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1 Basics of Lie Groups

1.1 Definitions, Lie subgroups, and the closed subgroup theorem

Definition 1.1. A real Lie group is a group G such that G is also a manifold and the group
multiplication and inversion maps are smooth. A morphism of Lie groups is a smooth group
homomorphism.

Definition 1.2. A complex Lie group is a group G such that G is also a complex ana-
lytic manifold such that the multiplication and inversion maps are analytic. A morphism of
complex Lie groups is an analytic group homomorphism.

Theorem 1.3 (Discrete Normal Subgroups). Let G be a Lie group. Let G0 be the
connected component of the identity. Then G0 is a normal Lie subgroup and G/G0 is discrete.

Proof. Since the inversion map i : G → G is continuous, it takes connected components to
connected components. The image of G0 under i must contain 1, so it must be G0. Similarly,
since the multiplication map m : G × G → G is smooth, the image of G0 × G0 is G. Now,
let g ∈ G and h ∈ G0. Since conjugation by g is continuous and fixes 1, ghg−1 ∈ G0, so
G0 is normal. The elements of G/G0 are the connected components of G, so the quotient is
discrete.

Definition 1.4. A closed Lie subgroup is a subgroup that is also a submanifold.

Theorem 1.5 (Closed subgroup theorem). Any closed Lie subgroup is closed in G and
any closed subgroup of a Lie group is a closed real Lie subgroup.

Proof. We prove only the first statement. Let H be a closed Lie subgroup of G and let
h ∈ H. h acts bijectively on H, so H ⊂ hH which is closed. This implies H ⊂ hH since
multiplication by h is continuous which gives h−1H ⊂ H so H is closed under multiplication.
A similar argument shows it is closed under inversion, so H is a subgroup.

Now, there exists a neighborhood U of 1 such that U ∩H = U ∩H. Then hU ∩ hH =
hU ∩hH = hU ∩H is open in H. Let x ∈ H. Since xH is dense xH ∩H ̸= ∅ so there exists
some y ∈ H such that xy ∈ H which implies x ∈ H and H = H.

Corollary 1.6. -
1) If G is connected and U is a neighborhood of 1, U generates G.
2) If f : G1 → G2 with G2 connected such that f∗ is surjective, f is surjective.

Proof. 1) Let H be the subgroup generated by G. H is open. For all h ∈ H, hU is an open
subset of G so it is a submanifold and thus a closed Lie subgroup, so it is closed, so H = G.
2)f is surjective in a neighborhood of 1 ∈ G2 so by 1) it is surjective on all of G2

Example 1.7. Let f : R → T 2 = R2/Z2 where f(t) = (t mod Z, αt mod Z with α irrational.
The image of f is a Lie subgroup that is not closed (it is everywhere dense). It is an immersed
manifold.

Theorem 1.8 (Homomorphism theorems). Let f : G1 → G2. H =Kerf is a closed
normal Lie subgroup and gives rise to an immersion G1/H → G2. If Imf is embedded, this
is a closed lie subgroup and we have G1/H ∼= G2
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1.2 Classical Lie groups

The following subsets of GLnK are referred to as the “classical Lie groups”

• GLnK. This is a real Lie group when K = R and complex when K = C

• SLnK, the subset of GLnK whose elements all have determinant 1

• OnK, distance (more generally, bilinear form) preserving maps (i.e. XX t = 1)

• SOnK. Note elements of OnK can have determinant -1

• Sp2nK = {A : K2n → K2n : ω(Ax,Ay) = ω(x, y)} where ω is the skew-symmetric
bilinear form

n∑
i=1

xyyn+i − yixn+i

Equivalently, ω(Jx, y) where (·, ·) is the standard symmetric bilinear form and

J =

(
0 −In
In 0

)
• Un, isometries of Cn (i.e. x∗ = x−1). Note that this is a real Lie group and that Un is
the intersection of any two of the following: O2nR, GLn(C) and, Sp2n(R)

• SUn

• Sp(n) = Sp2n(C) ∩ SU2n, the compact symplectic group, also known as the unitary
quaternionic group

We recall some properties about the matrix exponential and logarithm:
1) log(exp(x)) = x, exp(log(X)) = X when defined
2) exp(0) = 1 and d exp(0) = id
3) If xy = yx, exp(x + y) = exp(x) exp(y). If XY = Y X, log(XY ) = log(X) + log(Y ) in
some neighborhood of the identity. In particular, exp(x) exp(−x) = 1 so exp(x) ∈ GLnK for
any x ∈ glnK since exp(x) is invertible.
4) Fix x ∈ gln(K). The map K → gln(K) given by t 7→ exp(tx) is a Lie group morphism and
the image is called a one-parameter subgroup.
5) exp(AxA−1) = A exp(x)A−1 and exp(xt) = exp(x)t

Theorem 1.9 (Smoothness of classical groups). For each classical group G (listed
above), there exists a vector space g such that in a neighborhood of 1 ∈ G and 0 ∈ g,
log and exp are mutually inverse.

Corollary 1.10. Each classical group is a Lie group with T1G = g and dimG = dimg.
Un, SUn, and Spn are real Lie groups. The groups GLn(K), SLn(K), SOn(K), and Spn(K)
are real Lie groups for K = R and complex Lie groups for K = C.
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1.9 immediately implies the second part of 1.10 since G is a submanifold of GLn(K) near
the identity. Translation by elements in g demonstrates this to be true globally. For the first
part, consider the map exp∗ : T0g → T1G. T0g = g since g is a vector space and
exp∗ =d exp(x) = 1 + x+ ... is the identity at 0. We now prove 1.9 case by case.

Proof. GLnK: Follows immediately from (3) above.
SLnK: Let X ∈ SLn be close enough to 1. Then X = exp(x) for some x ∈ gln. We have
det(X) = 1 =⇒ det(exp(x)) = 1 =⇒ exp(tr(x)) so exp(x) ∈ SLn iff tr(x) = 0. Thus
sln = {x ∈ gln : tr(x) = 0}
On, SOnK: RecallX ∈ On iffXX t = I which impliesX andX t commute. WriteX = exp(x)
and X t = exp(xt), exp(x) exp(xt) = exp(x + xt) = 1, so x + xt = 0. The converse holds as
well, if x + xt = 0, x and xt commute which implies g = {x : x + xt = 0}, skew-symmetric
matrices. No change needs to be made for SOn, since x + xt = 0 already implies that the
diagonal entries are 0.
Un, SUn: The same argument as in the case of On gives x + x∗ = 0 but this time, this does
not imply the diagonal entries are 0, so we must add the condition that tr(x) = 0 for SOnK.
SpnK, Sp(n): As above, we find that exp(x) ∈ Spn iff x+J−1xtJ = 0. We need the additional
condition that x+ x∗ = 0 for Sp(n)

1.3 Actions and orbit-stabilizer

Definition 1.11. An action of a real/complex Lie group G on a manifold M , is an as-
signment to each g ∈ G a diffeomorphism/invertible holomorphic map ρ(g) such that ρ(1) =
id, ρ(gh) = ρ(g)ρ(h) and such that the map G×M → M(g,m) 7→ ρ(g).m is smooth/holomorphic.

Definition 1.12. A representation of a Lie group G is a vector space V with a group mor-
phism ρ : G → GL(V ). If V is finite-dimensional, ρ is smooth/analytic so that it is a
Lie group morphism. A morphism of representations is a linear map f : V → W which
commutes with the group action: fρV (g).m = ρW (f(g)).m Note real Lie groups can act on
complex vector spaces.

Example 1.13. -
1) Representations of G on C∞(M) given by (ρ(g)f)(m) = f(g−1.m)
2) Representations of G on V ect(M) given by (ρ(g).v)(m) = g∗(v(g

−1.m))
3)Fix m ∈ M such that g.m = m for all g ∈ G. G acts canonically on TmM by ρ(g) = g∗.
Similarly for T ∗m M and exterior powers of it.

Theorem 1.14 (Orbit-Stabilizer). Let Om = {g. : g ∈ G} be the orbit of m ∈ M under
G and let Gm = StabG(m) = {g ∈ G : g.m = m} be the stabilizer of m with respect to G.
Then Gm is a closed Lie subgroup of G and the map g 7→ g.m is an embedding G/Gm ↪−→ M
whose image is Om.

Theorem 1.15. -
1. The stabilizer is a closed Lie subgroup with Lie algebra {x ∈ g : ρ∗(x)(m) = 0} where
ρ∗(x) is the vector field on M associated to x. In particular, if V is a representation of G,
v ∈ V with stabilizer GV . GV is a Lie subgroup with Lie algebra h = {x ∈ g : x.v = 0}.
2. G/Gm → M given by g 7→ g.m is an immersion and the orbit Om is an immersed
submanifold with tangent space TmO = g/h.
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Definition 1.16. A G-homogenous space is a manifold with a transitive G action (when
there is only one orbit).

Remark 1.17. Any set with a transitive G action has the canonical structure of a manifold
isomorphic to G/H.

Corollary 1.18. The flag variety Fn(R) is isomorphic to GLn(R)/Bn(R) where Bn is the
group of invertible upper-triangular matrices.

1.4 Adjoint action and invariant vector fields

Remark 1.19. Since the adjoint action Ad g = LgRg preserves the identity, it induces an
action of G on T1G. This action is also written as Ad g. In another abuse of notation, the
actions induced by Lg and Rg on a vector v ∈ TmG will be written as g.v and v.g respectively.

Definition 1.20. A vector field is left-invariant if g.v = v for all v and right-invariant if
v.g = v for all g. It is called bi-inviariant if it is both left- and right-invariant.

Theorem 1.21 (Space of invariant vector fields). The map V ect(G) → T1G given by v 7→
v(1) is an isomorphism of the space of left-invariant (and right-invariant) vector fields with
T1G.

Proof. It suffices to show every left x ∈ T1G extends to a left-invariant vector field on G.
Define v(g) = g.x ∈ TgG.

