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Abstract

Let (M, g) be a quaternionic-Kähler manifold. This dissertation constructs the twistor space Z
whose fibre is diffeomorphic to the 2-sphere. We prove, in the spirit of Bérard-Bergery, that the

twistor space is integrable. If (M, g) is Ricci positive (it is necessarily Einstein) the twistor space

is endowed with a metric such that π : Z →M becomes a Riemannian submersion with totally

geodesic fibres. It is shown that two possible scales for the fibre imply Z is Einstein. Moreover,

for one of these scales, Z is also Kähler.

The twistor space construction is generalised in a new way to Riemannian manifolds carrying

even Clifford structures. The twistor fibres are investigated geometrically and a natural curvature

condition, in terms of the associated Clifford bundle morphism, is introduced. It is conjectured

that, under this condition, the twistor space is also integrable. The rank 3 case coincides with

the quaternionic-Kähler setting and is thus immediately true. The rank 4 case is also settled

affirmatively.
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1. Introduction

This dissertation investigates the construction and properties of the twistor space associated with a

quaternionic-Kähler manifold, as well as a generalisation of this structure to Riemannian manifolds with even

Clifford structures.

Interest in quaternionic-Kähler manifolds originates from several sources. Among such are the classification

of holonomy groups and the consequences of self-duality in 4-dimensions. We briefly introduce and motivate

these manifolds. In 1955 Berger [1] classified Riemannian manifolds in terms of their holonomy. For a

non-symmetric, irreducible, simply-connected Riemannian manifold (M, g) of dimension n, precisely one of

the following cases holds for the holonomy of g

1. Hol(g) = SO(n),

2. n = 2m with m ≥ 2, and Hol(g) = U(m) in SO(2m),

3. n = 2m with m ≥ 2, and Hol(g) = SU(m) in SO(4m),

4. n = 4m with m ≥ 2, and Hol(g) = Sp(m) in SO(4m),

5. n = 4m with m ≥ 2, and Hol(g) = Sp(m) · Sp(1) in SO(4m),

6. n = 7 and Hol(g) = G2 in SO(7),

7. n = 8 and Hol(g) = Spin(7) in SO(8).

The assumptions are not restrictive as, for an arbitrary Riemannian manifold, one may work with Hol0(g), and

use the de Rham decomposition theorem as well as Cartan’s classification of Riemannian symmetric spaces.

Importantly, quaternionic-Kähler manifolds correspond to Hol(g) = Sp(m) ·Sp(1) in this classification and the

initial local structure available to a differential geometer may be described as follows. Of course Hol(g) = U(m)

corresponds to Kähler geometry and with it, a parallel complex structure J . The case Hol(g) = Sp(m)

represents a specific case of Kähler geometry where the manifold possesses three parallel complex structures

I, J,K behaving under composition as the standard quaternions i, j, k. This situation is too restrictive to

include the (symmetric) quaternionic projective space HPn which does not even admit an almost-complex

structure. Indeed, quaternionic-Kähler geometry provides precisely the required generalisation. We take the

following as our definition.

Definition 1.1. A riemannian manifold (M, g) of dimension 4n ≥ 8 is quaternionic-Kähler if there exists a

covering of M of open sets {Ui} and, for each i, two almost complex structures Ii and Ji on Ui such that

1. g is Hermitian for Ii and Ji on Ui,

2. Ii and Ji anticommute ,

3. the local subbundle spanned by {Ii, Ji,Ki} of End(TM) where Ki = IiJi is preserved by the connection

induced from the Levi-Civita connection,

4. the subbundle of End(TM) spanned locally by {Ii, Ji,Ki} of End(TM) is globally well-defined, indepen-

dent of Ui.
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Note that Sp(1) · Sp(1) = SO(4) so the naive extension of the definition coincides with a generic oriented

Riemannian manifold in dimension 4. There is a more appropriate extension involving the decomposition of

the curvature tensor with which we will not concern ourselves. It suffices to say, the extension is equivalent

to considering oriented manifolds which are self-dual and Einstein, a situation in which Penrose’s original

twistor space is a complex manifold.

A classic and important result is that quaternionic-Kähler manifolds are Einstein; a fact which is presented

in Chapter 3. This decomposes their study into 3 distinct cases, depending on the sign (positive, negative

or zero) of the scalar constant. We remark here that the Ricci flat case is precisely that of hyper-Kähler

geometry. In all three cases, one may construct a complex manifold, the twistor space, which fibres over the

original manifold. This was independently obtained by Salamon [13] and Bérard-Bergery [2] and is the content

of Chapter 4. For the model space, projective quaternionic space, the twistor space gives a Hopf fibration

π : CP2n+1 → HPn. In the case of positive scalar curvature, one can say more. There are two possible scales

for the fibres for which the twistor space is Einstein and for one of these, it is also Kähler. This is the content

of Chapter 5. More widely, the twistor space is known to be a projective Fano manifold equipped with a

holomorphic contact structure and it is the result of LeBrun [9] that shows the two are equivalent. Finally

we highlight the conjecture, proven in low dimensions, that all complete quaternionic-Kähler manifolds with

positive scalar curvature are Wolf spaces. Early works on quaternionic-Kähler manifolds are [4, 5, 7] wherein

one may find elementary properties. A recent account of the current field is provided by Salamon’s essay [10].

The twistor space construction is a direct generalisation of Penrose’s twistor construction for an orientated

Riemannian manifold M of dimension 4. It is thus appropriate to recall here the construction, details of which

may be found in Besse [2]. One observes that the Hodge ∗-operation acts on 2-forms as an involution and

thus may be used to decompose 2-forms into self-dual and anti-self-dual forms. The twistor space π : P →M

is then taken to be the unit sphere bundle of the 3-dimensional real vector bundle of anti-self-dual forms.

The fibres are thus 2-spheres. Using the metric, one identifies 2-forms and skew-adjoint endomorphisms of

the tangent bundle. Next, the Levi-Civita connection splits the tangent bundle of P such that TP = H⊕ V
where V is the tangent bundle along the fibres and H identifies, at each point, with the tangent space on

the base manifold below via π∗. As each point of the twistor space is a complex structure on the tangent

space below, one may partly define the complex structure on H. The remainder of the definition, defining the

complex structure on V, is possible after identifying the fibres with CP1. Distinct from this construction is

the notion that the manifold is half-conformally flat, a condition on the decomposition of the Weyl tensor

also involving the Hodge ∗-operation. It is under precisely this hypothesis that one may show that the almost

complex structure of the twistor space is integrable.

The final part of this dissertation considers even Clifford structures over Riemannian manifolds. This

structure was introduced by Moroianu and Semmelmann [11]; the case of parallel even Clifford structures

of rank 3 is precisely that of quaternionic-Kähler geometry. We are thus naturally led to consider possible

generalisations of twistor spaces in this setting. The chapter initiates this study including an investigation

of the geometrical structure of the twistor fibre, which is no longer simply identified with S2. A curvature

condition is introduced which naturally appears in [11] in order to further the study of the integrability of

the twistor space. It is left open, for further work, as to whether the construction will ultimately give an

integrable space in general.

1.1 Conventions

We recall below standard facts of differential and Riemannian geometry which will be required in following

chapters. This is simply to establish our conventions and further details may be found in [2, 3].

Let (M, g) be a Riemannian manifold, π : E →M a vector bundle with connection ∇.

Lemma 1.2. The Koszul formula characterises the unique torsion-free metric connection ∇ on TM . For

vector fields X,Y, Z, one has

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)− g([Y, Z], X) + g([Z,X], Y )
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Definition 1.3. The curvature, RE, on the vector bundle E is defined by

REX,Y s = [∇X ,∇Y ]s−∇[X,Y ]s

for vector fields X,Y on M , a section s : M → E.

Remark 1.4. The connection ∇ induces connections on bundles associated with E. Such connections are

also denoted by ∇. Consequently, these bundles also obtain a curvature tensor. In the particular case of the

endomorphism bundle End(E), one has

R
End(E)
X,Y A = [REX,Y , A]

for vector fields X,Y on M , an endomorphism A : M → End(E).

Definition 1.5. The Ricci curvature r on the tangent bundle is defined by

r(X,Y ) =
∑
i

g(RX,EiEi, Y )

for vector fields X,Y on M , an orthonormal basis {Ei}.

