly comment on the closed manifold setting of [DZ17]. Resonant
states at λ = 0 are

{u ∈ D′(M ; ΛkT ∗0M) : WF(u) ⊂ E∗u,LXu = 0}.
Here, E∗u is the unstable subbundle of T ∗M associated with the Anosov flow X. For
k = 0, the only possible resonant states are constant functions. Moreover, if α denotes
the contact form associated with X then an algebraic argument using dα, which is
parallel with respect to LX , immediately implies m2(0) = m0(0). Hence m0(0) = b0

and m2(0) = b2, where bk are the Betti numbers of Σ. A slightly more difficult task
is identifying m1(0) with dimH1(M) (which by Gauss-Bonnet is equal to b1). Up to
a semisimplicity argument, the result follows.

Returning to the present setting of an open manifold. Resonant states at λ = 0 are

{u ∈ D′(M ; ΛkT ∗0M) : supp(u) ⊂ Γ+,WF(u) ⊂ E∗+,LXu = 0}.
Here, Γ+ is the set of points trapped in M in backward time with respect to ϕt, and
E∗+ is an extension of the unstable bundle E∗u (which is only defined on the trapped
set) from the trapped set to Γ+. Due to negative curvature, the volume V (t) of points
in M which remain in M after application of ϕt decreases exponentially with respect
to time. For k = 0 this implies (LX + λ)−1 does not have a pole at λ = 0. Hence
m0(0) = 0. The same algebraic argument from the closed setting using dα then
implies m2(0) = 0. It remains to study the space of resonant states for k = 1. This
is done by considering relative cohomology and building an isomorphism between
the space of resonant states and H1(M,∂M). A key analytic construction allowing
this identification is Lemma 6 providing a step between resonant states which are
currents and smooth differential forms. (Gauss-Bonnet and Lefschetz duality then
imply m1(0) = 1− χ(Σ).)

The final step is showing simplicity of the pole at λ = 0 for k = 1. This requires a
regularity result very much in the spirit of [DZ17, Lemma 2.3] however the argument
requires a subtle adaption using ideas from [DG16].

Acknowledgements. I would like to thank S. Dyatlov and M. Zworski for the many
fruitful discussions surrounding this project including many patient explanations of
the finer points in their relevant previous work.
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2. Notation

2.1. Geometry. Let (Σ, g) be an oriented connected Riemannian surface of negative
curvature with strictly convex boundary ∂Σ. We will also denote by g, the genus of
Σ, and by n, the number of connected components of the boundary. The Euler
characteristic of Σ is χ(Σ) = 2− 2g − n which we take to be negative. Denote by M
the unit cotangent bundle of Σ:

M := S∗Σ = {(y, η) ∈ T ∗Σ : g(η, η) = 1}.

Let α ∈ Ω1(M) be the pull-back of the canonical one-form on T ∗M . Then α is a
completely non-integrable contact form and we set

dvolM := α ∧ dα.

The associated Reeb vector field X ∈ C∞(M ;TM), which is uniquely determined by

ιXα = 1, ιX(dα) = 0,

is the generator of the geodesic flow ϕt : M →M .
Let Σch denote the convex hull of Σ. That is, the boundary of Σch is totally geodesic.

Set Mch := S∗Σch.
We construct a global frame for T ∗M [ST67, GK80]. Denote by V ∈ C∞(M ;TM)

the generator of the S1 fibres of M over Σ. If we denote by e
π
2
V : M → M the map

given by anticlockwise rotation by π/2 in the S1 fibres, then define

β := (e
π
2
V )∗α ∈ Ω1(M).

Complete the frame by denoting the connection one-form ω ∈ Ω1(M). This is the
unique one-form satisfying

ιV ω = 1, dα = ω ∧ β, dβ = α ∧ ω.

Note that dvolM = α∧ dα = −α∧ β ∧ω, that dω = Kα∧ β where K is the Gaussian
curvature of the surface, and that α ∧ β is the pull-back of the area form dvolΣ
determined by the metric g.

2.2. Topology. We use relative cohomology à la Bott and Tu [BT82]. The vector
spaces are Ωk(M)⊕ Ωk−1(∂M) with differential

d(v(k), h(k−1)) := (dv(k), j∗v(k) − dh(k−1))

where j : ∂M →M is inclusion. The cohomology spaces are denoted Hk(M,∂M).
The first homology group of Σ is of rank 2g + n− 1 = 1− χ(Σ). Lefschetz duality

then implies H1(Σ, ∂Σ) is also of rank 1−χ(Σ). The Gauss-Bonnet theorem provides

Lemma 2. Let Σ be an oriented connected surface with boundary whose Euler char-
acteristic is negative. Then H1(M,∂M) has rank 1−χ(Σ) where M := (T ∗Σ\0)/R+.
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Proof. We may suppose the surface has a metric whose boundary is totally geodesic,
thus we prove the proposition using (Σch, g) andMch. We denote by π : Mch → Σch the
projection and show that π∗ : H1(Σch, ∂Σch) → H1(Mch, ∂Mch) is an isomorphism.
Let j denote both inclusions ∂Σch ↪→ Σch and ∂Mch ↪→ Mch. As ∂Σch is totally
geodesic, the Gauss-Bonnet theorem reads simply∫

Σch

KdvolΣ = 2πχ(Σ).