Remark 1.22. Note that the extension of a vector to a left-invariant vector field and a
right-invariant vector field may differ.

Theorem 1.23. v 7→ v(1) defines an isomorphism of bi-invariant vector fields with the
vector space of invariants of the adjoint action: (T1G)AdG. Note a similar result holds for
other tensor fields.

1.5 The exponential map

Proposition 1.24. Let G be a Lie group with T1G = g and let x ∈ g. There exists a unique
Lie group morphism γx : K → G such that γ̇x(0) = x. This map is called the one-parameter
subgroup of x.

Proof. It is easy to see that γ̇x(t) = γx(t)γ̇x(0) = γ̇x(0)γx(t). If vx is a left-invariant vector
field on G with vx(1) = x, γ is an integral curve for vx which proves uniqueness. Now, if
Φt is the time t flow of vx, Φ

t is also left invariant. Letting γx(t) = Φt(1) gives γx(t + s) =
Φt+s(1) = Φs((Φt(1))) = Φs(γx(t)) = γx(t)Φ

s(1) = γ(t)γ(s). This proves existence.

Definition 1.25. The exponential map exp : g → G is defined by exp(x) = γx(1) where
γ̇x(0) = x.

Remark 1.26. By the uniqueness of γx, γx(λt) = γλx(t) for any λ ∈ K.
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Corollary 1.27. If v is a left- (resp right-) invariant vector field on G, the time t flow of v
is given by g 7→ g exp(tx) (resp g 7→ exp(tx)g) where x = v(1).

Example 1.28. Let G = R so g = R. Then for a ∈ g, γa(t) = ta so exp(a) = a.

Example 1.29. Let G = S1 = R/Z so g = R and for a ∈ g, γa(t) = at mod Z so again
exp(a) = a mod Z. If we consider S1 as {z ∈ C : |z| = 1} then γz(t) = e2πiat where z = e2πa

so exp(a) = e2πia.

Theorem 1.30. Let G be a Lie group and g = T1G. The exponential map has the following
properties:
1) exp(x) = 1 + x+ 1

2
x2 + ... so exp(0) = 1 and exp∗(0) : g → g is the identity.

2) exp is locally a diffeomorphism between a neighborhood of 0 ∈ g and 1 ∈ G.
3) exp((t+ s)x) = exp(tx) exp(sx) for t, s ∈ K.
4) For any map φ : G1 → G2 and x ∈ g1, exp(φx(x)) = φ(exp(x)). That is, exp “commutes”
with Lie group morphisms.
5) For any X ∈ G and y ∈ g, X exp(y)X−1 = exp(Ad X.y) where Ad X is the action of X
on g induced by the adjoint action Ad x : G → G.

Corollary 1.31. If G1 is connected, a map φ : G1 → G2 is determined by φ∗ : T1G1 → T1G2.

Remark 1.32. The exponential map is surjective on compact Lie groups.

1.6 The commutator

Definition 1.33. The group law in logarithmic coordinates is the map µ : g × g → g such
that exp(x)exp(y) = exp(µ(x, y)). This exists since exp locally identifies g with G.

Lemma 1.34. The Taylor series of µ is x + y + λ(x, y) + ... where λ is bilinear and “...”
denotes terms of order three or higher.

Proof. This follows from checking x = 0 and y = 0.

Definition 1.35. The commutator [·, ·] : g× g → g is defined by [x, y] = 2λ(x, y). This map
is bilinear and skew-symmetric.

Proposition 1.36. -
1) Any Lie algebra map induced by a map of Lie groups preserves the commutator
2) The adjoint action of a Lie group preserves the commutator
3) exp(x) exp(y) exp(−x) exp(−y) = exp([x, y], ...) where “...” denotes terms of order three
or higher.

Proof. 1 and 2 follow from the fact that exp commutes with Lie group morphisms. 3 can be
checked by direct computation.

Corollary 1.37. If G is commutative, [·, ·] is identitcally 0 on g.

Lemma 1.38. Let ad = Ad∗ where Ad : G → GL(g) is the adjoint action. ad is a map
g → gl(g).
1) ad x.y = [x, y]
2) Ad(exp(x)) = exp(ad x) as operators g → g.
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Proof. 1 follows from direct computation using 1.36.3. 2 follows from 1.30.4.

Theorem 1.39. The commutator satisfies the following equivalent conditions
1) [x, [y, z]] = [[x, y], z] + [y, [x, z]]
2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]]
3) ad x.[y, z] = [ad x.y, z] + [y.ad x.z]
4) ad[x, y] = ad xad y − ad yad x.

Proof. 4) Follows from the fact that the commutator in gl(g) is [x, y] = xy−yx. This can be
checked directly with 1.36.3. Equivalence of the four follows from the fact that the bracket
“commutes” with Lie group morphisms.

1.7 Cambell-Hausdorff formula

Theorem 1.40. For x, y ∈ g close enough to 0, we have

exp(x) exp(y) = exp(µ(x, y))

for some g-valued map µ given by the following universal formula (convergent in a neighbor-
hood of 0):

µ(x, y) = x+ y +
∑
n≥2

µn(x, y)

where µn is a Lie polynomial of degree n .

µ(x, y) = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + ...

Proof. The proof is hard. The idea is to write µ(tx, y) as a power series
∑

ant
n(adx)ny and

solve the differential equation in t.

Corollary 1.41. The group law in a connected Lie group is determined by the commutator
in its Lie algebra.

2 Structure Theory of Lie Algebras

2.1 Fundamental theorems of Lie theory

In this section we’ll explore some fundamental properties of Lie algebras.

Theorem 2.1. For any Lie group G, there is a bijection between connected Lie subgroups
H ⊂ G and Lie subalgebras h ⊂ g given h = T1H

Theorem 2.2. For Lie groups G1 and G2 with G1 simply connected, Hom(G1, G2) =
hom(g1, g2)

Theorem 2.3. (Lie’s third theorem) Any finite-dimensional Lie algebra is isomorphic to
the Lie algebra of a Lie group.
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The proofs of these theorems are postponed for now.

Corollary 2.4. Any finite-dimensional Lie algebra g has a unique simply-connected Lie
group G such that Lie(G) = g. Any other connected Lie group G′ with Lie(G′) = g must
be of the form G/Z for some discrete central subgroup Z. In other words, the categories of
finite-dimensional Lie algebras and simply-connected Lie groups are equivalent.

Proof. Given a Lie algebra g, there exists a Lie group G with Lie(G) = g. The universal
cover of G is the simply-connected group desired. If another such group G′ exists, there
is a map G → G′ which is locally an isomorphism so G′ = G/Z for some discrete central
subgroup Z. Since π1(G/Z) = Z, this proves uniqueness.

The idea behind the proof of 2.3 is to use Ado’s theorem to show all Lie algebras are
subalgebras of glnK. The theorem then follows from 2.1. We now show that 2.2 also follows
from 2.1.

Proof. We’ve shown that if G1 is connected, any morphism G1 → G2 is determined by the
corresponding map of Lie algebras, so it remains only to show that every morphism f of Lie
algebras can be lifted to a morphism φ of Lie groups such that f = φ∗.

Let G = G1 × G2 so Lie(G) = g1 × g2. Let h = {x, f(x) : x ∈ g1}. One can show this
is a subalgebra. By 2.1, there is a connected Lie subgroup H ↪−→ G1 × G2. Composing this
injection with the projection p : G → G1 gives a morphism π : H → G1. The induced map
π∗ : h → g1 is an isomorphism. This implies π is a covering map but since G1 is simply
connected and H is connected, π is an isomorphism so it has an inverse. Define φ : G1 → G2

as G1
π−1

−−→ H ↪−→ G → G2.

2.2 Universal enveloping algebras and Poincare-Birkhoff-Witt the-
orem

Definition 2.5. Let g be a Lie algebra over K. The universal enveloping algebra of g,
denoted Ug or U(g), is the unital associative algebra over K generated by all x ∈ g subject
to the relation xy− yx = [x, y]. Alternatively, Ug can be viewed as the quotient of the tensor
algebra Tg =

⊕
n≥0 g

⊕n by the ideal (xy − yx− [x, y]).

Remark 2.6. If g is commutative, Ug is the symmetric algebra of g, Sg ∼= K[x1, ...xn] where
{xi} is a basis of g.

Remark 2.7. Even when g ⊂ gln, the product in Ug need not be matrix multiplication and
in general is not.

The following justifies the use of the term “universal.” The proof is omitted.

Theorem 2.8. Let A be a unital associative algebra over K and let ρ : g → A be a map
such that ρ(x)ρ(y) − ρ(y)ρ(x) = ρ([x, y]). ρ extends uniquely to a morphism of associative
algebras Ug → A.

Corollary 2.9. Any g-representation has a canonical structure of a Ug-module and vice-
versa. That is, the categories of g-representations and Ug-modules are equivalent.
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Let’s define a filtration on Ug. For any k ≥ 0, let Ukg be the subspace spanned by products
x1...xm, m ≤ k. We then have Ug =

⋃
Ukg. This filtration has the following properties

Theorem 2.10. Let x ∈ Upg and y ∈ Uqg.
1. Ug is a filtered algebra. That is, xy ∈ Up+qg.
2. xy − yx ∈ Up+q−1g.
3. Let x1, ..., xn be a basis in g. Monomials of the form xk1

1 ...xkn
n with

∑
ki ≤ p span Upg.

Proof. 1 is immediate. 2 is by induction on p. Notice

x(y1...yq)− (y1...yq)x =
∑
i

y1...[x, yi]...yq ∈ Uqg

so for x ∈ g, y ∈ Uqg, xy ≡ yx mod Uqg. Then

x1...xp+1y ≡ yx1...xp+1 mod Up+qg

3 is also by induction. The base case is clear. Note Up+1g is generated by elements of the
form xy, x ∈ g, y ∈ Upg. y can be written as a sum of monomials as in the theorem, so we
have by part 2

xi(x
k1
1 ...xkn

n )− (xk1
1 ...xki+1

i ...xkn
n ) ∈ Upg

Again by the induction hypothesis, x(xk1
1 ...xkn

n ) can be written as a sum of monomials.