Proposition 1.6. Let Sρ be the sphere of radius ρ in R3. With the standard metric g induced from R3, the

Ricci curvature of Sρ is r = ρ−2g.

Proposition 1.7. The connection on E provides a splitting of the tangent bundle, TE = H ⊕ V where

V = kerπ∗. Let X,Y be vector fields on M with horizontal lifts denoted by X∗, Y ∗. For a section s : M → E

one has

V[X∗, Y ∗]s = −REX,Y s

Proof. We recall from the study of connections on vector bundles that [X∗, s] = ∇Xs and ∇Xs = dsX −X∗.
The vector space structure of the fibres of E allow us to canonically extend the sections ∇Xs,∇Y s to

vertical vector fields on E whence [∇Xs,∇Y s] = 0. As s provides an immersion of M into E we have

ds[X,Y ] = [dsX, dsY ]. A direct calculation gives

[X∗, Y ∗] = [X∗ +∇Xs, Y ∗ +∇Y s]− [X∗,∇Y s]− [∇Xs, Y ∗]− [∇Xs,∇Y s]
= [dsX, dsY ]− [∇X ,∇Y ]s

= ∇[X,Y ]s+ [X,Y ]∗ − [∇X ,∇Y ]s

As V[X∗, Y ∗] = [X∗, Y ∗]− [X,Y ]∗ the formula is established.

Definition 1.8. The Nijenhuis tensor of an almost complex structure J is

4N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

3
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2. Riemannian Submersions

The results established in the following chapters rely on standard facts about Riemannian submersions. This

notion, in particular the definitions of the T and A tensors, was introduced by O’Neill [12]. We announce

precisely the required facts in order to facilitate our study of quaternionic-Kähler manifolds. In particular,

many formulae appear in reduced form as we will soon assume that T = 0. Further details may be found in

Besse [2].

Definition 2.1. Let π : (M, g) → (B, ǧ) be a submersion of Riemannian manifolds. Let V be the vertical

distribution given by kerπ∗ and H the orthogonal complement of V determined by g, that is, TM = H⊕ V.

Then π is a Riemannian submersion if π∗ induces an isometry from Hx to TbB for all x ∈M with b = π(x).

Definition 2.2. The projection of the natural connection ∇ on M to each fibre gives a connection ∇̂ on

each fibre. The submersion has totally geodesic fibres if ∇̂ = ∇.

Definition 2.3. A vector field on M is basic if it is horizontal and π∗Xx = π∗Xy whenever π(x) = π(y).

Remark 2.4. Notationally, U, V will denote vertical fields on M , while X,Y will denote horizontal vector

fields on M .

Definition 2.5. The T tensor is defined by

TEF = H∇VEVF + V∇VEHF

for arbitrary vectors E,F .

Definition 2.6. The A tensor is defined by

AEF = H∇HEVF + V∇HEHF

for arbitrary vectors E,F .

Lemma 2.7. For vertical vectors U, V and horizontal vectors X,Y , one has g(AXY, U) = −g(AXU, Y ).

Proof.

0 = Xg(U, Y ) = g(∇XU, Y ) + g(U,∇XY ) = g(AXU, Y ) + g(AXY,U)

Proposition 2.8. For horizontal vectors X,Y , one has AXY = 1
2V[X,Y ].

Proof. This is Proposition 9.24 of Besse [2].

Proposition 2.9. The submersion has totally geodesic fibres iff T = 0.

Remark 2.10. From now on, only submersions with totally geodesic fibres will be considered.

Proposition 2.11. The connection decomposes into horizontal and vertical components as

∇UV = ∇̂UV
∇UX =H∇UX
∇XU = AXU +V∇XU
∇XY =H∇XY + AXY

5



for vertical vectors U, V , and horizontal vectors X,Y .

Definition 2.12. Let {Ei} be a local orthonormal frame for H. We define

(AX , AY ) =
∑

g(AXEi, AY Ei)

(AU,AV ) =
∑

g(AEi
U,AEi

V )

δA = −
∑

(∇EiA)Ei

Definition 2.13. The horizontal distribution H satisfies the Yang-Mills condition if δA(X) is horizontal.

Proposition 2.14. The Ricci curvature of M is given by

r(U, V ) = r̂(U, V ) + (AU,AV )

r(X,U) = −(δA(X), U)

r(X,Y ) = ř(X,Y )− 2(AX , AY )

where r̂ is the Ricci curvature of the fibres, and ř is the pull-back of the Ricci curvature of the base manifold.

Proof. This is Proposition 9.36 of Besse [2] with the hypothesis that the fibres are totally geodesic.

Corollary 2.15. The total space M is Einstein with constant λ iff H is Yang-Mills and

r̂(U, V ) + (AU,AV ) = λg(U, V )

ř(X,Y )− 2(AX , AY ) = λg(X,Y )

Corollary 2.16. Suppose that the fibres are Einstein with constant λ̂ and that the base manifold is Einstein

with constant λ̌. Then the total space M is Einstein with constant λ iff H is Yang-Mills and

(AU,AV ) = (λ− λ̂)g(U, V )

(AX , AY ) = 1
2 (λ̌− λ)g(X,Y )
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3. Einstein Property

Let (M4n, g) be a quaternionic-Kähler manifold with n ≥ 2. We establish below directly that such manifolds

are necessarily Einstein. Although a well established property of quaternionic-Kähler manifolds, this chapter

is included as many intermediate calculations and results will prove useful in subsequent chapters. Recall

Definition 1.1. We call the locally defined triplet of almost complex structures {I, J,K} a local quaternionic

frame (and do not notationally illustrate their chart dependence).

Lemma 3.1. For a local quaternionic frame {I, J,K},

∇I = − α3 ⊗ J + α2 ⊗K
∇J = + α3 ⊗ I − α1 ⊗K
∇K =− α2 ⊗ I + α1 ⊗ J

for local 1-forms αi.

Proof. For endomorphisms A,B, D(AB) = (DA)B + A(DB) hence 0 = (DS)S + S(DS) for an almost

complex structure S. Therefore if S is a local section of the twistor space, 〈DS,S〉E = 0.

Lemma 3.2. For a local quaternionic frame {I, J,K},

[RX,Y , I] = − ω3(X,Y )J + ω2(X,Y )K

[RX,Y , J ] = ω3(X,Y )I − ω1(X,Y )K

[RX,Y ,K] =− ω2(X,Y )I + ω1(X,Y )J

for local 2-forms ωi and tangent vectors X,Y .

Proof. The calculation of [RX,Y , I] acting on an arbitrary tangent vector Z gives [RX,Y , I] = [∇X ,∇Y ]I −
∇[X,Y ]I and it remains to follow through the calculation [RX,Y , I]Z using the structure of ∇I,∇J,∇K. The

resulting formulae for ωi in terms of αi are

ω1 = dα1 − α2 ∧ α3, ω2 = dα2 − α3 ∧ α1, ω3 = dα3 − α1 ∧ α2.

Proposition 3.3. For a local quaternionic frame {I, J,K} with 2-forms ωi,

ω1(X,Y ) =
1

n+ 2
r(IX, Y )

ω2(X,Y ) =
1

n+ 2
r(JX, Y )

ω3(X,Y ) =
1

n+ 2
r(KX,Y )

for tangent vectors X,Y .

Proof. Evaluating [RX,Y , J ]Z against KZ,

g(RX,Y JZ,KZ)− g(JRX,Y Z,KZ) = g(ω3(X,Y )IZ,KZ)− g(ω1(X,Y )KZ,KZ)
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and using the equivariance of the metric with respect to J,K,

−ω1(X,Y )|Z|2 = g(RX,Y Z, IZ) + g(RX,Y JZ,KZ) (3.1)

We introduce an orthonormal frame {Ei} whence so too is {JEi}. As g(RX,Y ·, ·) is antisymmetric,∑
g(RX,Y Ei, IEi) =

∑
g(RX,Y JEi,KEi)

whence

−2nω1(X,Y ) =
∑

g(RX,Y Ei, IEi).