Injectivity. Let [(w, k)] ∈ H1(Σch, ∂Σch) satisfy π∗[(w, k)] = 0. That is, there exists
f ∈ Ω0(Mch) for which π∗w = df and π∗k = j∗f . Vertical fibres are generated by V

and we note LV f = df(V ) = (π∗w)(V ) = w(π∗V ) = 0 so f = π∗f̃ for f̃ ∈ Ω0(Σch).

Therefore w = df̃ and k = j∗f̃ whence (w, k) is the Bott and Tu differential of f̃ and
so [(w, k)] = 0.

Surjectivity. Let [(v, h)] ∈ H1(Mch, ∂Mch) and we search for a candidate [(w, k)] ∈
H1(Σch, ∂Σch). It suffices to find f ∈ Ω0(M) such that ιV v = −LV f . (This condition
and dv = 0 imply that v + df ∈ π∗Ω1(Σch), from which we obtain v = π∗w − df .
Similarly, as this condition implies LV (h+j∗f) = 0, we may define k by h = π∗k−j∗f .
Therefore (v − π∗w, h − π∗k) is given by the Bott and Tu differential of −f .) Such
an f may be constructed if v integrates to zero over the S1 fibres. We denote this
integration as π∗v and remark that π∗v is constant by Stokes’ theorem since all fibres
are homotopic. Lifting the Gauss-Bonnet formula to Mch gives

2πχ(Σ) · π∗v =

∫
Mch

Kv ∧ α ∧ β =

∫
Mch

−v ∧ dω =

∫
∂Mch

v ∧ ω =

∫
∂Mch

dh ∧ ω.

To complete the calculation, we take local coordinates for one component of ∂Mch.
Near such a component, the manifold appears as [0, 1]ρ× ∂Mch ' [0, 1]ρ× ∂Σ× S1 '
[0, 1]ρ × S1

t × S1
θ. And as ∂Σch is a geodesic boundary, j∗ω = dθ. Therefore dh ∧ ω is

the total derivative d(hω) hence vanishes upon integration over ∂Mch. As the Euler
characteristic does not vanish, we conclude π∗v = 0 as required. �

2.3. Dynamics. Let ρ be a boundary defining function on M (that is, ρ ∈ C∞(M)
such that ρ > 0 on M◦, ρ = 0 on ∂M , and dρ 6= 0 on ∂M). We suppose that ∂M is
strictly convex with respect to X. That is, we have have the implication

x ∈ ∂M, (Xρ)(x) = 0 =⇒ (X2ρ)(x) < 0,

(which is independent of the chosen boundary defining function). The boundary ∂M
decomposes into incoming/tangent/outgoing directions:

∂M = ∂−M ∪ ∂0M ∪ ∂+M

where

∂±M := {x ∈ ∂M : ±dρ(Xx) < 0}, ∂0M := {x ∈ ∂M : dρ(Xx) = 0}.
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Define the outgoing/incoming tails Γ± ⊂M and the trapped set K by

Γ± :=
⋂
±t≥0

ϕt(M), K := Γ+ ∩ Γ−.

The flow is hyperbolic on K. That is, there exists a continuous splitting with respect
to x ∈ K of the cotangent bundle into neutral/stable/unstable bundles each of rank
1 and which is invariant under the flow:

T ∗xM = E∗n(x)⊕ E∗s (x)⊕ E∗u(x), E∗n(x) = Rα.

Given a scalar product on T ∗M , there are constants C1, C2 > 0 such that

|ϕ−t∗ξ| ≤ C1e
−C2|t||ξ|,

{
ξ ∈ E∗s t ≥ 0;

ξ ∈ E∗u t ≤ 0.

The bundles E∗s , E
∗
u may be extended to Γ−,Γ+, respectively. Specifically, there exist

subbundles of rank 1, E∗± ⊂ T ∗Γ±M , which are in the annihilator of X, invariant under
the flow, depend continuously on x ∈ Γ±, and E∗+|K = E∗u and E∗−|K = E∗s . Moreover,
if x ∈ Γ± and ξ ∈ E∗±, then as t→ ∓∞,

|ϕ−t∗ξ| ≤ C ′1e
−C′2|t||ξ|

for constants C ′1, C
′
2 independent of (x, ξ) [DG16, Lemma 1.10].

Upon restriction to ∂M , the tails Γ± are contained in ∂±M . Using a metric on M ,
giving a distance function d(·, ·), define

Γδ± := {x ∈M : d(Γ±, x) ≤ δ}.

By taking δ sufficiently small, we may assume that

Γδ± ∩ ∂M ⊂ ∂±M.

