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1 Introduction

Within the last 50 years, physicists have developed a sudden interest in a particular algebraic
structure called a quantum group. The development of the theory of quantum groups is well-
motivated, as they occur naturally and often in the study of integrable systems in quantum
field theory and statistical mechanics. Although it clearly denotes the object’s close rela-
tionship with quantum mechanics, the term quantum group is ill-fitting because quantum
groups are not actually groups. Rather, they are an instance of Hopf algebras, a rich alge-
braic structure whose axioms appear so naturally that they were studied by mathematicians
decades before they found a place in modern physics.

The theory of quantum groups is too intricate to be done justice in such a short setting.
For our purposes, one can loosely think of a quantum group as a “deformation” of a universal
enveloping algebra. Instead of giving an uninspired introduction to quantum groups, we will
introduce Hopf algebras and briefly explore the simplest example of a quantum group.

2 Hopf Algebras

We begin by defining coalgebras, the dual to unital associative algebras:

Definition 2.1. A coalgebra (C,∆, ε) over a field k is a k-vector space C equipped with
two morphisms: comultiplication ∆ : C → C⊗C and the counit ε : C → k such that the
following diagrams commute:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

∆⊗idC

idC⊗∆

C

C ⊗ C C ⊗ k ∼= C ∼= k ⊗ C C ⊗ C

∆ ∆

idC⊗ε ε⊗idC
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The property characterized by the commutativity of the first of the above diagrams is
referred to as coassociativity since it is dual to the diagram that defines the associative
property of an associative algebra. The second diagram is dual to the diagram that asserts the
existence of a multiplicative identity in a unital algebra. Let’s look at some quick examples
of coalgebras:

Example 2.2. Let S be a nonempty finite set and fix a field k. Define kS to be the k-vector
space with basis S. Define ∆ : kS → kS by ∆(s) = s⊗ s and define ε : kS → k by ε(s) = 1
for all s ∈ S. Then (kS,∆, ε) is a coalgebra.

Remark 2.3. This shows that even without specifying a bilinear product, every vector space
can be equipped with a coalgebra structure.

Example 2.4. An important example of a coalgebra is the divided power coalgebra. Let
H be a k-vector space with basis {cn : n ∈ Z≥0}. One might note this resembles the ring
k[x]. One can define a coalgebra structure on H by:

∆(cn) =
n∑

i=0

ci ⊗ cn−i and ε(cn) = δ0,n

where δi,j is the Kronecker delta function.

We are now equipped to define a bialgebra:

Definition 2.5. A bialgebra is a tuple (B,∇, η,∆, ε) such that (B,∆, ε) is a coalgebra over
a field k and (B,∇, η) is a unital associative algebra with multiplication given by ∇ : B⊗B →
B and unit given by η : k → B such that either of the following equivalent conditions hold:

1. ∆ and ε are algebra morphisms.
2. ∇ and η are coalgebra morphisms (such a morphism has the expected definition).

Remark 2.6. The definition of a bialgebra is traditionally given in terms of four commu-
tative diagrams that express the necessary compatibility between the algebra and coalgebra
structures. However, either of the two equivalent conditions above fully describe these dia-
grams and provide a more transparent view of their meaning. Each of these diagrams would
describe the compatibility of one of the following pairs: ∇ and ∆, ∇ and ε, ∆ and η, and η
and ε.

Remark 2.7. One can check easily that the divided powers coalgebra can be made into a
bialgebra. Another important example of a bialgebra is the tensor algebra, although its
bialgebra structure is more complicated to describe and will not be mentioned here.

Definition 2.8. Given a coalgebra (C,∆, ε), an algebra (A,∇, η), and two k-linear maps
f, g : C → A, the convolution of f and g is the k-linear map f ⋆ g : C → A defined by
c 7→ (∇ ◦ (f ⊗ g) ◦∆)(c).

With this, we are finally ready to define a Hopf algebra:

Definition 2.9. A Hopf algebra (H,∇, η,∆, ε, S) is a bialgebra (H,∇, η,∆, ε) equipped
with a k-linear map S : H → H called an antipode such that idH ⋆ S = S ⋆ idH = η ◦ ε.
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Remark 2.10. As is the case with a bialgebra, the definition of a Hopf algebra is self-dual,
so the dual of a Hopf algebra is always a Hopf algebra.

Example 2.11. The universal enveloping algebra U(sl2) has a Hopf algebra structure defined
by ∆(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0, and S(x) = −x where x ∈ {E,F,H}. In fact, the
universal enveloping algebra of a Lie algebra is always a Hopf algebra. Without constructing
this explicitly, this can be seen by viewing U(g) as a quotient of the tensor algebra.