Corollary 2.11. Each Upg is finite-dimensional and the associated graded algebra
Gr Ug =

⊕
p Upg/Up−1g is commutative.

Theorem 2.12. (Poincare-Birkhoff-Witt) Let x1, ...xn be an ordered basis of g. Mono-
mials of the form xk1

1 ...xkn
n with

∑
i ki ≤ p form a basis of Upg.

It only remains to show linear independence. The idea is to construct a representation V
with a basis given by xk1

1 ...xkn
n for any ki and show that the operators ρ(xk1

1 ...xkn
n ) are linearly

independent. The theorem can also be stated in the following equivalent manner:

Theorem 2.13. (Poincare-Birkhoff-Witt II) The associated graded Gr Ug is isomorphic
to the symmetric algebra Sg. This isomorphism is given by the following maps which are
well-defined:

Spg → GrpUg, a1...ap 7→ a1...ap mod Up−1g

GrpUg → Spg, a1...ap 7→ a1...ap and a1...aq 7→ 0 if l < q

Corollary 2.14. The map g → Ug is injective. This is immediate.

Corollary 2.15. Let g1, g2 ⊂ g be Lie subalgebras such that g = g1 ⊕ g2 as a vector space.
The multiplication map Ug1 ⊗ Ug2 → Ug is an isomorphism of vector spaces.

Proof. The multiplication map is a bijection on basis elements.

Corollary 2.16. Ug has no zero-divisors

Proof. The product of two basis elements xk1
1 ...xkn

n · xj1
1 ...x

jn
n is an element of U2ng written

as xk1+j1
1 ...xkn+jn

n + y where y denotes terms of lower degree. Since xk1+j1
1 ...xkn+jn

n ̸= 0, this
concludes the proof.
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2.3 Nilpotent and solvable Lie algebras

Definition 2.17. The derived (or upper central) series of a Lie algebra g is the sequence
defined by D0g = g and Di+1g = [Dig, Dig]. Note each Dig is an ideal and Dig/Di+1g is
abelian.

Proposition 2.18. The following are equivalent:
1. Dng = 0 for some sufficiently large n.
2. There is a sequence of subalgebras a0 = g ⊃ a1... ⊃ ak = 0 such that ai+1 is an ideal in ai

and the quotient ai/ai+1 is abelian.

Proof. 1 =⇒ 2 can be shown by taking ai = Dig. For 2 =⇒ 1, note that ai+1 contains
[ai, ai] since the quotient ai/ai+1 is abelian. The result follows from induction on i.

Definition 2.19. A Lie algebra is called solvable if it satisfies the equivalent conditions in
the above proposition. (Solvable Lie algebras are those that can be obtained from semidirect
products of one-dimensional Lie algebras)

Definition 2.20. The lower central series of a Lie algebra g is the sequence defined by
D0g = g and Di+1g = [g, Dig].

Proposition 2.21. The following are equivalent:
1. Dng = 0 for some sufficiently large n.
2. There is a sequence of ideals a0 = g ⊃ a1... ⊃ ak = 0 such that [g, ai] ⊂ ai+1.

Proof. 1 =⇒ 2 can be shown as before by taking ai = Dig. For 2 =⇒ 1, note that if
[g, ai] ⊂ ai+1, then Dig ⊂ ai since its the smallest algebra satisfying this condition.

Definition 2.22. A Lie algebra is called nilpotent if it satisfies the equivalent conditions in
the above proposition. (This means that g can be built from central extensions of abelian
groups.)

Example 2.23. Let b ⊂ glnK be the subalgebra of upper triangular matrices and let n be the
subset of strictly upper triangular matrices. b is solvable and n is nilpotent.
Let F = ({0} ⊂ V1... ⊂ Vn = V ) be a (partial) flag in a finite dimensional vector space V .
Let b(F) = {x ∈ gl(V ) : xVi ⊂ Vi for all Vi}
and let n(F = {x ∈ gl(V ) : xVi ⊂ Vi−1 for all Vi}.
When F is the standard flag, we recover b and n. We will show n(F) is nilpotent.
Define the algebras ak(F) = {x ∈ gl(V ) : xVi ⊂ Vi−k for all i}. Then a0 = b and a1 = n.
Note for x ∈ ak and y ∈ al, xy ∈ ak+l so [ak, al] ⊂ ak+l. Then D1n = [a1, a1] ⊂ a2 and more
generally Din = [a1, Di−1n] ⊂ ai+1 by induction. Since ai eventually vanishes, this proves
nilpotence of n.
Now, for x, y ∈ b, [x, y] = xy − yx ∈ n since the diagonal entries of xy are those of yx.
Thus D1b ⊂ a1. Using the fact that [ak, al] ⊂ ak+l, by induction we have Di+1b ⊂ a2i so b is
solvable.
Note that b is not nilpotent: Let x be a diagonal matrix with entries λk and let eij be an
elementary matrix in b. Using the fact that [x, eij] = (λi−λj)eij and that elementary matrices
generate b, we see that D2b = [b, D1b] = D1b = n.

11



We now list some useful properties of nilpotent and solvable Lie algebras:

Theorem 2.24. -
1. A real Lie algebra is solvable (resp nilpotent) if its complexification is solvable (resp
nilpotent).
2. If g is solvable (resp nilpotent), any subalgebra or quotient of g is solvable (resp nilpotent).
3. If g is nilpotent it is solvable.
4. If I ⊂ g is an ideal such that I and g/I are solvable, g is solvable. This may not hold for
nilpotence.

Proof. 1 and 2 can be deduced from the definitions. 3 follows from the inclusion Dig ⊂ Dig.
To prove 4, let ϕ : g → g/I be the canonical projection. ϕ(Dng) = Dn(g/I) = 0 for some
sufficiently large n. This implies Dng ⊂ I which implies Dn+kg ⊂ DkI which is 0 for large
enough k.

2.4 Lie and Engel’s theorems

Theorem 2.25. (Lie’s theorem) Let ρ : g → gl(V ) be a complex representation of a
solvable Lie algebra g. There exists a basis for V such that all operators ρ(x) with x ∈ g are
upper-triangular. In other words, there is a (full) flag of invariant subspaces of V .

Lemma 2.26. Let ρ : g → gl(V ) be a complex representation of a Lie algebra g. There
exists a common eigenvector of all ρ(x) with x ∈ g.

Proof. Since g is solvable, [g, g] ̸= g. Then g/[g, g] is a nonzero abelian Lie algebra with
a codimension 1 ideal that corresponds to some codimension 1 ideal h of g. We can write
g = h ⊕ Cx for some x ∈ g. We now induct on the dimension of g: There exists v ∈ V
which is a common eigenvector for all ρ(h), h ∈ h that has eigenvalue λ. Let W be the
corresponding eigenspace of h. If [x, h] = 0 on W , then W is fixed by ρ(x) and we’re
finished. Let v0 = v ∈ W, v1 = ρ(x)v0, v2 = ρ(x)2v0,...and let n such that vn+1 ∈ ⟨v0, ...vn⟩.
Let Wi = ⟨v0, ...vi⟩. We claim Wi is stable under the action of any h ∈ g′ and that it is a
subset of W :

hvk = λ(h)vk mod Wk−1

This can be checked without pain via induction using the fact that [h, x] ∈ h:

hvk = hxvk−1 = xhvk−1 + [h, x]vk−1 = λ(h)xvk−1 + λ([h, x])vk−1 + ...

where “...” indicates scalars of vi, i < k.
This implies that in the basis {v0, ...vn}, ρ(h) is upper-triangular with λ(h) on the diag-

onal. Then we have trW (ρ(h)) = (n+ 1)(λ(h)). Since trW ([h, x]) = 0, we have λ([h, x]) = 0.
Since x preserves the weight space W , W contains an eigenvector of x. Take this as the
desired common eigenvector.

This lemma directly implies Lie’s theorem

Proof. We induct on the dimension of V . Let v be a common eigenvector of all x ∈ g. By
the induction hypothesis, there is a basis {v1, ...vn} in V/Cv so that the action of g in this
basis is upper-triangular. Let ṽi be a preimage of vi. Then the action of x in the basis
{v, ṽ1, ...ṽn} is upper-triangular.
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Corollary 2.27. -
1. Any irreducible representation of a solvable Lie algebra is 1-dimensional
2. There is a unique conjugacy class of maximal solvable subalgebras of glnC (or glnR).
3. If g is a complex solvable Lie algebra, there exists a sequence of ideals 0 ⊂ I1 ⊂ ... ⊂ In = g
such that Ik+1/Ik is 1-dimensional.
4. g is solvable iff [g, g] is nilpotent.

Proof. 1 and 2 are immediate. 3 follows by applying Lie’s theorem to the adjoint represen-
tation and noting that subrepresentations correspond to ideals of g. To prove 4, first note if
[g, g] is nilpotent, it is solvable. Since g/[g, g] is abelian, it is also solvable so g is as well. Now,
assume g is solvable. By Lie’s theorem applied to the adjoint action ad g ⊂ b (where b is the
Borel algebra of upper-triangular matrices) in some basis of g. We have shown above that b is
solvable so the algebra [ad g, ad g] = ad[g, g] is nilpotent (since [x, y] always has trivial diago-
nal). Then for sufficiently large n and any xi ∈ [g, g], [x1, ...[xn−1, xn]...] = 0. As an operator,
ad[g, g] = [[g, g], ·] = −[·, [g, g]] so take any x ∈ g and we have [x, ...[xn−1, xn]...] = 0.

Theorem 2.28. Let g ⊂ gl(V ) be a Lie subalgebra consisting of nilpotent operators. There
exists a basis of V such that every x ∈ g is strictly upper-triangular.