3. Zeta function and Pollicott-Ruelle resonances

3.1. Zeta functions. Let {γ} denote the set of geodesics in M and let {γ#} denote
the set of primitive geodesics. Given a geodesic γ, denote respectively by Tγ and T#

γ

the length of γ and the length of the corresponding primitive geodesic. The Ruelle
zeta function is denoted

ζR(λ) :=
∏
γ#

(
1− e−λT

#
γ

)
Denote by T ∗0M the subbundle of TM which annihilates X. The pullback ϕt

∗ respects
the splitting TM = Rα⊕T ∗0M . Given a geodesic γ of length Tγ and a point x ∈ γ ⊂
M , we introduce the linearised Poincaré map

Pγ,x := ϕ−Tγ
∗ : (T ∗0M)x → (T ∗0M)x.
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As the endomorphism is conjugate to any other Pγ(x′) for x′ ∈ γ, its determinant and
trace are independent of x and under such circumstances we will drop the notation
of x. We have the following (linear algebra) expression:

det (I − Pγ) =
2∑

k=0

(−1)k tr ΛkPγ.

A standard manipulation using the preceding expression (as well as the Taylor series
for log(1− x) and, more subtly, the orientability of the stable and unstable bundles)
converts the Ruelle zeta function into an alternating product of zeta functions:

ζR(λ) =
ζ1(λ)

ζ0(λ)ζ2(λ)

where

log ζk(λ) := −
∑
γ

T#
γ e
−λTγ tr ΛkPγ

Tγ |det(I − Pγ)|
.

3.2. Pollicott-Ruelle resonances. The Lie derivative with respect to X acting on
Ωk(M) respects the decomposition T ∗M = Rα ⊕ T ∗0M . Restricting to T ∗0M , we
consider the transfer operator

e−tLX : C∞0 (M ; ΛkT ∗0M)→ C∞(M ; ΛkT ∗0M).

Given f ∈ C∞(M), u ∈ C∞(M ; ΛkT ∗0M), we have LX(fu) = (LXf)u+ f(LXu) from
which the transfer operator satisfies

e−tLX (fu) = (ϕ∗−tf)(e−tLXu).

(The flow is not complete on the manifolds with boundary considered in this text. We
avoid this irritation by interpreting ϕ∗−t at x ∈M as the zero-operator whenever there
is 0 ≤ T ≤ t such that ϕT (x) ∈ ∂M .) After having fixed a smooth inner product on
T ∗0M (not necessarily invariant under the flow), we have

e−tLX : L2(M ; ΛkT ∗0M)→ L2(M ; ΛkT ∗0M).

Due to the existence of C0 > 0 such that

‖e−tLX‖L2(M ;ΛkT ∗0M)→L2(M ;ΛkT ∗0M) ≤ eC0t, t ≥ 0,

we may define the resolvent (LX + λ)−1 on L2(M ; ΛkT ∗0M) for Reλ > C0 by the
formula

(LX + λ)−1 :=

∫ ∞
0

e−t(LX+λ)dt.

A principal result of [DG16], is that the restricted resolvent

Rk(λ) = (LX + λ)−1 : C∞0 (M ; ΛkT ∗0M)→ D′(M ; ΛkT ∗0M)
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has a meromorphic continuation to C whose poles are of finite rank. The poles of
which are called Pollicott-Ruelle resonances. Moreover, for each λ0 ∈ C, we have the
expansion

Rk(λ) = RH
k (λ) +

J(λ0)∑
j=1

(−1)j−1(LX + λ0)j−1Πλ0

(λ− λ0)j

where RH
k is holomorphic near λ0 and

Πλ0 : C∞0 (M ; ΛkT ∗0M)→ D′(M ; ΛkT ∗0M)

is a finite rank projector. The range of Πλ0 defines generalised resonant states. They
are characterised as

Resk(λ0) := Ran Πλ0

= {u ∈ D′(M,ΛkT ∗0M) : supp(u) ⊂ Γ+,WF(u) ⊂ E∗+, (LX + λ0)J(λ0)u = 0}.

A generalised resonant state is called simply a resonant state if it is in ker(LX + λ0).
Similarly, if J(λ0) = 1 then the pole is simple and the adjective “generalised” is su-
perfluous. Finally, it is shown that poles of the meromorphic continuation correspond
to zeros of the zeta function ζk, and that the rank of the projector Πλ0 equals the
multiplicity of the zero, denoted mk(λ0).

Let T (t) ⊂M◦ be the set of points x ∈M◦ such that ϕ−s(x) ∈M◦ for all s ∈ [0, t],
and let V (t) := Vol(T (t)) be the non-escaping mass function. In our setting, the
escape rate

Q := lim sup
t→∞

1

t
log V (t)

is strictly negative [Gui17, Proposition 2.4] thanks to the hyperbolicity of the trapped
set, and the strict convexity of the boundary. Hence V (t) decays exponentially fast
and [Gui17, Propostion 4.4] provides

Proposition 3. The resolvent R0(λ) does not have a pole at λ = 0.