The pair symmetry for Riemannian curvature gives g(RX,Y Ei, IEi) = g(RX,EiY, IEi)− g(RX,IEiY,Ei) after

applying the Bianchi symmetry. As before, the antisymmetry of g(RX,Y ·, ·) now implies

−nω1(X,Y ) =
∑

g(RX,Ei
Y, IEi) = −

∑
g(IRX,Ei

Y,Ei)

Recalling the form of the commutator [RX,Y , I] we finish this calculation with

nω1(X,Y ) =
∑

g(−RX,Ei
IY + ω3(X,Ei)JY − ω2(X,Ei)KY,Ei)

= −r(X, IY ) + ω3(X, JY )− ω2(X,KY )

Similarly calculations are done for ω2, ω3 culminating in

nω1(X, IY ) + ω2(X, JY ) + ω3(X,KY ) = r(X,Y )

ω1(X, IY ) + nω2(X, JY ) + ω3(X,KY ) = r(X,Y )

ω1(X, IY ) + ω2(X, JY ) + nω3(X,KY ) = r(X,Y )

Therefore

ω1(X, IY ) = ω2(X, JY ) = ω3(X,KY ) =
1

n+ 2
r(X,Y )

and the result follows using the skew symmetry of ωi and the symmetry of the Ricci tensor.

Theorem 3.4. A quaternionic-Kähler manifold is Einstein.

Proof. By 3.1 and Proposition 3.3

1

n+ 2
r(X,X)|Z|2 = −g(RX,IXZ, IZ)− g(RX,IXJZ,KZ)

and we investigate the first term. By Lemma 3.2 and the symmetries of the curvature tensor

−g(RX,IXZ, IZ) = −g(RZ,IZX, IX)

= g(JRZ,IZX,KX)

= g(RZ,IZJX − ω3(Z, IZ)IX + ω1(Z, IZ)KX,KX)

= g(RJX,KXZ, IZ) + ω1(Z, IZ)|X|2

= g(RJX,KXZ, IZ) +
1

n+ 2
r(Z,Z)|X|2

Replacing Z by JZ in the above calculation gives

−g(RX,IXJZ,KZ) = g(RJX,KXJZ,KZ) +
1

n+ 2
r(JZ, JZ)|X|2

8



As before, by 3.1,

1

n+ 2
r(JX, JX)|Z|2 = −g(RJX,KXZ, IZ)− g(RJX,KXJZ,KZ)

hence

(r(X,X) + r(JX, JX))|Z|2 = (r(Z,Z) + r(JZ, JZ))|X|2

By Proposition 3.3 and the skew-symmetry of ω2, we have r(JX, Y ) = −r(JY,X). On replacing Y by JY

and using the symmetry of r, it follows that r(JX, JY ) = r(X,Y ). Therefore we may advance the previous

calculation and obtain
r(X,X)

|X|2
=
r(Z,Z)

|Z|2

for arbitrary X,Z hence there exists λ ∈ R such that r(X,X) = λ|X|2.

9
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4. Twistor Space

Let (M4n, g) be a quaternionic-Kähler manifold with n ≥ 2. Let E be the 3-dimensional subbundle

of End(TM) spanned locally by a local quaternionic base {I, J,K}. The local basis {I, J,K} defines a

Euclidean structure on E by decreeing this basis to be orthogonal and each endomorphism to have norm ρ.

(As any transition {I, J,K} → {I ′, J ′,K ′} belongs to SO(3), such a structure is well-defined.) Denote this

structure by 〈·, ·〉E .

Definition 4.1. The twistor space of M is Z, the sphere bundle of E of radius ρ with respect to 〈·, ·〉E.

With π : Z →M the natural projection, the fibres π−1(x) identify with the 2-sphere. For a, b, c ∈ R with

a2 + b2 + c2 = 1 and {I, J,K} a local quaternionic frame, one verifies aI + bJ + cK is also an almost-complex

structure. Therefore elements S ∈ Z correspond to complex structures on Tπ(S)M and sections correspond

to almost-complex structures on M .

4.1 Complex Structure

The natural connection on M induces a connection on the bundle of endomorphisms, also denoted ∇. By

restriction ∇ is a connection on E by hypothesis. This gives a splitting of TE = HE⊕VE and of TZ = H⊕V .

Note HE = H.

Let S ∈ Z and x = π(S). We have a canonical identification of TSEx with Ex and an orthogonal

decomposition Ex = sp{S} ⊕ sp{S}⊥ with respect to 〈·, ·〉E . As VS = TSZx, these give an identification

VS is identified with sp{S}⊥.

The projection π : Z →M gives an identification

π∗ : HS → TxM

Definition 4.2. Let X + U be a tangent vector at S compatible with the decomposition TSZ = H⊕ V. The

almost-complex structure J on the twistor space is defined by

J (X + U)S = π−1∗ Sπ∗X + SU

Remark 4.3. One may also define an almost-complex structure J ′ by

J ′(X + U)S = π−1∗ Sπ∗X − SU

however this structure is not integrable, as is clear from the proof of Proposition 4.8.

We now verify the Nijenhuis tensor N vanishes. This is done in stages by considering the action of N

on horizontal and vertical vectors. For this, recall the notation of the chapter on submersions: U, V will

denote vertical fields on Z while X,Y will denote horizontal vector fields on Z. The notation will be modified

again in the following chapter when we induce a metric on Z, however in what proceeds, R will denote the

Riemann curvature tensor of M while RE will denote the curvature of E.

Proposition 4.4. The Nijenhuis tensor vanishes when restricted to V × V.

11



Proof. As the bracket of vertical vectors is again a vertical fibre, this statement is a consequence of the

identification of the fibres with CP1.

Lemma 4.5. For a basic vector field X and a vertical vector field U , one has J [U,X] = [JU,X].

Proof. As X is basic, [U,X] is vertical. The result follows as the complex structure on the fibres is preserved

by H.

Lemma 4.6. For a horizontal vector field Y and a vertical vector field U , one has JV[U, Y ] = V[JU, Y ]

Proof. We verify directly that both terms are tensorial in Y . So we may perturb Y to a basic vector field

and apply Lemma 4.5.

Lemma 4.7. For a basic vector field X and a vertical vector field U , one has π∗[U,JX] = Uπ∗X.

Proof. We evaluate at S ∈ Z with x = π(S). Noting that FlU0 (S)π∗X lifts to a basic vector field,

π∗[U,JX]S = π∗LU (JX)

=
d

dt

∣∣∣∣
t=0

π∗Fl
U
t

∗
(JX)FlUt (S)

=
d

dt

∣∣∣∣
t=0

π∗Fl
U
t

∗
π−1∗ (FlUt (S)π∗X)

=
d

dt

∣∣∣∣
t=0

FlUt (S)π∗X

= Uπ∗X

Proposition 4.8. The Nijenhuis tensor vanishes when restricted to V ×H.

Proof. Lemma 4.5 ensures 4N(U,X) = J [U,JX]− [JU,JX]. By Lemma 4.6, this is horizontal. Under π∗
we have, by Lemma 4.7 and the definition of JU ,

π∗4N(U,X) = π∗(J [U,JX]− [JU,JX])

= SUπ∗X − SUπ∗X

Lemma 4.9. The horizontal component of the Nijenhuis tensor vanishes when restricted to H×H.

Proof. Let x ∈ M and S a section of Z over Ω ⊂ M with x ∈ Ω. For y ∈ Ω we write Sy for the complex

structure on TyM . Under the natural immersion, we view S as a local section of E. As HE = H we demand

that ∇S = 0 at x.

Let X,Y be basic vector fields on Z and let NS be the Nijenhuis tensor of S. Restricting to S, we claim

NS(π∗X,π∗Y ) = π∗N(X,Y ). To verify this, we will investigate one term of each Nijenhuis tensor, other

calculations are similar. Recalling that S provides an immersion of Ω into Z, the brackets in the following

calculation are π-related. For y ∈ Ω,

second term of π∗4N(X,Y )Sy = π∗J [JX,Y ]

= Syπ∗[JX,Y ]

= Syπ∗[π
−1
∗ Sπ∗X,Y ]

= Sy[Sπ∗X,π∗Y ]

= second term of 4NS(π∗X,π∗Y )y

It now suffices to show NS(π∗X,π∗Y ) vanishes at x. For notational clarity, we will denote π∗X,π∗Y simply

by X,Y respectively. The connection is torsion-free, that is, [X,Y ] = ∇XY −∇YX. A direct calculation

12



using this fact gives the result.