The proof is omitted, but it is similar to the proof of Lie’s theorem. It has the following
corollary:

Theorem 2.29. (Engel’s theorem) A Lie algebra g is nilpotent iff for every x ∈ g,
ad x : g → g is nilpotent.

Proof. If g is nilpotent, then [x, [x, ...[x, y]...] = adn x.y = 0 for some n. If ad x is nilpotent
for all x ∈ g, then by 2.28 there exists a sequence of subalgebras 0 ⊂ g1...gn = g such that
ad x.gi ⊂ gi−1 so [g, gi] ⊂ gi−1.

2.5 Semisimple and reductive Lie algebras and Levi decomposi-
tion

Definition 2.30. A Lie algebra g is semisimple if it has no nonzero solvable ideals.

Note that this implies z(g) = 0 since z(g) is always solvable. Semisimplie Lie algebras
can be thought of as the “opposite” of solvable Lie algebras in that solvable Lie algebras are
those which are close to being abelian, and semisimple are as far from abelian as possible.

Definition 2.31. A Lie algebra g is simple if it is not abelian and contains no proper ideals.

We exclude abelian Lie algebras so the following result holds:

Lemma 2.32. Any simple Lie algebra is semisimple

Proof. If g is simple and contains a nonzero solvable ideal, it must be g itself, so g must be
solvable. Then [g, g] is a nonzero ideal strictly smaller than g, which is a contradiction.

Proposition 2.33. Any Lie algebra g contains a unique maximal solvable ideal known as
the radical of g and denoted rad(g).
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Proof. For existence, note that if I and J are solvable ideals, I + J is as well: (I + J)/I =
J/(I ∩ J) which is solvable since it is a quotient of a solvable ideal. Since (I + J)/I and I
are solvable, so is I + J . By induction, any finite sum of solvable ideals is solvable, so take
rad(g) =

∑
I I where I runs over all solvable ideals. Since g is finite-dimensional, this sum

is finite. Uniqueness is obvious

Corollary 2.34. A Lie algebra g is semisimple if and only if rad(g) = 0.

Corollary 2.35. For any Lie algebra g, g/rad(g) is semisimple. If b is a solvable ideal such
that g/b is semisimple, b = rad(g).

Theorem 2.36. (Levi decomposition) Any Lie algebra g can be written as a direct sum
g = rad(g)⊕ gss where gss denotes a semisimple subalgebra of g.

The proof is omitted. While not absurdly difficult, it involves some homological algebra
beyond the background assumed in these notes.

Theorem 2.37. Let V be an irreducible complex representation of g. Any h ∈ rad(g) acts
by scalar operators. That is, ρ(h) = λ(h)IdV . Moreover, any h ∈ [g, rad(g)] acts by 0.

Proof. Let Vλ be a weight space of rad(g). As in the prove of Lie’s theorem, one can show
that [x, h] = 0 on Vλ for any x ∈ g and h ∈ rad(g). Thus, x preserves Vλ so it is a
subrepresentation. Since V is irreducible, V = Vλ.

The presence of non-zero elements that act by 0 in any irreducible representation is
troubling from the view of representation theory, so we may want to consider algebras from
which [g, rad(g)] = 0.

Definition 2.38. A Lie algebra g is reductive if [g, rad(g)] = 0. This is equivalent to saying
g/z(g) is semisimple.

Any semisimple Lie algebra is reductive, but a reductive Lie algebra may not be semisim-
ple. From the Levi theorem, we have the following result

Corollary 2.39. Any reductive Lie algebra g is a direct sum of abelian and semisimple
algebras g = z⊕ gss with [z, gss] = 0.

Definition 2.40. A bilinear for B on g is invariant if B(adx.y, z) = B(y, adx.z) for all
x, y, z ∈ g.

Lemma 2.41. Let B be an invariant bilinear form on g and let I be an ideal. Define
I⊥ = {x ∈ g : B(x, y) = 0 for all y ∈ I}. Then I⊥ is an ideal and in particular Ker(B) = g⊥

is as well.

Theorem 2.42. (Reductive criterion)
Define the symmetric invariant linear form BV on a representation V of g by BV (x, y) =
trV (ρ(x)ρ(y)). If BV is nondengenrate, g is reductive.

Lemma 2.43. Let ρ : g → V be a finite-dimensional representation. If W is a subrepresen-
tation of V , we have BV = BW +BV/W

14



Proof. Write V = W ⊕ V/W . V has a basis v1, ...vn such that {v1, ..., vk} is a basis of
W and the image of {vk+1, ..., vn} under the quotient map V → V/W is a basis of V/W .
Write W ′ = ⟨vk+1, ..., vn⟩ For x ∈ g, we can write ρ(x) = ρ(y + z) = ρ(y) + ρ(z) for some
y ∈ W, z ∈ W ′. In this basis ρ(x) has the form(

A ∗
0 B

)
where A is the matrix of ρ(y) in the representation W with the chosen basis (we have absued
notation slightly here). We can see that B is the matrix of ρ(z) in the quotient representation
V/W . This concludes the proof.

Armed with this lemma we can prove the theorem above.

Proof. Let x ∈ [g, rad(g)]. It suffices to show x = 0. By Lie’s theorem, x ∈ Ker(BVi
) for an

irreducible representation Vi ⊂ V . If we have a short exact sequence 0 → V1 → W → V2 → 0
then BW = BV1 +BV2 (this will be proven below). By induction, x ∈ Ker(BV ). Since BV is
nondegenerate, we’re done.

Corollary 2.44. (Properties of classical Lie algebras) All classical Lie algebras are
reductive. slnK, sonK (for n > 2), sun, spnK are semisimple. glnK and sun have one-
dimensional center: glnK = K⊕ slnK and mfun = iR⊕ sun

Proof. For gln this follows from the definition B(xy) =
∑

xijyji. For sln it follows from
the decomposition mfglnK = K ⊕ slnK and the fact that K and slnK are orthogonal with
respect to B. For son, B(x, y) =

∑
xijyji = −2

∑
xijyij which is nondegenerate. For

un, B(x, y) = −tr(xyt) = −
∑

xijyij which is nondegenrate. In this case, B(x, x) = −
∑

|x2
ij

so B is negative definite. Therefore, its restriction to un is also negative definite and non-
degenerate. Semisimplicity can be shown by using the decomposition theorem of reductive
Lie algebras and taking the quotients of gln, on, and un by their centers. The only one left
to compute is z(son) = 0.

2.6 Killing form and Cartan’s criteria

A special case of an invariant bilinear form BV occurs when V is the adjoint representation.

Definition 2.45. The Killing form on a Lie algebra g is the bilinear form K(·, ·) defined by
K(x, y) = tr(ad x ad y).

Proposition 2.46. The killing form is invariant and symmetric. More generally, if ρ : g →
Aut(V ) is a representation, the form BV (x, y) = tr(ρ(x)ρ(y)) is invariant and symmetric.

Proof. This can be checked directly. Symmetry is clear. To show invariance, use Ado’s
theorem to embed the Lie algebra into glnK and note:

BV (ad x.y, z)+BV (y, ad x.z) = tr([x, y]z+y[x, z]) = tr(xyz−yxz+yxz−yzx) = tr(xyz−yzx) = 0

or recall that invariance under the adjoint action of GLnK is equivalent to invariance under
the adjoint action of the Lie algebra and notice that tr(gxg−1gyg−1) = tr(xy).
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Theorem 2.47. Any invariant bilinear form on a simple Lie algebra is a scalar multiple of
the Killing form.

Proof. This follows from Schur’s lemma, which will be presented in a later section. The
proof is postponed until then.

Next we will present Cartan’s criteria. However, their proofs rely on the following result,
which must be stated first:

Theorem 2.48. (Baby Jordan decomposition)
1.Any linear operator A on a finite-dimensional complex vector space V can be written as
a sum of commuting semisimple (diagonalizable) and nilpotent operators A = An + As with
AnAs = AsAn.
2.Define ad A : End(V ) → End(V ) by ad A.B = AB−BA. Then (adA)s = adAs and adAs

can be written as a polynomial P ∈ tC[t] in adA.
3. If As is an operator with the same eigenspaces as A but with complex conjugate eignevalues.
Then As can also can be written as a polynomial Q ∈ tC[t] in adA.

We won’t present the proof of this theorem right now, but we will quickly recall some
useful definitions and lemmas it uses.

Definition 2.49. An operator A is nilpotent if An = 0 for some n. A is semisimple if every
A-invariant subspace has an A-invariant complement.

Lemma 2.50. Let V be a complex finite-dimensional vector space and let A : V → V be an
operator.
1. A is semisimple iff it is diagonalizable (this doesn’t hold if V is a real vector space).
2. The restriction of a semisimple operator A to an invariant subspace W is semisimple and
so is its restriction to V/W .
3. The sum of commuting semisimple (resp nilpotent) operators is semisimple (resp nilpo-
tent).

We finally present the main results of this section:

Theorem 2.51. (Cartan’s solvability criterion)
A Lie algebra g is solvable iff K([g, g], g) = 0.

Proof. Note that if g is a real Lie algebra, it is solvable iff gC is solvable and thatK([g, g], g) =
0 iff K([gC, gC], gC) = 0 so we may assume g is complex.

If g is solvable, by Lie’s theorem, there is a basis of g so ad x are upper-triangular
for all x ∈ g. In this basis, ad y for y ∈ [g, g] is strictly upper-triangular, so K(x, y) =
tr(ad x · ad y) = 0.