We observe that Res2(0) = {0}. Indeed, suppose that u(2) ∈ Res2(0) is a resonant
state, that is LXu(2) = 0. Since Λ2T ∗0M = Rdα, we have u(2) =: u(0)dα for u(0) ∈
D′(M) with supp(u(0)) ⊂ Γ+ and WF(u(0)) ⊂ E∗+. Moreover LXu(0) = 0 because

LXdα = 0 hence u(0) ∈ Res0(0) = {0}. We have proved

Proposition 4. The resolvent R2(λ) does not have a pole at λ = 0.

In Sections 5, 6, we prove

Proposition 5. The resolvent R1(λ) has a simple pole at λ = 0.



ZETA FUNCTION AT ZERO 9

Assuming Proposition 5, we note that Res1(0) consists only of resonant states:

Res1(0) = {u ∈ D′(M,T ∗0M) : supp(u) ⊂ Γ+,WF(u) ⊂ E∗+,LXu = 0}.

and the Theorem follows if we can show

dim Res1(0) = dimH1(M,∂M).

4. Identification of resonances with relative cohomology

4.1. Construction of map. We begin with an analytical result to be proved in
Section 6

Lemma 6. Let u ∈ Res1(0). There exists f ∈ D′(M) and v ∈ Ω1(M) such that

supp(f) ⊂ Γδ+, WF(f) ⊂ E∗+, LXf ∈ C∞0 (M),

and v = u− df with v ∈ ker d.

Here, Ω•(M) are smooth differential forms up to, and including on, the boundary,
while C∞0 (M) denotes smooth functions whose support is contained in the interior of
M .

In order to identify a candidate relative cohomology class, consider u ∈ Res1(0),
and construct v, f as in Lemma 6. We seek an h ∈ Ω0(∂M) such that [(v, h)] ∈
H1(M,∂M). To this end we first prove

Lemma 7. For u ∈ Res1(0) the constructed v = u−df ∈ Ω1(M) of Lemma 6 is exact
upon pull-back to ∂M .

Proof. We simplify the exposition by supposing ∂M consists of a single connected
component (which is isomorphic to a torus). Noting that π1(∂M) = π1(∂Σ)×π1(S1) =
Z2, it then suffices to show that

∫
γi
v = 0 where γ1, γ2 are two simple closed curves

which generate π1(∂M). Take γ1 to be the curve which corresponds to the generator
of π1(∂Σ), and γ2 corresponding to the S1 fibre.

We now take local coordinates similar to Lemma 2. For the moment, we work near
∂M rather than ∂Mch. The manifold appears as [0, 1]× ∂Σ× S1 ' [0, 1]ρ × S1

t × S1
θ.

We may also identify the θ coordinate with the dynamical properties: ∂+M = {0 <
θ < π}, ∂−M = {π < θ < 2π}.

We may choose γ1 such that γ1(ρ, t, θ) = γ1(0, t, 3π
2

) so that its image is entirely

contained in ∂−M . As the restrictions of u, f are contained in Γ+,Γ
δ
+ ⊂ ∂+M respec-

tively, we obtain immediately ∫
γ1

v = 0.

In order to show
∫
γ2
v also vanishes, we work with Mch. Recall the push-forward

map π∗ : Ω1(M) → Ω1(Σ) which, as π, j commute, provides a push-forward π∗ :
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Ω1(∂Mch) → Ω1(∂Σch). As the S1 fibres are homotopic to each other,
∫
γ2
v = π∗v.

Gauss-Bonnet over Σch lifts to Mch as in Lemma 2:

2πχ(Σ) · π∗v =

∫
Mch

−v ∧ dω =

∫
∂Mch

v ∧ ω.

With coordinates [0, 1]ρ × S1
t × S1

θ, the curvature form restricted to ∂Mch is simply
dθ. Therefore, writing v = vρdρ+ vtdt+ vθdθ,

2πχ(Σ) · π∗v =

∫
∂Mch

vtdt ∧ dθ =

∫ 2π

0

(∫ 2π

0

vtdt

)
dθ =

∫ 2π

0

0dθ = 0

because
∫ 2π

0
vtdt vanishes from the prior calculation showing

∫
γ1
v = 0. As χ(Σ) < 0,

we conclude ∫
γ2

v = 0.

Therefore [j∗v] = 0 ∈ H1(∂M) implying the existence of the required h ∈ Ω0(∂M)
such that j∗v = dh. �

Remark 8. The previous lemma ensures that it is possible to define an h ∈ Ω0(∂M)
such that [(v, h)] ∈ H1(M,∂M). However there are n − 1 degrees of freedom in the
choice of h due to the n connected components of ∂M . (An overall constant would not
be seen by relative cohomology.) These degrees of freedom are fixed by the following
declaration: The form j∗v has support contained in Γδ+ ⊂ ∂+M therefore dh = 0 on
∂−M and is therefore constant on ∂−M . We declare that h must be chosen to vanish
on ∂−M whence we may assume supp(h) ⊂ ∂+M .

Proposition 9. Lemma 6, Lemma 7, and Remark 8 establish a well-defined map

Res1(0) 3 u 7−→ [(v, h)] ∈ H1(M,∂M).