4NS(X,Y ) = [X,Y ] + S[SX, Y ] + S[X,SY ]− [SX,SY ]

= ∇XY −∇YX + S(∇SXY −∇Y SX) + S(∇XSY −∇SYX)−∇SXSY +∇SY SX
= ∇XY −∇YX +∇SXSY +∇YX −∇XY −∇SY SX −∇SXSY +∇SY SX = 0

Lemma 4.10. For x ∈M let X,Y be tangent vectors at x and let S ∈ π−1(x). Then

−[RX,Y , S]− S[RSX,Y , S]− S[RX,SY , S] + [RSX,SY , S] = 0.

Proof. It suffices to verify the claim in the case where S = I. Using Lemma 3.2 and Proposition 3.3 the

result follows upon summing the following four calculations.

−(n+ 2)[RX,Y , I] = +r(KX,Y )J − r(JX, Y )K

−(n+ 2)I[RIX,Y , I] = −r(KX,Y )J + r(JX, Y )K

−(n+ 2)I[RX,IY , I] = r(JX, IY )J + r(KX, IY )K

(n+ 2)[RIX,IY , I] = −r(JX, IY )J − r(KX, IY )K

Proposition 4.11. The Nijenhuis tensor vanishes when restricted to H×H.

Proof. By Lemma 4.9 it suffices to consider the vertical component. By Proposition 1.7 and Remark 1.4

V4N(X,Y )S = V[X,Y ] + JV[JX,Y ] + JV[X,J Y ]− V[JX,J Y ]

= −REX,Y S − JRESX,Y S − JREX,SY S +RESX,SY S

= −[RX,Y , S]− S[RSX,Y , S]− S[RX,SY , S] + [RSX,SY , S]

which vanishes by Lemma 4.10.

Theorem 4.12. The twistor space is a complex manifold.

Proof. The Nijenhuis tensor vanishes by Propositions 4.4, 4.8, 4.11.
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5. Kähler-Einstein Metric

Let (M, ǧ) be quaternionic-Kähler with Einstein constant λ̌. As before, the tangent bundle of the twistor

space decomposes TZ = H⊕V . We define a metric g on Z. The horizontal distribution inherits the pull-back

of the metric on M from the identification π∗ : HS → TxM . Recall that the fibres Zx are spheres in Ex of

radius ρ with respect to 〈·, ·〉E . By restriction, this Euclidean structure induces a metric on the fibre Zx and

hence on VS = TSZx. Let ř, r̂ be the Ricci curvatures of M and the fibres respectively. We also denote by ř

the pull-back of ř to H. As before, U, V denote vertical vector fields while X,Y denote horizontal vector

fields.

Remark 5.1. We do not explicitly detail λ̂ (equivalently ρ) above as a function of λ̌. Indeed, two values exist

for which (Z, g) is Einstein. These are

λ̂1 =
1

n+ 2
λ̌ and λ̂2 =

n+ 1

n+ 2
λ̌

However for only the first of these values is (Z, g,J ) Kähler. The obstruction for λ̂2 follows from the proof

of Proposition 5.13.

Proposition 5.2. The projection π : (Z, g)→ (M, ǧ) is a Riemannian submersion and g is Hermitian for

the twistor space (Z,J ). Moreover the fibres are totally geodesic and Einstein with constant λ̂ = ρ−2.

Proof. By construction the submersion is Riemannian and g is Hermitian for J . Proposition 1.6 gives

λ̂ = ρ−2. It is clear that the T tensor vanishes for TXU and TXY . As TUV is horizontal, we calculate

g(TUV,X) using the Koszul formula.

2g(TUV,X) = 2g(∇UV,X) = −Xg(U, V )− g([V,X], U) + g([X,U ], V ) = −(LXg)(U, V ) = 0

A similar calculation for TUX gives the result.

Definition 5.3. For clarity in subsequent calculations we define the constant κ by

κ =
λ̌ρ2

2(n+ 2)
=

1

2(n+ 2)

λ̌

λ̂

5.1 Einstein Metric

We now show that (Z, g) is Einstein by fulfilling the requirements of Corollary 2.16. Let {Ei} and {Fi} denote

local orthonormal frames for H and V respectively. We assume that {Ei} are basic and do not distinguish

notationally between these vector fields and their projections onto M .

Lemma 5.4. For U a vertical field, one has (AU,AU) = 4nκ2λ̂|U |2.

Proof. Immediately we have

(AU,AU) =
∑
i

g(AEi
U,AEi

U) =
∑
i

|H∇Ei
U |2

15



We thus investigate g(H∇Ei
U,Ej) at S ∈ Z. By the Koszul formula

g(∇Ei
U,Ej) =

1

2
〈[REi,Ej

, S], U〉

We evaluate this at S = I and U = uJ for u ∈ R.

g(∇Ei
U,Ej) =

−1

2(n+ 2)
ř(KEi, Ej)〈J, uJ〉E = −κuǧ(KEi, Ej)

Therefore, summing over i, j,

(AU,AU) =
∑
i

|H∇EiU |2 =
∑
i,j

|g(∇EiU,Ej)|2 = 4nκ2u2

As |U |2 = u2ρ2 the result follows.

Lemma 5.5. For X a horizontal vector, one has (AX , AX) = 2κ2λ̂|X|2.

Proof. Immediately we have

(AX , AX) =
∑
i

g(AXEi, AXEi) =
∑
i

|V∇XEi|2 =
∑
i,j

|g(∇XEi, Fj)|2

By the Koszul formula

2g(∇XEi, Fj) = −Fjg(X,Ei) + g([X,Ei], Fj)

As (AX , AY ) is tensorial, we may assume X is basic and may be written X = xE1 for x ∈ R. Whence

g(∇XEi, Fj) =
1

2
g([X,Ei], Fj) = −1

2
g([RX,Ei , S], Fj)

We evaluate this at S = I using Lemma 3.2 and Proposition 3.3

g(∇XEi, Fj) =
λ̌

2(n+ 2)
g(ǧ(KX,Ei)J − ǧ(JX,Ei)K,Fi)

As S = I, ρFj ∈ {J,K} and we observe

g(∇XEi, ρ−1J) =
λ̌ρ

2(n+ 2)
ǧ(KX,Ei) and g(∇XEi, ρ−1K) =

−λ̌ρ
2(n+ 2)

ǧ(JX,Ei)

Therefore the result follows from

(AX , AX) =
∑
i,j

|g(∇XEi, Fj)|2 =
1

2

(
λ̌ρ

n+ 2

)2

|X|2

Proposition 5.6. The horizontal distribution H is Yang-Mills.

Proof. Let S ∈ Zx for x ∈ M . Consider Riemann orthonormal coordinates about x which are lifted to a

horizontal frame {Ei}. We investigate V(δA(X)) for a horizontal vector X. First,

δA(X) = −
∑
i

(∇Ei
A)Ei

X =
∑
i

(
−∇Ei

(AEi
X) +A∇Ei

Ei
X +AEi

(∇Ei
X)
)

As this is tensorial, we assume without loss of generality that X = E1. As the Christoffel symbols for the

connection on M at x vanish, we have H∇EiEi = 0 at S. Therefore evaluating against a vertical vector U at

S gives

g(δA(X), U) = −
∑
i

g(∇Ei(AEiX), U)

16



Using the Koszul formula, and evaluating at S leads to

g(δA(X), U) = −1

2

∑
i

Eig(AEi
X,U) =

1

2

∑
i

g(REEi,XS,U)

We evaluate this at S = I and U = uJ for u ∈ R. The use of Riemann normal coordinates along with

Lemma 3.2 and Proposition 3.3 ensure the result.

g(δA(X), U) =
1

2

∑
i

Ei〈[REi,X , S], uJ〉E

= − 1

2(n+ 2)

∑
i

Ei (ř(Kπ∗Ei, π∗X)〈J, uJ〉E)

= uκ
∑
i

Eiǧ(Kπ∗Ei, π∗X) = 0

Recall Remark 5.1 in which we define two possible values for the Einstein constant λ̂ of the fibres of the

twistor space. The ratios are

λ̂1

λ̌
=

1

n+ 2
and

λ̂2

λ̌
=
n+ 1

n+ 2

Theorem 5.7. The twistor space (Z, g) with λ̂ = λ̂1 or λ̂ = λ̂2 is Einstein.