3 The Quantum Group Uq(sl2)

We dedicate the rest of this short paper to discussing a fundamental example of a Hopf
algebra:

Definition 3.1. Let q ∈ C \ {0,±1}. We define quantum sl2, denoted Uq(sl2), as the
algebra generated by the symbols E,F,K,K−1 subject to the relations:

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] = EF−FE =
K −K−1

q − q−1

Remark 3.2. The resemblance of this definition to that of U(sl2) somewhat illustrates how
Uq(sl2) can be thought of as a deformation of U(sl2). In fact, setting K = qh we have that

lim
q→1

K −K−1

q − q−1
= h

so as q → 1 the relations of Uq(sl2) ”deform” into those of U(sl2). This statement can be
made rigorous, although we will not do so here.

Remark 3.3. The set of monomials {F kKℓEm : k,m ∈ Z≥0, ℓ ∈ Z} is a Poincaré-Birkhoff-
Witt style basis of Uq(sl2).

Let’s define a (unique) Hopf algebra structure on Uq(sl2) by defining the necessary mor-
phisms on the generators:

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K

ε(E) = ε(F ) = 0, ε(K) = 1

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1

Checking that this is a Hopf algebra is, although not very difficult, actually a bit exhausting.
One must check that this satisfies all the axioms of a Hopf algebra and that each morphism
respects the generating relations.

We end by noting one reason Uq(sl2) is so important. The relatively simple construc-
tion we just gave extends in a slightly more complicated manner to the case of any finite-
dimensional simple Lie algebra g of rank r (even more generally, it extends to symmetrizable
Kac-Moody algebras, although we won’t discuss or define them in this paper).
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Definition 3.4. Let g be a finite-dimensional simple Lie algebra of rank r. Let A = (aij)
be its Cartan matrix. Recall that we have unique relatively prime positive integers di for
i ∈ {1, ..., r} such that diaij = djaji. As before, let q ∈ C \ {0,±1} and set qi = qdi. Further,
suppose that qi ̸= ±1 for each i. The quantum group Uq(g) is the algebra generated by
Ei, Fi, Ki, K

−1
i subject to the relations:

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi, KiEjK
−1
i = q

aij
i Ej, KiFjK

−1
i = q

−aij
i Fj

[Ei, Fj] = δij
Ki −K−1

i

qi − q−1
i

and the q-Serre relations:

1−aij∑
ℓ=0

(−1)ℓ

[l]qi ![1− aij − ℓ]qi !
E

1−aij−ℓ
i EjE

ℓ
i = 0 for i ̸= j

1−aij∑
ℓ=0

(−1)ℓ

[l]qi ![1− aij − ℓ]qi !
F

1−aij−ℓ
i FjF

ℓ
i = 0 for i ̸= j

where δij is the Kronecker delta function and [n]q! is the q-factorial, defined as:

[n]q! :=
n∏

i=1

1− qi

1− q

Proposition 3.5. Uq(g) has a unique Hopf algebra strikingly similar to that of Uq(sl2). It
is given by:

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆(Ki) = Ki ⊗Ki

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i

Note that as is the case with Uq(sl2), the limit q → 1 deforms Uq(g) into U(g).

Remark 3.6. The introduction of the q-Serre relations, while necessary, makes verifying
that this is indeed a Hopf algebra in the general case even more tedious than doing so in the
case of Uq(sl2).
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CRC Press, 2000, pp. 1–4. isbn: 9780824704810. url: https://books.google.com/
books?id=-0RZDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#

v=onepage&q&f=false.

[4] Shahn Majid. “What is a Quantum Group?” In: American Mathematical Society, 2006.
url: https://www.ams.org/notices/200601/what-is.pdf.

[5] Zoran Rakic. “Quantum Groups”. In: University of Belgrad, 2001. url: https:/ /
inspirehep.net/files/2edd6350ea1b86dc4b889846d9dab18a#:~:text=1.1.,and%

20Faddeev%20in%20the%201980s..

5

https://math.mit.edu/~etingof/egnobookfinal.pdf
https://math.mit.edu/~etingof/egnobookfinal.pdf
https://web02.gonzaga.edu/faculty/rayr/SpokaneColloquium.pdf
https://web02.gonzaga.edu/faculty/rayr/SpokaneColloquium.pdf
https://books.google.com/books?id=-0RZDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=-0RZDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=-0RZDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://www.ams.org/notices/200601/what-is.pdf
https://inspirehep.net/files/2edd6350ea1b86dc4b889846d9dab18a#:~:text=1.1.,and%20Faddeev%20in%20the%201980s.
https://inspirehep.net/files/2edd6350ea1b86dc4b889846d9dab18a#:~:text=1.1.,and%20Faddeev%20in%20the%201980s.
https://inspirehep.net/files/2edd6350ea1b86dc4b889846d9dab18a#:~:text=1.1.,and%20Faddeev%20in%20the%201980s.

	Introduction
	Hopf Algebras
	The Quantum Group Uq(sl2)