Proof. Suppose Lemma 6 provides fi and vi = u− dfi for i ∈ {1, 2}. Then Lemma 7
and Remark 8 provide hi with j∗vi = dhi and hi vanish on ∂−M . We aim to construct
k ∈ Ω0(M) such that

(dk, j∗k) = (v1 − v2, h1 − h2)

in order to verify that the relative cohomology class is independent of the choices
made.

Set k := f2 − f1. As dk = v1 − v2 is smooth, we conclude k itself is smooth. Next,

d(j∗k) = j∗d(f2 − f1) = j∗(v1 − v2) = d(h1 − h2)

so j∗k = h1 − h2 + c where c is a function constant on each connected component of
∂M . As hi vanish on ∂−M and supp(k) ⊂ Γδ+, we conclude the function c is the zero
function. �
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4.2. Injectivity. Given the notation established from the previous subsection, sup-
pose that for a given u ∈ Res1(0), we obtain [(v, h)] = 0 ∈ H1(M,∂M). This implies
the existence of k ∈ Ω0(M) whose Bott and Tu differential gives (v, h). That is,
(dk, j∗k) = (v, h). This implies that u = d(f + k). However as u vanishes away
from Γ+, we know that f + k is smooth on M\Γ+ and, as LX(f + k) = ιXu = 0,
we also know that f + k is constant on each connected component of M\Γ+. There
are n connected components of M\Γ+ and each component may be identified with
the n connected components of ∂−M (upon following geodesics in backward time
until they reach the boundary). So the value of f + k on a connected component is
determined by its value upon restriction to the corresponding component of ∂−M .
Now supp(f) ⊂ Γδ+ and j∗k = h which by Remark 8 vanishes on ∂−M . Therefore
f + k = 0 on M\Γ+ and upon observing

supp(f + k) ⊂ Γ+, WF(f + k) ⊂ E∗+, LX(f + k) = ιXu = 0,

we conclude f + k ∈ Res0(0) = {0} hence u = 0.

4.3. Surjectivity. Consider an element of H1(M,∂M). Suppose it takes the form

[(ṽ, h̃)]. We first remark that h̃ may be extended to a smooth function on M whose
Bott and Tu differential gives 0 ∈ H1(M,∂M) and which may be subtracted from
our original element. We may therefore assume the element of H1(M,∂M) takes the
form [(ṽ, 0)] for some modified ṽ.

By [Gui17, Section 4], there exists f̃ ∈ D′(M) with WF(f̃) ⊂ E∗+ subject to the
boundary value problem {

LX f̃ = −ιX ṽ;

f̃ |∂−M = 0.

Set u := ṽ + df̃ . Immediately, ιXu = 0 and since ṽ is closed, LXu = 0. It remains to
obtain a support condition on u to conclude that u is a resonant state. To this end,
consider a point x ∈ ∂−M and U a neighbourhood in ∂−M of x. Locally near x, X
is transversal to ∂−M and is incoming. We may thus consider a chart [0, ε)ρ × U(t,θ)

on which X takes the form ∂ρ. Writing

u|[0,ε)×U = uρdρ+ utdt+ uθdθ

we see that uρ = 0 (since ιXu = 0) and that ut, uθ are independent of ρ (since du = 0).
So ut, uθ are determined by their values on {0}×U but by the initial condition of the
boundary value problem

j∗u|∂−M = j∗(ṽ + df̃)|∂−M = d(0 + j∗f̃)|∂−M = 0.

Therefore u vanishes on a neighbourhood of any point in ∂−M . Moreover u is smooth
away from Γ+ and in the kernel of LX . Therefore supp(u) ⊂ Γ+ hence u ∈ Res1(0).

To be completely at peace, we ought check that u gives back the original cohomology
element following Proposition 9. The argument is that of the proof of Proposition 9:
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Suppose Lemma 6 provides f and v = u− df . Then Lemma 7 and Remark 8 provide
h with j∗v = dh and h vanishes on ∂−M . We must construct k ∈ Ω0(M) such that

(dk, j∗k) = (v − ṽ, h).

Set k := f̃ − f . As dk = v − ṽ is smooth, so too is k. Also d(j∗k) = dh and both k
and h vanish on ∂−M so j∗k = h.

5. Semisimplicity

Proposition 5 states that that the pole of R1(λ) at λ = 0 is simple. The proof
consists of two parts; a microlocal argument and a geometric argument. Lemma 10
announces the microlocal result and is proved in Section 6.

Lemma 10. Let f ′ ∈ D′(M) with WF(f ′) ⊂ E∗+, supp(j∗f ′) ⊂ ∂+M , and LXf ′ ∈
C∞0 (M). If

Re

∫
M

(LXf ′) f ′ dvolM = 0,

then f ′ ∈ C∞0 (M).

Consider a generalised resonant state ũ associated with the resonance λ = 0. That
is, ũ ∈ D′(M ;T ∗0M) with supp(ũ) ⊂ Γ+ and WF(ũ) ⊂ E∗+. In order to show that
all generalised resonant states are true resonant states it suffices to assume L2

X ũ = 0
and show that LX ũ = 0. To this end suppose u := LX ũ ∈ kerLX .