For the other direction, we’ll prove the following lemma:

Lemma 2.52. Let V be a complex vector space and let g ⊂ gl(V ) be a Lie subalgebra such
that for any x ∈ [g, g] and y ∈ g we have tr(xy) = 0. Then g is solvable.
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Proof. Let x ∈ [g, g]. Using Jordan decomposition, we write x = xs + xn. We see that
tr(xxs) =

∑
λiλi =

∑
|λi|2 where λi are the eigenvalues of x. Since x ∈ [g, g] we can write

x =
∑

[yi, zi] and so:

tr(xxs) = tr
(∑

[yi, zi]xs

)
=

∑
tr(yi[zi, xs]) = −

∑
tr(yi[xs, zi])

Now note [xs, zi] = ad xs.zi = Q(ad x).zi ∈ [g, g] for some polynomial Q so in particular
tr(xxs) =

∑
|λi|2 = 0 so all eigenvalues are 0 and x is nilpotent. Thus [g, g] is nilpotent and

g is solvable.

Now suppose K(x, y) = 0 for x ∈ g, y ∈ [g, g]. Then by the above lemma, ad(g) ⊂ gl(g)
is solvable. Since ad(g) = g/z(g) and z(g) is solvable, g is solvable.

Theorem 2.53. (Cartan’s semisimplicity criterion)
A Lie algebra g is semisimple iff the Killing form is nondegenerate.

Proof. If K is nondegenerate, g is reductive. If x ∈ z(g), ad x = 0 so x ∈ Ker(K). This
implies z(g) = 0 so g is semisimple.

If g is semisimple, consider I = Ker(K). The restriction of K to an ideal coincides
with the Killing form of the ideal, so the Killing form of I is 0 which implies (by Cartan’s
solvability criterion) that I is solvable. Since g is semisimple, I = 0 which implies K is
nondegenerate.

Before we restrict ourselves to discussing only complex semisimple Lie algebras, we will
quickly state a few results relating the killing form on real lie algebras and the corresponding
compact Lie groups. The proofs of some of these statements will be omitted.

Theorem 2.54. Let G be a compact real Lie group. Then g is reductive and its Killing
form is negative semidefinite, with z(g) = Ker(K). In particular, the Killing form of g/z(g)
is negative definite. Moreover, if g is a semisimple real Lie algebra with negative definite
Killing form, is it the Lie algebra of a compact real Lie group.

Proof. We will prove later that any representation of a compact group is unitary. Given this
fact, BV (x, y) = tr(xy) = −tr(xyt) where x and y are skew-Hermitian. In particular, they
have only imaginary eigenvalues and so tr(xyt) is always negative or 0. Thus BV is negative
semidefinite and since tr(x2) = −

∑
|x2

ij ≤ 0 is 0 iff x = 0 which implies Ker(BV ) = Ker(ρ).
Now taking V = gC and ρ to be the complexified adjoint representation proves the Killing
form is negative semidefinite with Ker(K) = z(g).

If g is a real Lie algebra with negative definite Killing form, let G be a connected Lie
group with Lie(G) = g. B(x, y) := −K(x, y) is positive definite and Ad G invariant. This
implies Ad G ⊂ SO(g). Since Ad(G) is the connected component of the identity in Aut g
(this will also be proven later) and Aut g ⊂ GL(g) is a closed Lie subgroup, Ad(G) is a closed
Lie subgroup of the compact group SO(g) so it is itself compact. Since Ad(G) = G/Z(G),
Lie(Ad(G)) = g/z(g) = g.

Remark 2.55. One can actually prove that if g is a real Lie algebra with negative definite
Killing form, any connected Lie group G with Lie(G) = g is compact.
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Proposition 2.56. If g is a real Lie algebra with positive definite Killing form, g = 0.

Proof. Let G such that Lie(G) = g. The Killing form is Ad G invariant and positive definite
so as above, Ad(G) is a closed Lie subgroup of SO(g) and g/z(g) ⊂ so(g) but z(g) = 0 since
K is positive definite. This implies g is reductive so the Killing form is negative semidefinite
and therefore g = 0.

Remark 2.57. It turns out that the only complex compact Lie groups are Tori. We will
probably prove this somewhere else at some point.

3 Complex Semisimple Lie Algebras

3.1 Basic properties

We’ll now turn our attention to our main object of study, complex semisimple Lie algebras.
We begin by proving some basic results.

Proposition 3.1. A real Lie algebra g is semisimple iff gC is semisimple. Note this does
not hold if we replace semisimple with simple.

Proof. This follows from Cartan’s criteria.

Theorem 3.2. Let g be a semisimple Lie algebra and I ⊂ g and ideal. There exists another
ideal I ′ such that g = I ⊕ I ′.

Proof. Let I ′ be the orthogonal; complement of I with respect to the Killing form. I ∩ I ′ is
an ideal with zero Killing form, so by Cartan’s criteria, it is solvable. Since g is semisimple,
this implies I ∩ I ′ = 0 so g = I ⊕ I ′

Corollary 3.3. A Lie algebra is semisimple iff it is a direct sum of simple Lie algebras

Proof. Any semisimple Lie algebra is simple and by Cartan’s criteria, the direct sum of
semisimple Lie algebras is semisimple. The other direction follows from induction using the
previous theorem.

Corollary 3.4. If g is a semisimple Lie algebra, [g, g] = g.

Proof. If g is simple, [g, g] is a nonzero ideal (because otherwise g would be abelian), so
we must have g = [g, g]. Since semisimple Lie algebras are direct sums of simple ones, this
completes the proof.

Theorem 3.5. Let g = g1 ⊕ ... ⊕ gk be a semisimple Lie algebra with each gi simple. Any
ideal I ⊂ g is equal (not just isomorphic) to

⊕
i∈S gi for some subset S ⊂ {1, ..., k}.

Proof. We induct on k. Consider the projection πk : g → gk. πk(I) is either 0 or gi since gi
is simple. If πk(I) = 0, the induction hypothesis completes the proof. Otherwise, πk(I) = gi.
Then [gk, I] = [gk, πk(I)] = [gk, gk] = gk since gk is simple. Since I is an ideal, gk ⊆ I which
implies I = J ⊕ gk for some ideal g1 ⊕ gk−1. Then J can be written as a direct sum in the
desired form by the induction hypothesis, so we’re done.
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Corollary 3.6. Any ideal in a semisimple Lie algebra is semisimple.

Proposition 3.7. Let G be a connected Lie group with semisimple Lie algebra g. Der g = g
and Aut g/Ad G is discrete where Ad G = G/Z(G) = Im(Ad: G → GL(g)) is the adjoint
group.

Proof. Recall that for all x ∈ g, ad x is a derivation. The map φ : g → Der g given by
x 7→ ad x is a morphism of Lie algebras. Since Ker(φ) = z(g) = 0, φ is injective so it is a
subalgebra of Der g. Now, for any derivation δ and x ∈ g, ad(δ(x)) = [δ, ad x].

Since ad(δ(x)) ⊂ g, this proves g is an ideal.
Now, extend the Killing form of g to Der g by K(δ1, δ2) = trg(δ1, δ2). Let I = g⊥. This

is an ideal since K is Der g-invariant. Since the restriction of K to g is nondegenerate (since
it’s a semisimple ideal), I ∩ g = 0 so Der g = I ⊕ g. Since both g and I are ideals, [I, g] = 0
which implies for all δ ∈ I, x ∈ g, ad(δ(x)) = 0 so δ = 0 =⇒ I = 0.

To prove the second statement, note that the Lie algebra of Aut g is Der g = g. This
implies Aut g is a covering space of Ad G, which completes the proof.

3.2 Toral subalgebras and Jordan decomposition

Definition 3.8. An element x of a Lie algebra g is semisimple (resp. nilpotent) if ad x :
g → g is semisimple (resp. nilpotent). (Recall that an operator A is semisimple if every
A-invariant subspace has an invariant complement).

Proposition 3.9. Semisimplicity is equivalent to diagonalizability when g = glnC

Proof. Certainly, if x is semisimple, ad x gives an eigenbasis of g: Let v1 be an eigenvector of
of ad x. Then g = v1C⊕U for some ad x-invariant subspace U . This gives an eigenbasis by
induction. Conversely, if x is diagonalizable, any x-invariant subspace U splits into a direct
sum U =

⊕
(W ∩ Vλi

) =
⊕

Wi for eigenspaces Vλi
and some collection of subspaces Wi.

Since g is finite-dimensional, for each Vλi
there exists W⊥

i such that Vλi
= Wi⊕W⊥ =

⊕
W⊥

i

and the sum W⊥ =
⊕

W⊥
i is the desired x-invariant subspace.

Proposition 3.10. This is equivalent to the usual definition of semisimplicity when g =
glnC.

Proof. We want to show that as operators, ad x is semisimple iff x is. If x = xs, then
ad x = ad xs = (ad x)s. This can be checked by taking a basis of elementary matrices for g
and seeing that the action of ad x is diagonal. Conversely, if ad x is semisimple, ad x = ad xs.
If x = xs + xn with with xn, nonzero, we have ad xs = ad (xs + xn) which implies xn ∈ Z(g)
so it’s diagonal. Therefore xn = 0 since it’s also nilpotent.

Theorem 3.11. (Jordan decomposition)
If g is a complex semisimple Lie algebra, any x ∈ g can be written uniquely as x = xs + xn

where xn is semisimple, xn is nilpotent, and [xs, xn] = 0. Further, if there is y ∈ g such that
[x, y] = 0, then [xs, y] = 0 as well.

We omit the proof of this theorem for now.
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Corollary 3.12. Every semisimple Lie algebra contains at least one nonzero semisimple
element.

Proof. Suppose not. Then every we have x = xn for every x ∈ g. In particular, x is
nilpotent so by Engel’s theorem, g is nilpotent and therefore solvable. This contradicts the
semisimplicity of g.

Definition 3.13. A subalgebra h ⊂ g is called toral if it is commutative and consists only
of semisimple elements.

Toral subalgebras can tell us a lot about the structure of the Lie algebra they are contained
in.