Proof. Consider Corollary 2.16. Following Proposition 5.6, it suffices to find λ ∈ R such that

(AU,AV ) = (λ− λ̂)g(U, V ) and (AX , AY ) = 1
2 (λ̌− λ)g(X,Y )

By the polarisation identity and Lemmata 5.4, 5.5, this amounts to finding λ such that

λ− λ̂ =
n

(n+ 2)2
λ̌2

λ̂
and λ̌− λ =

1

(n+ 2)2
λ̌2

λ̂

A consistent solution is given by the zeros (for λ̂) of the polynomial

λ̂2 − λ̌λ̂+
n+ 1

(n+ 2)2
λ̌2

It is easy to carry out the calculations and arrive at explicit values for the Einstein constant λ of the twistor

space in terms of λ̌. Precisely,

λ1 =
n+ 1

n+ 2
λ̌ and λ2 =

n2 + 3n+ 1

(n+ 2)(n+ 1)
λ̌.

However more appropriate is the ratio between the Einstein constant of the fibre and the Einstein constant

for the base manifold; as given preceding the announcement of this theorem.

5.2 Kähler Structure

We now show that, for λ̌ = λ̌1, the twistor space (Z, g,J ) is Kähler. We investigate ∇J .

Proposition 5.8. For vertical vectors U, V , one has (∇UJ )V = 0.

Proof. As in Proposition 4.4, this is a consequence of the identification of the fibres with CP1 and a multiple

of the Fubini-Study metric.

Lemma 5.9. For U a vertical vector, X a basic vector field, one has π∗(J∇UX) = κUπ∗X.
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Proof. Evaluating ∇UX against a basic vector field Y and using the Koszul formula gives

2g(∇UX,Y ) = −g([X,Y ], U) hence g(∇UX,Y )S =
1

2
g([RX,Y , S], U)

for S ∈ Z. We evaluate this at S = I and U = uJ for u ∈ R. Lemma 3.2 and Proposition 3.3 give

g(∇UX,Y )I =
1

2
〈[RX,Y , I], uJ〉E

=
−λ̌

2(n+ 2)
ǧ(Kπ∗X,π∗Y )〈J, uJ〉E

= −κǧ(uKπ∗X,π∗Y )

Therefore π∗(∇UX)I = −κuKπ∗X hence π∗(J∇UX)I = κuJπ∗X.

Lemma 5.10. For U a vertical vector, X,Y basic vector fields, one has g([JX,Y ], U) = 2κǧ(Uπ∗X,π∗Y ).

Proof. As in previous calculations, we evaluate at S ∈ Z to get

g([JX,Y ], U)S = g(V[JX,Y ], U)S = −g(RESX,Y S,U) = −g([RSX,Y , S], U)

We evaluate this at S = I and U = uJ for u ∈ R.

g([JX,Y ], U)I =
1

n+ 2
ř(Jπ∗X,π∗Y )〈J, uJ〉E

=
λ̌ρ2

n+ 2
ǧ(uJπ∗X,π∗Y )

= 2κǧ(Uπ∗X,π∗Y )

Lemma 5.11. For U a vertical vector, X,Y basic vector fields, one has Ug(JX,Y ) = g([U,JX], Y )

Proof. Evaluating at S ∈ Z we obtain directly that

Ug(JX,Y ) =
d

dt

∣∣∣∣
t=0

g(JX,Y )FlUt (S)

=
d

dt

∣∣∣∣
t=0

ǧ(FlUt (S)π∗X,π∗Y )

= ǧ(Uπ∗X,π∗Y )

and the result follows from Lemma 4.7.

Lemma 5.12. For U a vertical vector, X a basic vector field, one has π∗(∇UJX) = (1− κ)Uπ∗X.

Proof. Evaluating ∇UJX against a basic vector field Y and using the Koszul formula gives

2g(∇UJX,Y ) = Ug(JX,Y ) + g([U,JX], Y )− g([JX,Y ], U)

By Lemmata 5.10, 5.11

2g(∇UJX,Y ) = 2g([U,JX], Y )− 2κǧ(Uπ∗X,π∗Y )

and the result follows from Lemma 4.7.

Proposition 5.13. For U a vertical vector, X a horizontal vector, if λ̂ = λ̂1 then (∇UJ )X = 0.

Proof. As the fibres are totally geodesic, (∇UJ )X = ∇U (JX) − J∇UX is horizontal. The equation is

tensorial in X so we may assume that X is basic. Note the condition on λ̂ is equivalent to κ = 1
2 . Therefore

by Lemmata 5.9, 5.12 we get

π∗(∇UJ )X = (1− 2κ)Uπ∗X = 0
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Lemma 5.14. For horizontal vectors X,Y , one has AXJ Y = JAXY

Proof. By Proposition 2.8, AXY = 1
2V[X,Y ]. So evaluating this at S ∈ Z we have AXY = − 1

2 [RX,Y , S]

by Proposition 1.7 and Remark 1.4. We now write X,Y for vectors on M . It thus suffices to show

[RX,SY , S] = S[RX,Y , S] which follows a similar argument to Lemma 4.10. Evaluating at S = I gives

(n+ 2)[RX,IY , I] = −ř(KX, IY )J + ř(JX, IY )K

(n+ 2)I[RX,Y , I] = −ř(JX, Y )J − ř(KX,Y )K

Lemma 5.15. For U a vertical vector, X a horizontal vector, one has AXJU = JAXU .

Proof. By definition, AXU is horizontal so evaluating against a horizontal vector Y and using Lemmata 2.7,

5.14 we obtain

g(AXJU, Y ) = −g(JU,AXY ) = g(U,JAXY ) = g(U,AXJ Y ) = −g(AXU,J Y ) = g(JAXU, Y )

Proposition 5.16. For U a vertical vector, X a horizontal vector, one has (∇XJ )U = 0.

Proof. By Proposition 2.11 and Lemma 5.15 we have

(∇XJ )U = ∇X(JU)− J∇XU
= AXJU + V∇X(JU)− JAXU − JV∇XU
= V∇X(JU)− JV∇XU

We evaluate the first term against a vertical vector V and use the Koszul formula.

2g(∇X(JU), V ) = Xg(JU, V ) + g([X,JU ], V ) + g([X,V ],JU)

Similarly for the second term against V ,

−2g(J∇XU, V ) = 2g(∇XU,J V ) = Xg(U,J V ) + g([X,U ],J V ) + g([J V,X], U)

As (∇XJ )U is tensorial in X we assume X is basic. Lemma 4.5 and the compatibility of g with J now give

the result.

Proposition 5.17. For horizontal vectors X,Y , one has (∇XJ )Y = 0.

Proof. By Proposition 2.11 and Lemma 5.14 we have

(∇XJ )Y = ∇X(J Y )− J∇XY
= H∇X(J Y ) +AXJ Y − JH∇XY − JAXY
= H∇X(J Y )− JH∇XY

Evaluating each term against a basic vector Z, and noting −g(J∇XY, Z) = g(∇XY,JZ), gives

2g(∇XJ Y, Z) = Xg(J Y,Z) + J Y g(Z,X)− Zg(X,J Y ) + g([X,J Y ], Z)− g([J Y, Z], X) + g([Z,X],J Y )

2g(∇XY,JZ) = Xg(Y,JZ) + Y g(JZ,X)− JZg(X,Y ) + g([X,Y ],JZ)− g([Y,JZ], X) + g([JZ,X], Y )

Assume X,Y are basic as (∇XJ )Y is tensorial. As in Lemma 4.9, let x ∈ M and S a section of Z over

Ω ⊂M with x ∈ Ω. For y ∈ Ω we write Sy for the complex structure on TyM . Under the natural immersion,

we view S as a local section of E. As HE = H we demand that ∇S = 0 at x. Under this hypothesis,

(∇XJ )Y = (∇π∗XS)π∗Y . Indeed consider the preceding two equations. There are immediate relations such

as Xg(J Y,Z) = π∗Xǧ(Sπ∗X,π∗Y ). Also, as S : Ω → Z provides an immersion of Ω, the terms involving

brackets are dealt with, for example π∗[X,J Y ] = [π∗X,Sπ∗Y ]. Finally, at x ∈ M , the condition ∇S = 0
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implies J Y g(Z,X) = Sπ∗Y ǧ(π∗Z, π∗X) with a similar expression for JZg(X,Y ). Therefore, at x ∈M

g((∇XJ )Y, Z) = g(∇XJ Y,Z) + g(∇XY,JZ)

= ǧ(∇π∗XSπ∗Y, π∗Z) + ǧ(∇π∗Xπ∗Y, Sπ∗Z)

= ǧ((∇π∗XS)π∗Y, π∗Z) = 0.