We start by observing α ∧ u is exact. Define f̃ by f̃dvolM := α ∧ dũ. Then
(LX f̃)dvolM = α ∧ du = 0 since du ∈ Res2(0) = {0}. So LX f̃ = 0 hence f̃ ∈
Res0(0) = {0}. We conclude that α ∧ dũ vanishes. Applying ιX to this expression
yields 0 = ιX(α ∧ dũ) = dũ− α ∧ LX ũ hence α ∧ u is indeed exact:

dũ = α ∧ u.
As u ∈ kerLX , we consider a representative of the relative cohomology class ob-

tained from u as constructed in Section 4. Following Section 4, introduce f ∈ D′(M),
v ∈ Ω1(M), and h ∈ C∞(∂M) such that

supp(f) ⊂ Γδ+, WF(f) ⊂ E∗+, LXf ∈ C∞0 (M),

and v = u − df with j∗v = dh. Note dv = 0 and supp(ιXv) ⊂ M◦. Moreover
supp(h) ⊂ ∂+M by Remark 8.

We extend h to h′ ∈ C∞(M) such that LXh′ ∈ C∞0 (M) and j∗h′ = h in the
following way. Let U ⊂ ∂M be open and relatively compact in ∂+M such that
supp(h) ⊂ U . As X is transversal and outgoing on U , there exists a chart

[0, ε)ρ × U(t,θ) ⊂M

on which X = −∂ρ. Consider a cutoff χ ∈ C∞([0, ε); [0, 1]) with supp(χ) ⊂ [0, ε/2]
and χ|[0,ε/3] = 1. Now define h′ ∈ C∞(M) by declaring

h′(ρ, t, θ) := χ(ρ) · h(t, θ)
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on [0, ε) × U and h′ = 0 elsewhere. Then h′ has the desired properties. We remark
[(dh′, h)] = 0 in H1(M,∂M) since (dh′, h) is the Bott and Tu differential of h′.

Motivated by the equality [(v, h)] = [(v, h)]− [(dh′, h)], set

f ′ := f + h′, v′ := u− df ′ = v − dh′.
Now v′ is compactly supported in M◦. The argument is precisely that as given for
the form u in Subsection 4.3 on surjectivity. We use that ιXv

′ = −LXf ′ ∈ C∞0 (M),
that dv′ = 0, and that j∗v′ = 0. Note also supp(j∗f ′) ⊂ ∂+M . In order to place
ourselves in the setting of Lemma 10 we calculate∫

M

(LXf ′) f ′ dvolM = −
∫
M

f ′ ιXv
′ dvolM

= −
∫
M

f ′ v′ ∧ dα

= −
∫
M

df ′ ∧ v′ ∧ α

= −
∫
M

u− v′ ∧ v′ ∧ α

The third equality is obtained by integration by parts. The distributional nature of v′

causes no problems because it is supported away from ∂M . Passing to the real part
of the preceding equality, the term involving v′ ∧ v′ vanishes. Using the exactness of
α ∧ u (and for a second time that dv′ = 0) we integrate by parts (again justifiably
due to the support of v′), we conclude

Re

∫
M

LXf ′ f ′ dvolM = −Re

∫
M

u ∧ v′ ∧ α = −Re

∫
M

v′ ∧ dũ = 0.

By Lemma 10, we deduce f ′ is smooth hence u is smooth. Therefore u is forced
to vanish as supp(u) ⊂ Γ+. This finishes the proof as it shows that the generalised
resonant state ũ is actually a true resonant state.

6. All things analysis

This final section tidies up the loose analytical threads and proves Lemmas 6 and 10.
Due to the microlocal nature of the proofs, it is easier to work on either a compact
manifold without boundary (in the spirit of [DG16]) or on an open manifold (in the
spirit of [Gui17]) rather than on a compact manifold with boundary. We choose to
work with the open manifold M◦.

The proofs of Lemmas 6, and 10 use parametrices and microlocal analysis. The
microlocal and semiclassical notation used is standard with short and sufficient intro-
ductions given in [DZ16, DG16] or more substantially in [Hör07, Zwo12, DZ19]. We
do however make some brief comments.

In the proof of Lemma 6, we use parametrices for the Laplacian acting on ∂M
and M◦. The parametrices do not enlarge the wavefront sets of the distributions on
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which they act. In the proof of Lemma 10, we use operators drawn from Ψcomp
h (M◦)

which are operators whose wavefronts are compactly supported in T ∗M◦. See [DZ19,
Appendix E.2].

We consider the semi-classical operator P := −ihLX which is formally self-adjoint
on L2(M◦) with respect to the volume form dvolM . Let p = σh(P ) denote its semi-
classical symbol, p(x, ξ) = ξ(Xx) and let Hp denote the associated Hamiltonian vector
field on T ∗M . The flow which generates Hp is the lift of ϕt from M to T ∗M and is
denoted Φt.