Theorem 3.14. Let h ⊂ g be a toral subalgebra of a complex semisimple Lie algebra g. Let
(·, ·) be an invariant bilinear form on g (such as the Killing form). Then:
1. g =

⊕
α∈h gα where gα is a maximal common eigenspace of all operators ad h, h ∈ h, that

have weight α. That is: ad h.x = ⟨α, h⟩x for all x ∈ gα. In particular, h ⊂ g0 since it is
commutative.
2. [gα, gβ] ⊂ gα+β.
3. If α + β ̸= 0, gα and gβ are orthogonal.
4. For any α, (·, ·) is a non-degenerate pairing gα ⊗ g−α → C.

Proof. 1. All operators ad h are diagonalizable since h is total so they commute and thus
are simultaneously diagonalizable.
2. This is actually a special case of the following:

Theorem 3.15. If gλ, gµ are generalized eigenspaces, [gλ, gµ] ⊂ gλ+µ

The proof in the general case is harder, but it is easier in this case where we aren’t
working with generalized eigenspaces. Let x ∈ gα, y ∈ gβ. For all h ∈ h, ad h.[x, y =
[ad h.x, y] + [x, ad h.y] = ⟨α, h⟩[x, y] + ⟨β, h⟩[y, z] = ⟨α + β⟩[y, z].
3. ([h, x], y) + (x, [h, y]) = 0 since (·, ·) is invariant. ([h, x], y) + (x, [h, y]) = (⟨h, α⟩ +
⟨h, β⟩)(x, y) = 0 so if (x, y) ̸= 0, we have α + β = 0. 4. Follows immediately from 3.

We end this section by proving some properties of g0:

Lemma 3.16. -
1. The restriction of (·, ·) to g0 is nondegenerate.
2. Let x ∈ g0 and x = xs + xn be the Jordan decomposition of x. Then xs, xn ∈ g0.
3. g0 is a reductive subalgebra of g.

Proof. 1. Follows from part 4 of the last theorem.
2. If x ∈ g0, [h, x] = 0 for all h ∈ h. By Jordan decomposition, [h, xs] = 0 as well so xs ∈ g0.
This now implies xn = x − xs ∈ g0. 3. The restriction of the Killing form on g to g0 is
nondegenerate by 1. Note that this restriction is (x, y) = trg(ad x, ad y) which is clearly a
trace form. Then by the criteria for reductive Lie algebras, g0 is reductive.
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3.3 Cartan subalgebras

Definition 3.17. Let g be a complex semisimple Lie algebra. A total subalgebra h is a
Cartan subalgebra if h = C(h) = {x : [x, h] = 0 for all h ∈ h}.

Example 3.18. Let g = slnC. The set of diagonal matrices with trace 0 is a total subalgebra.
Now pick some h ∈ h with distinct eigenvalues. Let x ∈ C(h). Then x and h commute so they
share all eigenvectors which implies x is diagonal and thus c(h) ⊂ h. Since h is commutative,
this is an equality.

We will see later that Cartan subalgebras are essential to the study of semisimple Lie
algebras. A reasonable question to ask given this fact is whether or not they always exist.
The answer, a corollary of the following theorem, is yes.

Theorem 3.19. Every maximal total subalgebra is Cartan.

Proof. Let h be a maximal total subalgebra of g. Decompose g into a direct sum of common
eigenspaces g =

⊕
gα for ad h for all h ∈ h as in theorem 3.14. It suffices to show g0 = C(h)

is toral. Note that for any x ∈ g0, ad x|g0 is nilpotent. If not, ad x|g0 has nonzero eigenvalues
so ad xs|g0 ̸= 0 which implies xs ̸∈ h. However, [h, xs] = 0 since xs ∈ g0 which implies h⊕Cxs

is toral. This contradicts the maximality of h.
By Engel’s theorem, g0 is nilpotent. Since it is also reductive, it must be commutative.

This is because the quotient g0/z(g0) is both semisimple and nilpotent, so it must be 0.
It remains to show x ∈ g0 is semisimple. We will do this by showing that any nilpotent

element is zero. If x ∈ g0 is nilpotent then ad x is by definition. Since g0 is commutative, for
any y ∈ g0, ad xad y = ad yad x is nilpotent. Therefore Kg(x, y) = trg(ad xad y) = 0, but
the Killing form is nondegenerate on g0, so by Jordan decomposition x is semisimple.

Corollary 3.20. Every complex semisimple Lie algebra contains a Cartan subalgebra.

Definition 3.21. The rank of a Lie algebra is the dimension of any of its Cartan subalgebras.

We present the following result without proof to demonstrate that this is well-defined.

Theorem 3.22. All Cartan subalgebras are conjugate.

The proof of this theorem relies on a different definition of Cartan subalgebras as cen-
tralizers of normal elements (elements x whose multiplicity of 0 as a generalized eigenvalue
of ad x is minimal). These definitions are equivalent in the case of complex semisimple Lie
algebras.

3.4 Root decomposition

We will now use what we have established so far in the last two sections to give a concrete
description of the structure of complex semisimple Lie algebras. We start by going over the
most important results of the last section.
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Theorem 3.23. (Root decomposition)
Let h be a Cartan subalgebra of a complex semisimple Lie algebra g.
1. g = h

⊕
α∈R gα. gα = {x : [h, x] = ⟨α, h⟩x for all h ∈ h} are called the root subspaces and

R = {α ∈ h∗ \ {0} : gα ̸= 0} is called the root system of g.
2. [gα, gβ] ⊂ [gα+β] (here and below h = g0).
3. If α + β ̸= 0, gα and gβ are orthogonal with respect to K.
4. For any α, K is a nondegenerate pairing gα ⊗ g−α → C. In particular, the restriction of
K to h = g0 is nondegenerate.

The proof can be found in the previous section. We will eventually use this decomposition
to completely describe and classify complex semisimple Lie algebras. For now, here is an
important consequence:

Theorem 3.24. Let gi be simple Lie algebras and let g =
⊕

gi.
1. Let hi be Cartan subalgebras of gi and Ri the root systems of gi. h =

⊕
hi is Cartan and

the corresponding root system is R =
⊔
Ri.

2. All Cartan subalgebras of g are of the form h =
⊕

hi.

Proof. 1. Follows immediately from definitions: the sum of toral subalgebras is toral and
if h′ is a Cartan subalgebra containing h the projection onto the simple factors gi must be
equal to the projection of h onto those factor which implies h = h′.
2. Let πi : g → gi be the projection onto the ith factor and write hi = πi(h). For x ∈ gi and
h ∈ h, [h, xi] = [πi(h), xi] so hi is Cartan. Now, certainly h ⊂

⊕
hi. Since

⊕
hi is toral and

h is Cartan we have
⊕

hi ⊂ h.

Example 3.25. Let g = slnC and let h be the subalgebra of diagonal matrices with trace 0.
Let ei denote the functional which returns the ith diagonal entry of h ∈ h (denote this entry
hi).

∑
ei
= 0 so we have h∗ =

⊕
Cei/C(e1+ ...en). By a simple computation, we see that for

a matrix unit Eij, ad h = [h,Eij] = hEij −Eijh = (hi−hj)Eij = (ei−ej)(h)Eij. (ei−ej)(h)
is a scalar so each matrix unit is an eigenvector for ad h. The root decomposition is given
by: R = {ei − ej} ⊂ h∗ and gei−ej = CEij.

The Killing form on h is given by (h, h′) =
∑

i ̸=j(hi−hj)(h
′
i−h′

j) = 2n
∑

hih
′
i = 2tr(hh′).

The corresponding form on h∗ is 1
2n

∑
λiµi.

Since the restriction of the Killing form to h is always nondegenerate, it defines an iso-
morphism h → h∗ and an invariant bilinear form (·, ·) on h∗. For α ∈ h∗, write Hα ∈ h for
the corresponding element of h under this isomorphism. Then (α, β) = ⟨Hα, β⟩ = (Hα, Hβ)
for all α, β ∈ h∗.

Lemma 3.26. Let e ∈ gα and f ∈ g−α. Then [e, f ] = (e, f)Hα.

Proof. Let h ∈ h. We have ([e, f ], h) = (e, [f, h]) = −(e, [h, f ]) = ⟨h, α⟩(e, f) = (e, f)(h,Hα) =
((e, f)Hα, h) which implies the equality since (·, ·) is nondegenerate.

Lemma 3.27. -
1. Let α ∈ R. (α, α) = (Hα, Hα) ̸= 0.
2. Let e ∈ gα, f ∈ g−α such that (e, f) = 2

(α,α)
and let hα = 2Hα

(α,α)
= (e, f)Hα.
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Then ⟨hα, α⟩ = 2 and e, f, hα satisfy the defining relations of sl2C. We denote the subalgebra
generated by these elements as (sl2C)α ⊂ g.
3. hα is independent of the choice of the bilinear form (·, ·).

Proof. 1. Assume (α, α) = 0. Then (Hα, Hα) = 0 as well. Let e ∈ gα, f ∈ g−α such that
(e, f) ̸= 0. Let h = [e, f ] and consider the subalgebra a generated by e, f, and h. We have
[h, e] = ⟨h, α⟩e = (Hα, Hα) = 0 and similarly, [h, f ] = 0 so a is solvable. By Lie’s theorem,
there exists a basis of g such that ad e, ad f , and ad h are upper triangular. Since h ∈ [a, a]
and a is solvable, ad h is nilpotent but it is also semisimple since it is an element of a Cartan
subalgebra. This implies h = 0 which is a contradiction since h = (e, f)Hα is nonzero.
2. This follows from the above lemma and a few straightforward computations
3. If g is simple, all invariant bilinear forms are multiples of the Killing form, so the result
is true in this case. If g is only semisimple, by theorem 3.24 the projection of hα onto any
of the simple factors of g is invariant of the choice of bilinear form, hα must be as well.

This lemma will turn out to be quite powerful since it allows us to study g as an (sl2C)α
module and use well-known results about the representations of sl2C. These can be found
later in the notes.