Theorem 5.18. The twistor space (Z, g,J ) with λ̂ = λ̂1 is Kähler-Einstein.

Proof. The complex structure is parallel by Propositions 5.8, 5.13, 5.16, 5.17.

It is now not difficult to see that the non-integrable almost-complex structure defined in Remark 4.3

provides a nearly Kähler manifold.

Definition 5.19. An almost Hermitian manifold (M, g, J) is nearly Kähler if ∇J is skew-symmetric.

This definition amounts to showing (∇XJ)X and (∇UJ )U vanish for X a horizontal vector, U a

vertical vector and also that (∇XJ)U + (∇UJ)X vanishes. The first two statements are consequences of

Propositions 5.8, 5.17, while the third is a consequence of Proposition 5.16.
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6. Even Clifford Structures

This final chapter investigates a generalisation of the twistor space over quaternionic-Kähler manifolds and

its integrability. We consider a structure introduced recently by Moroianu and Semmelmann [11]. More

precisely even Clifford structures over Riemannian manifolds. In order to construct the associated twistor

space we recall the appropriate setting.

6.1 Clifford Algebras

Standard facts on Clifford algebras may be found in [8]. However, in order to introduce the twistor space, it is

appropriate to recall some of the associated structure. Throughout this section, let (V, q) be a finite dimensional

vector space endowed with a positive definite quadratic form. The automorphism α : Cl(V, q) → Cl(V, q)

which extends the map α(v) = −v on V splits the Clifford algebra

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q)

where Cli(V, q) is the eigenspace of α with eigenvalue (−1)i. Then Cl0(V, q) is the even Clifford algebra.

There exists a natural isomorphism between the associated graded algebra of Cl(V, q) and the exterior algebra

Λ∗V . In particular, we identify

Cl0(V, q) '
⊕
k≥0

Λ2kV.

On the tensor algebra of V , there is an involution given on simple elements by the reversal of order, i.e.,

v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1. This map descends to both the exterior algebra and the Clifford algebra. It is

denoted ( )t : Cl(V, q)→ Cl(V, q). We immediately get the following.

Lemma 6.1. The transposition acts as the identity on Λ4kV and as by inversion on Λ4k+2V .

Proof. If {ei} is a basis for V then ei1 ∧ · · · ∧ ei4k (where ij 6= ik for j 6= k) may be grouped in 2k pairs

ei2j−1
∧ ei2j allowing the transposition to be returned to its original state up to a factor of (−1)2k = 1.

Similarly, ei1 ∧ · · · ∧ ei4k+2
(where ij 6= ik for j 6= k) may be grouped in 2k+ 1 pairs allowing the transposition

to be returned to its original state up to a factor of (−1)2k+1 = −1.

Under this transpose, we may split the even Clifford algebra into ±1 eigenspaces which we will denote

Cl0,±(V, q). That is

Cl0(V, q) = Cl0,+(V, q)⊕ Cl0,−(V, q)

where

Cl0,+(V, q) '
⊕
k≥0

Λ4kV and Cl0,−(V, q) '
⊕
k≥0

Λ4k+2V.

6.2 Twistor Fibre

In order to understand the twistor space introduced in the following section, it is important to understand the

fibres from an algebraic viewpoint. To this end, it is not important to continue the analysis with (V, q) and

we will consider the standard Clifford algebras for Rr with the standard metric. We introduce the following

definition.
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Definition 6.2. Given an even Clifford algebra Cl0r the twistor fibre Zr is defined by

Zr = {σ ∈ Cl0r |σt · σ = 1 and σt + σ = 0}

Immediately, from the above discussion we have the following characterisation.

Lemma 6.3. The twistor fibre may be characterised by

Zr = {σ ∈ Cl0,−r |σ2 = −1}

Ultimately we want to consider an integrability question about a twistor space over a manifold. As in

the quaternionic-Kähler setting, we would like the fibre to be a complex symmetric space. This requires an

understanding of the representation theory of Clifford algebras. Due to the structure of Clifford algebras,

the classification of even Clifford structures (introduced in the following section) and ease of reading, we

will limit the analysis to ranks 3 ≤ r ≤ 10. The following facts are discussed in [8]. We have the standard

identifications for the even Clifford algebras Cl0r.

3 4 5 6 7 8 9 10

Cl0r H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16) C(16)

where K(n) denotes n× n matrices with values in the field K.

Remark 6.4. There is a minor complication with cases r = 4k where there are precisely 2 irreducible

representations of Cl0r. This will lead to a splitting of the base manifold under a condition of parallelism to

be discussed in the final section.

Identifying H ∼ C2 ∼ R4 by

a+ ib+ jc+ kd ∼ (a+ ib, c+ id) ∼ (a, b, c, d)

we obtain inclusions H(n) ⊂ C(2n) ⊂ R(4n). Moreover, the transpose on Clr introduced above corresponds,

under these identifications, to the transpose in R(n) (and the conjugate transpose if considering H(n) or

C(n) without the identification H ∼ C2 ∼ R4.) Heuristically, recalling Definition 6.2, this means the twistor

fibre becomes the intersection of a certain Lie group and its corresponding Lie algebra. We will consider the

following three examples depending on whether the even Clifford algebra representation is real, complex, or

quaternionic

ZR = SO(d) ∩ o(d), ZC = U(d) ∩ u(d), ZH = Sp(d) ∩ sp(d).

Here d corresponds to the real, complex, or quaternionic dimension of the associated even Clifford algebra.

We will show that, in these three cases, we have symmetric spaces.

We consider first ZR. Take the (left) adjoint action of SO(d) on ZR (where d is even). That is,

U ·A = UAU−1 for U ∈ SO(d) and A ∈ ZR. It is clearly well-defined

(UAU−1)t(UAU−1) = UAtAU−1 = 1 and (UAU−1)t + (UAU−1) = U(At +A)U−1 = 0.

The action is also transitive. Indeed for A ∈ ZR (which is a complex structure on Rd compatible with the

standard metric) we may diagonalise A by some U ∈ SO(d) such that

UAU−1 = Jd

where Jd is the standard complex structure on Rd with 2× 2 entries on the diagonal of the form J2 =
(
0 −1
1 0

)
.

From this, transitivity is now clear. Finally, as Jd ∈ ZR we compute the stabiliser

stabJd = {U ∈ SO(d) | [U, Jd] = 0} = U(d/2).
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We conclude ZR may be characterised

ZR =
SO(d)

U(d/2)
.

We consider second ZC. Take the (left) adjoint action of U(d) on ZC. The action is again well-defined.

Unlike before, the action is not transitive. Consider an element A ∈ Zd. As A2 = −1, it may be diagonalised

by U ∈ U(d) such that the first k diagonal entries are i and the remaining d− k diagonal entries are −i. It is

now clear ZC decomposes into d+ 1 components (depending on the dimension of the i-eigenspace of a given

matrix) and on each component U(d) acts transitively. Moreover, if Jk denotes the diagonal matrix with the

first k entries i and the second d− k entries −i, it is clear that

stabJk =

(
U(k) 0

0 U(d− k)

)

We conclude ZC has d+ 1 connected components and may be characterised

ZC =

d⊔
k=0

U(d)

U(k)× U(d− k)
.

We consider finally ZH. Take the (left) adjoint action of Sp(d) on ZH. The action is again well-defined.

The action is transitive however the demonstration is more involved. Precisely as in the quaternionic-Kähler

setting we have the following. Identifying R4d ∼ Hd (extending the identification above) and letting H act

by right multiplication defines λ : Sp(1) ↪→ SO(4d) and Sp(d) is the subgroup of SO(4d) commuting with

λ(Sp(1)). Let Ri, Rj , Rk be the images of i, j, k under λ. Take A ∈ ZH then immediately A ∈ EndC,RiR4d

where the notation indicates A is complex linear with respect to Ri. That is, A ◦ (a+ bRi) = (a+ bRi) ◦A.