6.1. Proof of Lemma 6. To begin the proof we establish some geometric structure
around Γ+ near the original boundary ∂M . We choose an open set U ⊂ ∂M contain-
ing Γδ+ ∩ ∂M such that on the chart V := [0, ε)ρ×U ⊂M the geodesic flow takes the
form −∂ρ. Denote by π the projection V to U (and also V to ∂M). Transversality
provides first that the unstable bundle E∗+ over Γ+ in M may be restricted to ∂M
giving E∗+

∣∣
∂M

and second that π∗(E∗+
∣∣
∂M

) = E∗+ on V .

Let χ ∈ C∞(M ; [0, 1]) with supp(χ) ⊂ Γδ+ and χ = 1 on Γ
δ/2
+ . We may assume that

LXχ vanishes on V . We split χ, writing χ = χ1 + χ2 with

supp(χ1) ⊂ V, supp(χ2) ∩ {ρ ≤ ε
2
} = ∅.

Now choose a metric on M and ask that on V , the metric takes the product
structure dρ2 + g∂ for some metric g∂ on ∂M . Construct parametrices Q∂, Q for the
Hodge Laplacian acting on Ω1(∂M),Ω1(M◦), and denote the divergences on ∂M,M◦

by d∗∂, d
∗ respectively.

We are now ready to take a resonant state u ∈ D′(M,Λ1T ∗0M). As in Subsec-
tion 4.3, we conclude that u = π∗u∂ on V . Here u∂ ∈ D′(∂M ; Λ1T ∗∂M) with
supp(u∂) ⊂ Γ+ and WF(u∂) ⊂ E∗+

∣∣
∂M

. Construct

f∂ := d∗∂Q∂u∂, f̃ := d∗Qu, f := χ1π
∗f∂ + χ2f̃.

We claim that f satisfies the conclusions of Lemma 6. The support condition supp(f) ⊂
Γδ+ is immediate thanks to the presence of χ1, χ2. For the wave-front condition, as Q

does not enlarge wave-fronts, we first obtain WF(π∗f̃) ⊂ E∗+. Second, as Q∂ also does
not enlarge wave-fronts, WF(f∂) ⊂ E∗+

∣∣
∂M

and so by construction of V , this gives
WF(π∗f∂) ⊂ E∗+. Therefore WF(f) ⊂ E∗+. The support condition LXf ∈ C∞0 (M)
follows after remembering that LXχ1 vanishes on {ρ ≤ ε

2
}.

It remains to show that v := u− df is smooth. Calculating a little provides

u− df = (χ1 + χ2)u− d(χ1π
∗f∂ + χ2f̃)

= χ1(u− dπ∗f∂) + χ2(u− df̃)− (π∗f∂)dχ1 − f̃dχ2

= χ1π
∗(u∂ − df∂) + χ2(u− df̃) + (f̃ − π∗f∂)dχ1

and we investigate each of the three terms in the final line separately, showing that
each term is smooth.
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The first two terms are each smooth by (the proof of) [DZ17, Lemma 2.1] however

we reproduce the argument below for convenience in the case of u−df̃ . (The argument
for u∂ − df∂ follows by appropriately subscripting the following argument with “∂”.)
First,

u− df̃ = u− dd∗Qu = (1−∆Q)u+ d∗dQu = d∗dQu+ Ω1(M◦)

and to show d∗dQu is smooth, it suffices, by elliptic regularity, to show ∆d∗dQu is
smooth on M◦. Working on M◦, this follows by commutation of ∆ with d∗, d and
because du is smooth (in fact it vanishes because u is a resonant state):

∆d∗dQu = d∗d∆Qu = d∗d(u+ Ω1(M◦)).

The third term (f̃ −π∗f∂)dχ1 is smooth due to the product structure of the metric
imposed on V . Working on V ◦, where dχ1 is non-zero, we have

∆(f̃ − π∗f∂) = ∆(d∗Qu− π∗d∗∂Q∂u∂)

= d∗(u+ Ω1(V ◦))− π∗d∗∂(u∂ + Ω1(U))

= (d∗u− π∗d∗∂u∂) + Ω0(V ◦).

The second equality is obtained due to the product structure of the metric on V
implying ∆π∗d∗∂Q∂u∂ = π∗d∗∂∆∂Q∂u∂. The final line in the preceding display is
smooth as the product metric also implies d∗u = π∗d∗∂u∂ on V . Elliptic regularity

ensures f̃ − π∗f∂ is smooth on V ◦. �

6.2. Proof of Lemma 10. Consider a boundary defining function ρ of M and ε > 0
small enough such that supp(Pf ′) ⊂ {ρ ≥ ε} and supp(f ′) ⊂ Dε where we define
Dε := {ρ ≥ ε} ∪ {Xρ ≤ −ε}. In semi-classical notation,

WFh(Pf
′) ⊂ {ρ ≥ ε} × 0, WFh(f

′) ⊂ E∗+ ∪ (Dε × 0).