Theorem 3.28. (Properties of root systems)
Let g be a complex semisimple Lie algebra with a Cartan subalgebra h and root decomposition
g = h

⊕
α∈R gα. Let (·, ·) be a symmetric nondegenerate invariant bilinear form on g.

1. R spans h∗ as a vector space and hα, α ∈ R spans h.
2. For each α ∈ R the root subspace gα is one-dimensional.
3. For any two roots α, β ∈ R, ⟨hα, β⟩ = 2(α,β)

(α,α)
is an integer.

4. Define the reflection operator sα : h∗ → h∗ by sα(λ) = λ − ⟨hα, λ⟩α = λ − 2(α,λ)
(α,α)

α. Then

for any roots α, β ∈ R, sα(β) is also a root.
5. For any root α, the only multiples of α which are also roots are ±α
6. For roots α, β ̸= ±α, V =

⊕
k∈Z gβ+kα is an irreducible representation of (sl2C)α

7. If α and β are roots such that α + β is also a root, [gα, gβ] = gα+β.

The proof of this theorem uses the following lemma and various properties of sl2C repre-
sentations whose proofs are postponed until the corresponding section.

Lemma 3.29. For a root α,

V = Chα

⊕
k∈Z×

gkα

is an irreducible (sl2C)α representation.

Proof. 1. Suppose R does not generate h∗. Then there exists some nonzero h ∈ h so that
⟨h, α⟩ = 0. Then the root decomposition implies ad h = 0 so h ∈ z(g). Since g is semisimple
this implies h = 0, a contradiction. 2. This follows from the fact that all irreducible sl2C
representations have one-dimensional weight spaces. 3. Elements of gβ have weight ⟨hα, β⟩
but weights of any finite-dimensional sl2C representation are integer.
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4. Let ⟨hα, β⟩ = n ≥ 0. Elements of gβ have weight n under the action of (sl2C)α. One can
check that fn

α is an isomorphism of the space of vectors of weight n to the space of vectors
of weight −n. This means if v ∈ gβ is nonzero, then αf

n(v) ∈ gβ−nα is nonzero as well. This
implies β − nα = sα(β) ∈ R. For n < 0, the proof is the same but using e−n

α instead of fn
α .

5. Assume α and β = cα are roots. By (3), 2(α,β)
(α,α)

= 2c is integer so c is a half-integer. The

same argument shows 1/c is half-integer which implies c ∈ {±1,±2,±1/2}. Interchanging
the roots and replacing α with −α gives c = 1 or c = 2.

Now consider the subspace as in lemma 3.28. By (2), V [2] = gα = Ceα so the map
eα : gα → g2α is 0. However, the kernel of e is the highest weight subspace so V has highest
weight 2. This implies V = g−α ⊕ Chα ⊕ gα so only α and −α are roots.
6. This follows immediately from the fact that dim(gβ+kα) = 1
7. We have seen that [gα, gβ] ⊆ gα+β. Since dim(gα+β) = 1, it suffices to show that for
nonzero eα ∈ gα and eβ ∈ gβ, [eα, eβ] ̸= 0. This can be shown using (6) and the fact that if
v ∈ V [k] is nonzero and V [k + 2] ̸= 0, e.v ̸= 0.

Theorem 3.30. -
1. Let hR ⊂ h be the real vector space generated by hα. h = hR ⊕ ihR and the restriction of
the Killing form to hR is positive definite.
2. Let h∗R be the real vector space generated by α ∈ R. h∗ = hR ⊕ ihR and h∗R = (hR)

∗ = {λ ∈
h∗ : ⟨λ, h⟩ ∈ R for all h ∈ hR}.
Proof. (2) follows immediately from (1), so it suffices to prove only the first statement. We
first show the restriction of K to hR is real and positive definite:

(hα, hβ) = tr(ad hα ad hβ) =
∑
γ∈R

⟨hα, γ⟩⟨hβ, γ⟩

Since both ⟨hα, γ⟩ and ⟨hβ, γ⟩ are integers, as is (hα, hβ) which in particular implies it is real.
Now, let h =

∑
cαhα ∈ hR which we can do since R spans h∗. Then ⟨h, γ⟩ =

∑
cα⟨hα, γ⟩ ∈ R

for all γ ∈ R so

(h, h) = tr(ad h)2 =
∑

⟨h, γ⟩2 ≥ 0

This implies K is positive definite on hR so it is negative definite on ihR which implies their
intersection is 0. Let r = dimCh. Since hR ∩ ihR = {0}, dimRhR ≤ 1

2
dimRh. However, since

hα span h over C, dimRhR ≥ r so dimRhR = r which implies h = hR ⊕ ihR.

Corollary 3.31. If t is a compact real form of g, t ∩ h = ihR.

Proof. This follows from the above and the fact that semisimple real Lie algebras of compact
real Lie groups have negative definite Killing forms (see theorem 2.54).

Example 3.32. For g = slnC, hR is the set of traceless diagonal matrices with real entries
and sun ∩ h = ihR which is the set of traceless diagonal skew-Hermitian matrices.

4 Root systems

4.1 Definitions and the Weyl group

In the following sections, we will closely study root systems in order to finally classify
semisimple Lie algebras.
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Definition 4.1. A root system is a finite set R ⊂ E× where E is a Euclidean (real with an
inner product) vector space such that:
1. R generates E.
2. For any α, β ∈ R,

nαβ =
2(α, β)

(β, β)

is integer.
3. Let sα : E → E be defined by

sα(λ) = λ− 2(α, λ)

(α, α)
α

then for any α, λ ∈ R, sα(λ) ∈ R.

Definition 4.2. A root system R is called reduced if it satisfies the following: If α, cα are
roots, c = ±1.

Remark 4.3. We have shown in the last section that we may have c ∈ {±1,±2,±1/2}, but
we will only consider reduced root systems from now on.

Remark 4.4. Conditions 2 and 3 in the definition of a root system have straightforward
geometric meanings. 2 says that the projection of β onto α is a half-integer multiple of α
and 3 says that the reflection of a root λ around the hyperplane Lα = {λ ∈ E : (α, λ) = 0}
orthogonal to α remains a root.

We can quickly rephrase most of theorem 3.28 using this definition of a root system:

Theorem 4.5. Let g be a semisimple complex Lie algebra. Given a root decomposition, the
set of roots forms a reduced root system.

Example 4.6. (Root system of slnC)
Let {ei} be the standard basis of Rn equipped with the standard inner product (ei, ej) = δij.
Let E = {(λ1, ..., λn) :

∑
λi = 0} and R = {ei − ej : 1 ≤ i, j ≤ n, i ̸= j} ∼= Rn/R(1, ..., 1). It

is easy to check that R is a reduced root system of rank n− 1. We call this the root system
of type An−1.

Definition 4.7. An isomorphism of root systems φ : R1 → R2 subsets of E1 and E2 respec-
tively is a vector space isomorphism φ : E1 → E2 such that φ(R1) = R2 and nφ(α)φ(β) = nαβ

for all α, β ∈ R1.

Remark 4.8. The last condition is automatically satisfied if φ respects the inner product, but
a root system isomorphism need not do so. Consider for example the isomorphism R → cR
given by α 7→ cα.

We will primarily be interested in the automorphisms of a root system generated by re-
flections.
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Definition 4.9. The Weyl group W of a root system R ⊂ E is the subgroup of GL(E)
generated by reflections sα, α ∈ R.

Lemma 4.10. -
1. W is a finite subgroup of O(E) and R is invariant under W .
2. For any w ∈ W and α ∈ R, sw(α) = wsαw

−1.

Proof. sα(R) = R for all α ∈ R so w(R) = R. Since R is finite, Aut(R) is as well so
W ⊂ Aut(R) must also be. To see (2), note that wsαw

−1 is the identity on wLα = Lw(α)
and is a reflection corresponding to the root w(α); it is easy to check that wsαw

−1 sends
w(α) to −w(α).

Example 4.11. (Weyl group of An−1)
W is generated by transpositions sei−ej which transpose the ith and jth entry of a root
(λ1, ...λn) ∈ R. In the case of sl2C, the root system is A1 so W = Z2 and s acts by
λ 7→ −λ. One should note that for n > 2, the automorphism α 7→ −α is not an element of
the Weyl group.

4.2 Rank two root systems

We would like to classify all root systems since this will enable us to classify semisimple Lie
algebras. We begin by considering the rank 2 case. The conditions defining a root system
impose strong conditions on their relative positions.

Theorem 4.12. Let R be a reduced root system and let α, β ∈ R be roots that are not
multiples of each other such that |α| ≥ |β|. Let φ be the angle between them. We must have
one of the following:
1. φ = π/2 (α and β are orthogonal), nαβ = nβα = 0
2a. φ = 2π/3, |α| = |β|, nαβ = nβα = −1
2b. φ = π/3, |α| = |β|, nαβ = nβα = 1
3a. φ = 3π/4, |α| =

√
2|β|, nαβ = −2, nβα = −1

3b. φ = π/4, |α| =
√
2|β|, nαβ = 2, nβα = 1

4a. 3a. φ = 5π/6, |α| =
√
3|β|, nαβ = −3, nβα = −1

4b. φ = π/6, |α| =
√
3|β|, nαβ = 3, nβα = 1.

Proof. Since (α, β) = |α||β| cosφ, we have nαβ = 2 |α|
|β| cosφ so nαβnβα = 4 cos2 φ. nαβnβα ∈

Z, so nαβnβα ∈ {0, 1, 2, 3}. Inspection of each case using nαβ/nβα = |α|2/|β|2 when cosφ ̸=
0 completes the proof.

Each possible root system does indeed exist in R2. Before proceeding, we note that the
product of two root systems A×B is often written as A⊔B. I believe this is because this is
actually a coproduct and am inclined to prefer this notation because of this.