As A2 = −1 we have the decomposition of R4d

R4d = VRi,A ⊕ V−Ri,A where A|V±Ri,A
= ±Ri

We instantly have an isomorphism between V±Ri,A by considering Rj : VRi,A → V−Ri,A. Indeed we need only

verify the map is well-defined. For x ∈ VRi,A,

ARjx = RjAx = RjRix = −Ri(Rjx)

so Rjx ∈ V−Ri,A. In particular this ensures dimR V±Ri,A = 2d. If B ∈ ZH then we have a second decomposition

R4d = VRi,B ⊕ V−Ri,B where B|V±Ri,B
= ±Ri

Let {el,A} (where 1 ≤ l ≤ 2d) be an orthonormal basis for VRi,A. Using Rj , we extend this basis to an

orthonormal basis {el,A, Rjel,A} for R4d. First VRi,A and VRi,B are isomorphic. Second both A|VRi,A
= Ri

and B|VRi,B
= Ri. Therefore there exists an invertible Ũ ∈ HomC,Ri(VRi,A, VRi,B). Define an orthonormal

basis for VRi,B by el,B = Uel,A for 1 ≤ l ≤ 2d and extend Ũ to U ∈ SO(4d) by requiring U(Rjel,A) = Rjel,B .

By construction [U,Ri] = [U,Rj ] = 0 so U ∈ Sp(d). Then UAU−1 = B. Indeed,

UAU−1el,B = UAel,A = URiel,A = RiUel,A = Riel,B = Bel,B

and

UAU−1Rjel,B = UARjel,A = URjRiel,A = −RiRjUel,A = −RiRjel,B = BRjel,B .

To calculate the stabiliser of A, again consider the associated decomposition. If UA = AU then U preserves

the decomposition R4d = VRi,A ⊕ V−Ri,A. Indeed

A(Uel,A) = UAel,A = URiel,A = Ri(Uel,A)
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and

A(URjel,A) = UARjel,A = −URiRjel,A = −Ri(URjel,A).

Therefore U =
(
Ũ1 0

0 Ũ2

)
where Ũi ∈ Ud. Of course Ũ2 is determined by Ũ1 as U ∈ Sp(d). That is [U,Rj ] = 0

hence U(Rjel,A) = RjUel,A. We conclude ZH may be characterised

ZH =
Sp(d)

U(d)
.

In summary, we have the following classification of the twistor fibre when there exists precisely one (up to

isomorphism) irreducible representation of Cl0r for 3 ≤ r ≤ 10.

3 4 5 6 7 8 9 10

Cl0r H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16) C(16)

Zr Sp(1)
U(1)

Sp(2)
U(2)

⊔5
k=0

U(4)
U(k)×U(4−k)

SO(8)
U(4)

SO(16)
U(8)

⊔16
k=0

U(16)
U(k)×U(16−k)

Remark 6.5. It is a future project to investigate the complex structure on the twistor fibre. For the rest of

this dissertation we will assume the following form for the complex structure. If σ ∈ Cl0r and v ∈ TσZ0 the

complex structure is given by

Jσv = σ · v

The verification of such a claim should come from the general theory of symmetric spaces as given in [6].

6.3 Even Clifford Structures

The naturality of the above objects enables us to carry them over to vector bundles. In particular, we may

introduce the following.

Definition 6.6. Let (M, g) be an n-dimensional simply connected orientated complete Riemannian manifold

and let (E, h) be a rank r ≥ 3 orientated Euclidean vector bundle over M . A rank r even Clifford structure,

is the above data along with a Clifford morphism ϕ : Cl0(E, h) → End(TM). That is, an algebra bundle

morphism that sends Λ2E into the bundle of skew-symmetric endomorphisms End−(TM).

Definition 6.7. An even Clifford structure is parallel if there is a metric connection ∇E on (E, h) such that

ϕ is connection preserving, i.e.

ϕ(∇EXσ) = ∇gXϕ(σ)

for every tangent vector X ∈ TM and section σ of Cl0(E, h) (here ∇g denotes the Levi-Civita connection).

The parallel even Clifford structure is flat if the connection ∇E is flat.

Remark 6.8. This definition generalises quaternionic-Kähler manifolds, as explicitly mentioned in Example 2.7

of [11]. For a rank 3 parallel even Clifford structure, if {e1, e2, e3} is a local orthonormal basis of E, we define

I = ϕ(e1 · e2), J = ϕ(e2 · e3), K = ϕ(e3 · e1) which gives a local quaternionic frame. Conversely if E′ is the

subbundle spanned locally by {I, J,K}, the Hodge isomorphism enables E to be constructed by identifying

locally E ' Λ2E ' E′ with the second identification identical to the one above.

Extending these definitions, we introduce the twistor space.

Definition 6.9. Consider a parallel even Clifford structure with notation as in Definition 6.6. Then the

pre-twistor space ZE is given by

ZE = {σ ∈ Cl0(E, h) |σtσ = 1 and σt + σ = 0}

and the twistor space Z of M is the image of ZE under ϕ, i.e.

Z = {J ∈ End(TM) | J = ϕ(σ) for some σ ∈ Cl0(E, h) such that σtσ = 1 and σt + σ = 0}.
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It is immediate that (local) sections of Z correspond to (local) almost complex structures (as the Clifford

morphism sends −1 to minus the identity endomorphism). Clearly Z fibres naturally over M . For each

x ∈M , we have, from the preceding section, the algebraic twistor fibre ZEx associated with (Ex, hx) whose

image under ϕ is precisely Zx. Similarly, we have an alternative definition.

Lemma 6.10. Consider a parallel even Clifford structure with notation as in Definition 6.6. Under the

identification between Cl0(E, h) and
⊕

k≥0 Λ2kE. The twistor space may be characterised by

Z = {J ∈ End(TM) | J = ϕ(σ) for some σ ∈
⊕

k≥0 Λ4k+2E ⊂ Cl0(E, h) such that σ2 = −1}.

Remark 6.11. As in the preceding remark, this extends Definition 4.1. For rank 3, take {e1, e2, e3} an

orthonormal basis for Ex where x ∈M and define I, J,K as in the preceding remark. As
⊕

k≥0 Λ4k+2E = Λ2E,

and for i 6= j we have ei ·ej = −1, the fibre Zx consists of complex structures on TxM of the form aI+bJ+cK

where a, b, c ∈ R with a2 + b2 + c2.

As in the quaternionic-Kähler case, we introduce an almost complex structure on the twistor space of a

parallel even Clifford structure. The metric connection on (E, h) gives a connection on ΛkE and the condition

of parallelism ensures that the subbundle

F = ϕ
(
Cl0,−(E, h)

)
⊂ End(TM)

is preserved by the connection on the bundle of endomorphisms of the tangent bundle (induced by the

Levi-Civita connection). We thus have a splitting

TF = HF ⊕ VF

where VF = kerπ∗ where π : F →M is the natural projection. As before, this provides a splitting

TZ = H⊕ V

where H = HF and V = kerπ∗ for π : Z →M .

Let S ∈ Z and x = π(S). The projection gives an identification π∗ : HS → TxM but unlike the

quaternionic-Kähler setting, we use Remark 6.5 to define the complex structure on the fibre.

Definition 6.12. Let X +U be a tangent vector at S compatible with the decomposition TSZ = H⊕V. The

almost-complex structure J on the twistor space is defined by

J (X + U)S = π−1∗ Sπ∗X + SU

Conjecture 6.13. The Nijenhuis tensor vanishes when restricted to V × V.

Remark 6.14. As the bracket of vertical vectors is again a vertical fibre, this statement claims that the

twistor fibre is naturally a complex manifold when endowed with the associated complex structure from

Definition 6.12 and depends on Remark 6.5.

We have the following statements that hold immediately in the current setting with precisely the same

proofs as given for the quaternionic-Kähler case.

Lemma 6.15. For a basic vector field X and a vertical vector field U , one has J [U,X] = [JU,X].

Lemma 6.16. For a horizontal vector field Y and a vertical vector field U , one has JV[U, Y ] = V[JU, Y ]

Lemma 6.17. For a basic vector field X and a vertical vector field U , one has π∗[U,JX] = Uπ∗X.