We write U×0 for arbitrary U ⊂M to denote {(x, ξ) ∈ T ∗M |x ∈ U, ξ = 0}. In order
to show f ′ is smooth and compactly supported we show WFh(f

′) ⊂ {ρ ≥ ε} × 0. It
is sufficient to show

• Given A ∈ Ψcomp
h (M◦) with WFh(A) ∩ ({ρ ≥ ε} × 0) = ∅, there exists B (of

the same properties as A) such that ‖Af ′‖2
L2(M) ≤ Ch‖Bf ′‖2

L2(M) +O(h∞).

Inductively, this property shows ‖Af ′‖L2(M) = O(h∞) for all A with the above con-
ditions. In order to show the above bullet, consider such an A.

We build an escape function g ∈ C∞0 (T ∗M ; [0, 1]) (in the spirit of [FS11]) such that:

• g = 1 near {ρ ≥ ε} × 0;
• Hpg ≤ 0 near E∗+ ∪ (Dε × 0);
• Hpg < 0 on WFh(A) ∩ (E∗+ ∪ (Dε × 0)).

We build g using an adapted norm on the fibers of T ∗M ; this is a function q ∈
C∞(T ∗M\0;R+) homogeneous of degree 1 in ξ satisfying Hpq > 0 on E∗+\0. An
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averaging procedure constructs q: fix some q0 ∈ C∞(T ∗M\0;R+) homogeneous of
degree 1 in ξ, put

q(x, ξ) :=

∫ T

0

q0(Φ−t(x, ξ)) dt

for large enough T , and use that limt→∞ q0(Φ−t(x, ξ))/q0(x, ξ) = 0 uniformly in
(x, ξ) ∈ E∗+\0 by [DG16, Lemma 2.10, part 3]. Such q is only defined for x near
Γ+, we may extend it in an arbitrary way to T ∗M\0. Next, take 0 < ε2 < ε1 < ε and
0 < δ1 < δ2 such that

WFh(A)∩{(x, ξ) | ρ(x) ≥ ε1, q(x, ξ) ≤ δ1} = ∅,
WFh(A) ⊂{(x, ξ) | ρ(x) ≥ ε2, q(x, ξ) ≤ δ2}.

(The choice of ε1, δ1 is possible since WFh(A) ∩ ({ρ ≥ ε} × 0) = ∅ while ε2, δ2 may
be chosen since WFh(A) is a compact subset of T ∗M◦.) Now set

g(x, ξ) := χ1(ρ(x))χ2(q(x, ξ))

where:

• χ1 ∈ C∞(R), suppχ1 ⊂ R+, χ1 = 1 near [ε,∞), χ′1 ≥ 0 everywhere, and χ′1 >
0 on [ε2, ε1];
• χ2 ∈ C∞0 (R), χ2 = 1 near 0, χ′2 ≤ 0 on R+, and χ′2 < 0 on [δ1, δ2].

It is now an exercise to check that g satisfies the required three properties using the
facts that Γ+ ⊂ Dε and Hpg = χ′1(ρ)χ2(q)(Xρ) + χ1(ρ)χ′2(q)Hpq.

We quantise the escape function g to give an operator

G ∈ Ψcomp
h (M◦), G∗ = G, σh(G) = g, WFh(I −G) ∩ ({ρ ≥ ε} × 0) = ∅.

The properties of P, f ′ give Pf ′ = GPf ′ + O(h∞)C∞ and so the assumption of
Lemma 10 gives

0 = Im〈Pf ′, f ′〉L2 = Im〈GPf ′, f ′〉L2 +O(h∞) = i
2
〈[P,G]f ′, f ′〉L2 +O(h∞).

The second and third properties of the escape function imply there exists C1 > 0 such
that C1Hpg+ |σh(A)|2 ≤ 0 near E∗+∪ (Dε×0) and so we may choose A1 ∈ Ψcomp

h (M◦)
satisfying

WFh(A1) ∩ (E∗+ ∪ (Dε × 0)) = ∅, σh(C1
i
h
[P,G] + A∗A− A∗1A1) ≤ 0.

Since WFh(A), WFh(A1), and WFh(
i
h
[P,G]) ⊂ WFh(I − G) do not intersect {ρ ≥

ε} × 0, we may choose B ∈ Ψcomp
h (M◦) with WFh(B) ∩ ({ρ ≥ ε} × 0) = ∅ and

WFh(I −B) ∩
(
WFh(A) ∪WFh(A1) ∪WFh(

i
h
[P,G])

)
= ∅.

By the sharp G̊arding inequality, there exists C2 > 0 such that

〈(C1
i
h
[P,G] + A∗A)f ′, f ′〉L2 = 〈(C1

i
h
[P,G] + A∗A− A∗1A1)Bf ′, Bf ′〉L2 +O(h∞)

≤ C2h‖Bf ′‖2
L2 +O(h∞).

Rearranging the final inequality and using i
2
〈[P,G]f ′, f ′〉L2 = O(h∞) establishes the

desired bullet. �
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Progress in Mathematics. Birkhäuser/Springer, [Cham], second edition, 2016.

[BT82] Raoul Bott and Loring W Tu. Differential Forms in Algebraic Topology. 1982.
[DG16] Semyon Dyatlov and Colin Guillarmou. Pollicott-Ruelle resonances for open systems.
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