Proposition 6.18. The Nijenhuis tensor vanishes when restricted to V ×H.

Lemma 6.19. The horizontal component of the Nijenhuis tensor vanishes when restricted to H×H.
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We now consider the generalisation of the curvature condition in Lemma 4.10. Calculations for the claims

made below are given in the proof of Proposition 2.10 of [11]. We announce this proposition below.

Proposition 6.20. Consider a parallel non-flat even Clifford structure with notation as in Definition 6.6.

1. If r 6= 4 and n 6= 8 then

(a) The curvature of E, viewed as a maps from Λ2M to End−E is a non-zero constant times the

metric adjoint of the Clifford map ϕ.

(b) M is Einstein with non-vanishing scalar curvature and has irreducible holonomy.

2. If r 6= 4 and n 6= 8 then (a) implies (b).

Lemma 6.21. Let S ∈ Z with x = π(S) and let X,Y ∈ TxM . Suppose the curvature condition 1(a) of

Proposition 6.20 holds. If S = Jij = ϕ(ei · ej), i,j distinct, for some orthonormal basis {ei} of Ex then

−[RX,Y , S]− S[RSX,Y , S]− S[RX,SY , S] + [RSX,SY , S] = 0

where R is the Riemann curvature tensor of the tangent bundle.

Proof. Let {ei} be a local orthonormal frame on E. This induces local endomorphisms on M defined by

Jij = ϕ(ei · ej). Denote by ωij the curvature forms of the connection on E with respect to {ei}

REX,Y ei =

r∑
j=1

ωji(X,Y )ej

for tangent vectors X,Y on M . We note the following equivalence.

Lemma 6.22. The curvature condition 1(a) of Proposition 6.20 is equivalent to the existence of a non-zero

constant κ such that ωij(X,Y ) = κg(JijX,Y ) for all i 6= j and X,Y tangent vectors on M .

The parallel condition on ϕ gives (for i 6= j)

[RX,Y , Jij ] =

r∑
s=1

[ωsi(X,Y )Jsj + ωsj(X,Y )Jis]

Using Lemma 6.22 we obtain

[RX,Y , Jij ] = κ
∑
s6=i

g(JsiX,Y )Jsj + κ
∑
s6=j

g(JsjX,Y )Jis

(Note the discrepancy between this equation and Equation (15) of [11].) We may efficiently write this as

[RX,Y , Jij ] = κ
∑

s6∈{i,j}

g(JsiX,Y )Jsj + g(JsjX,Y )Jis.

We now investigate term by term the claimed formula of this lemma. One may verify

−[RX,Y , Jij ] = κ
∑

s 6∈{i,j}

g(JsiX,Y )Jsj + g(JsjX,Y )Jis

−[JijRJijX,Y , Jij ] = −κ
∑

s6∈{i,j}

g(JsjX,Y )Jis + g(JsiX,Y )Jsj

−[JijRX,JijY , Jij ] = κ
∑

s 6∈{i,j}

g(JjsX,Y )Jis + g(JsiX,Y )Jjs

[RJijX,JijY , Jij ] = κ
∑

s 6∈{i,j}

g(JsiX,Y )Jjs + g(JjsX,Y )Jis.
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Indeed the calculations are relatively simple as i, j, k are distinct so distinct indices anti-commute (see

Lemma 2.4 of [11]). Summing these four calculations now gives the result.

It is the basis of future work to investigate whether this preliminary result will be able to be generalised

to the following more general and required statement.

Conjecture 6.23. Let S ∈ Z with x = π(S) and let X,Y ∈ TxM . Suppose the curvature condition 1(a) of

Proposition 6.20 holds. Then

−[RX,Y , S]− S[RSX,Y , S]− S[RX,SY , S] + [RSX,SY , S] = 0.

Conjecture 6.24. The Nijenhuis tensor vanishes when restricted to H×H.

Proof. The proof is precisely the proof of Proposition 4.11 replacing the references to Lemmata 4.9, 4.10 by

Lemma 6.19 and Conjecture 6.23

The future work will enable a statement on the integrability of the twistor space to be made. If Remark 6.5

is justified hence Conjecture 6.13 is true and if Conjecture 6.23 is also true, then indeed, the twistor space is

a complex manifold.

6.4 Rank 4 Clifford Structures

The geometry of the algebraic twistor fibre of higher rank even Clifford structures is more complex than

the rank 3 case (where we we saw the twistor bundle was a sphere subbundle of a vector subbundle of

endomorphisms). However the rank 4 case may be fully described and also offers a model for the even

Clifford structure when the even Clifford algebra possesses precisely two non-isomorphic representations. This

situation follows relatively easily from results given in [11]. This is given below and is naturally split into two

parts: algebraic and differential geometric. For compactness, we will introduce the structures immediately in

the setting of a manifold.

Consider a parallel even Clifford structure with notation as in Definition 6.6 where E has rank 4. At

a point x ∈ M Take an orthonormal basis {ei} with positive orientation and denote the volume element

ω = e1 · e2 · e3 · e4. We decompose Λ2Ex into self-dual and anti-self dual forms and define the following

orthonormal basis

Λ2Ex = Λ2
+Ex ⊕ Λ2

−Ex = sp{e+i } ⊕ sp{e−i }

where

e±1 = 1
2 (e1 ∧ e2 ± e3 ∧ e4) , e±2 = 1

2 (e1 ∧ e3 ∓ e2 ∧ e4) , e±3 = 1
2 (e1 ∧ e4 ± e2 ∧ e3) .

Direct calculations establish the following.

Lemma 6.25. The basis {e±i } introduced above satisfies the following properties(
e±i
)2

= 1
2 (−1± ω)

e±i · e
±
j = ±σe±k for i, j, k distinct and σ is the signature of the permutation (1, 2, 3) 7→ (i, j, k)

e±i · e
∓
j = 0 for arbitrary i, j

e±i ω = ωe±i = ∓e±i
ω2 = 1

The final property implies ϕ(ω) is an involution on TxM . This splits TxM into ±1 eigenspaces T±x M .

Importantly, this is compatible with the decomposition of Λ2Ex in the sense that ϕ(e±i ) acts trivially on

T±x M . Under the decomposition TxM = T+
x M ⊕ T−x M we may thus write

ϕ(ω) = (1,−1), ϕ(e−i ) = (J−i , 0), ϕ(e+i ) = (0, J+
i )
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for appropriate complex structures J±i acting on T∓x M . The twistor fibre above x is thus, by Lemma 6.10,

the image of elements

σ =
∑

b±i e
±
i

such that σ2 = −1. From Lemma 6.25 we have(∑
b±i e
±
i

)2
=
(∑

b+i e
+
i

)2
+
(∑

b−i e
−
i

)2
=
∑(

b±i
)2 1

2 (−1± ω)

from which we deduce the two conditions
∑

(bi)
+

=
∑

(bi)
−

= 1. The twistor fibre is thus a direct product

of two spheres.

From a differential geometric viewpoint we can say more if we suppose that the Clifford structure is

parallel. The first part of this statement is observed in [11]. Using the Hodge ∗-application, we see ω must be

parallel with respect to the connection on E. Therefore ϕ(ω) is a parallel involution of TM which moreover

commutes with the Clifford action (as may be observed from Lemma 6.25) and is a condition which generalises

to other cases where there exist 2 non-isomorphic irreducible representations of the even Clifford algebra.

By the de Rham decomposition theorem, M is a Riemannian product M = M+ ×M−. Furthermore, we

reconsider the algebraic argument above replacing the orthonormal basis with a local orthonormal frame. It

is clear that J±i which come from ϕ(e±i ) as introduced above, give local complex structures on M∓ which

satisfy the quaternionic relations. The condition of parallelism ensures that they provide what were called

local quaternionic frames in the previous chapters.

The conclusion is that for a rank 4 parallel even Clifford structure, the twistor space of M corresponds to

the direct product of the twistor spaces of the two quaternionic-Kähler manifolds whose product gives M .

There is only one subtlety left in this case. It is possible that one of these quaternionic-Kähler manifolds

is trivial. Indeed this is a consequence of the possibility that the splitting TxM = T+
x M ⊕ T−x M is trivial,

hence the representation by ϕ on every tangent space TxM is not faithful.
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