Theorem 4.13. (Classification of rank 2 root systems)
Each set of vectors in R2 pictured below is a root system. Any rank two reduced root system
is isomorphic to one of them.
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Proof. Checking that these are root systems is trivial. Let R be a rank 2 reduced root
system. Pick α, β ∈ R such that φ is maximal and |α| ≥ |β|. Note φ ≥ π/2 since otherwise,
we could take α and sα(β) to get a larger angle. Then we must be in case 1, 2a, 3a, or 4a of
theorem 4.12.

Consider 2a. Applying sα and sβ to α and β gives the root system A2 so A2 ⊆ R. If
R contains a root γ ̸∈ A2, γ is between two roots of A2 since R is reduced but this implies
the angle between γ and some other root δ is strictly greater than 2π/3 which cannot occur
since we chose the angle between α and β to be maximal. repeating this analysis for cases
1, 3a, and 4a gives R = A1 × A1, B2, and G2 respectively.

Lemma 4.14. Let R be a reduced root system. Let α, β ∈ R not multiples of each other
such that (α, β) < 0. α + β ∈ R. Then α + β ∈ R.

Proof. It suffices to check the rank two case. The proof is by direct check of each of the four
cases.

4.3 Positive and simple roots

We will find it useful to have a notion of a minimal ”generating set” of a root system.
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Definition 4.15. Fix some t ∈ E such that for all α ∈ R, (α, t) ̸= 0 (these are called regular
elements). A polarization of a root system R is a decomposition R = R+ ⊔ R− defined by
R+ = {α : (α, t) > 0} and R− = {α : (α, t) < 0}. One should note this is dependent on the
choice of t.

Elements of R+ are called positive roots and elements of R− are called negative roots.

Definition 4.16. A positive root is called simple if it cannot be written as a sum of two
positive roots. The set of simple roots is denoted as Π ⊂ R+.

Lemma 4.17. Every positive root can be written as a sum of simple roots.

Proof. If a positive root α is not simple, it can be written as α′ + α′′ with (α′, t), (α′′, t) <
(α, t). Since root systems are finite, (α, t) can take on a finite number of values, so iteration
of this process eventually terminates and gives a sum of simple roots.

Lemma 4.18. If α, β ∈ Π are simple with α ̸= β, (α, β) ≤ 0.

Proof. Suppose not. Then (−α, β) < 0 and β′ = −α + β is a root by lemma 4.16. If β′

is positive, β = β′ + α is not simple, so β′ is a negative root. Then −β is positive and
α = β − β′ is not simple. Both cases are a contradiction.

Theorem 4.19. Let R be a polarized root system. The simple roots form a basis of the
vector space E.

Proof. Each positive root can be written as a linear combination of simple roots and each
negative root is a product of a positive root with -1 since it can be given by a reflection:
−α = sα(α). Thus Π spans E. Linear independence follows from the following linear algebra
result, the proof of which is omitted.

Lemma 4.20. If B = {vi} is a finite set of vectors in a Euclidean vector space such that
for i ̸= j, (vi, vj) ≤ 0 and (vi, t) > 0 for a fixed t ∈ E, B is linearly independent.

Corollary 4.21. Each α ∈ R can be written uniquely as a linear combination of simple
roots with integer coefficients:

α =
n∑

i=1

ciαi, ci ∈ Z

If α is positive, ni ≥ 0 for all i. If it is negative, ni ≤ 0 for all i.

Lemma 4.22. A simple reflection si sends αi to αi and permutes the other positive roots.
That is, si(α) ∈ R+ iff α ∈ R+ \ {αi}.
Example 4.23. (Polarization of An−1)
Choose a polarization of An−1 by R+ = {ei − ej : i < j}. One can check this defines a
polarization. The simple roots are αi = ei−ei−1 and the height of a root is ht(ei−ej) = j− i.

We now introduce a useful tool that can be used to prove statements about positive roots
via induction.

Definition 4.24. The height ht(α) of a positive root α ∈ R+ is

ht(
∑

niαi) =
∑

ni ∈ Z>0

we should note that simple roots have height 1.
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4.4 Root and weight lattices

We begin this section by introducing the notion of a coroot.

Definition 4.25. The coroot α∨ ∈ E∗ of a root α ∈ R is defined by

⟨α∨, λ⟩ = 2(α, λ)

(α, α)

Remark 4.26. In the case of a root system of a semisimple Lie algebra, this agrees with our
definition of hα. One should also note:

nαβ = ⟨α, β∨⟩ and sα(β) = λ− ⟨λ, α∨⟩α

Recall that a lattice L in a real vector space E is an abelian group generated by a basis
of E. Any lattice L ⊂ E can be identified with Zn ⊂ Rn.

Definition 4.27. The root lattice Q of a root system R is the abelian group generated by
the elements of R. The coroot lattice Q∨ ⊂ E∗ is the abelian group generated by all α∨ with
α ∈ R.

Definition 4.28. The weight lattice P ⊂ E of a root system R is

P = {λ ∈ E : ⟨λ, α∨⟩ ∈ Z for all α ∈ R} = {λ ∈ E : ⟨λ, α∨⟩ ∈ Z for all α∨ ∈ Q∨}

So P , not Q, is the dual lattice of Q∨ (here we are given another chance to complain
about the ancient notation in this field). Elements of P are called (integral) weights.

Since simple Q∨ is generated by α∨
i with αi simple, one can also define P as {λ ∈ E :

⟨λ, α∨⟩ ∈ Z for all α ∈ Π}
We would like to define a Z-basis of P .

Definition 4.29. A fundamental weight wi ∈ E is defined by the property that ⟨wi, α
∨
j ⟩ = δij.

We can see right away that fundamental weights form an R-basis of E and a Z-basis of
P . We can also see that since nαβ = ⟨α, β∨⟩ that Q ⊂ P , though this is rarely an equality.

Example 4.30. (Lattices in A1)
Recall that A1 has a single positive root α so Q = Zα and Q∨ = Zα∨. We can define
(α, α) = 2 and get the identification E ∼= E∗. Under this identification α 7→ α∨ and Q 7→ Q∨.
The fundamental weight is α/2 since ⟨α, α∨⟩ = 2 so P = Z(α/2).

4.5 Weyl chambers and simple reflections

In this section, we will answer two important questions about root systems:
1) Do different polarizations give equivalent sets of simple roots? (Spoiler: Yes)
2) Is it possible to recover the root system R from its simple roots? (Spoiler: Yes)

The Weyl group will provide us with the answers to these questions. Recall a polarization
is defined by some t ∈ E not in any hyperplane orthogonal to a root. The polarization
depends not on t, but on the sign of (t, α) which remains unchanged as long as t does not
cross any of the hyperplanes. This motivates the following
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Definition 4.31. A Weyl chamber C is a connected component of the complement to the
hyperplanes orthogonal to the roots. That is to say C is a connected component of E\

⋃
α∈R Lα

where Lα = {λ ∈ E : (α, λ = 0}.

We can specify a Weyl chamber by specifying, for each hyperplane, which side of it the
Weyl chamber is on. Thus a Weyl chamber is described by a system of inequalities of the
form ±(α, λ) > 0 with one inequality for each hyperplane. Any such system describes either
a Weyl chamber or an empty set. By defining Weyl chambers as subsets of Euclidean space
cut out by a finite number of inequalities, we get some results about their geometry.

Lemma 4.32. -
1. The closure of a Weyl chamber (denoted C) is an unbounded convex cone.
2. The boundary ∂C is a finite union of codimension one faces Fi, each of with is a closed
convex unbounded cone in one of the hyperplanes Lα and as such can be given by a system
of inequalities. We call the hyperplanes containing some Fi the walls of C.

Proof. These properties apply to any subset of Euclidean space cut out by a finite number
of inequalities.

Proposition 4.33. There is a bijection between the set of polarization of R and the set of
Weyl chambers.

Proof. Any Weyl chamber C defines a polarization by R+ = {α : (α, t > 0)} for any t ∈ C.
Conversely, Given a polarization R = R+ ⊔R− the positive Weyl chamber is C+ = {λ ∈ E :
(λ, αi) > 0 for all αi ∈ Π}

We now state two lemmas which will be of immediate use

Lemma 4.34. -
1) Any two Weyl chambers can be connected by a sequence of adjacent Weyl chambers.
2) Adjacent Weyl chambers C and C ′ separated by a hyperplane Lα are mapped to each other
by sα(C) = C ′.

Together, these imply the following

Corollary 4.35. The Weyl group acts transitively on the set of Weyl chambers

Which in turn implies the following

Corollary 4.36. Every Weyl chamber has rank(R) walls.

Proof. For the positive Weyl chamber, this is immediate from the definition. Since the Weyl
group acts transitively, all Weyl chambers have the same number of walls.

This brings us to one of the two main results of this section

Theorem 4.37. If Π and Π′ are two sets of simple roots obtained from two different polar-
ization, there is an element w ∈ W such that Π = w(Π′).

Proof. Since polarizations are in bijection with Weyl chambers, the Weyl group acts transi-
tively on polarizations.
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So we see that modulo the action of the Weyl group, all sets of simple roots are equivalent
in a reasonable sense.

Theorem 4.38. Let R be a reduced root system with a fixed polarization and a set of simple
roots Π = {αi}. Consider the reflections sαi

which we will denote si for simplicity. These
are called simple reflections.
1) The set of simple reflections generates W .
2) W (Π) = R. That is, every α ∈ R can be written as α = w(αi) for some w ∈ W , αi ∈ Π.

Proof. Note that any Weyl chamber can be reached from the positive chamber by a series of
reflections, and therefore also a series of simple reflections. In particular, any wall Lα can be
written as w(Lαi

) for some simple root αi and some w ∈ W . This implies α = ±w(αi).

Corollary 4.39. The root system can be recovered from the set of simple roots

Proof. We can recover W as the group generated by simple reflections and then compute
W (Π) = R.

4.6 Dynkin diagrams, Cartan matrices, and classification of root
systems

Any two root systems R1 ⊂ E1 and R2 ⊂ E2 can be joined to make a new root system
R1 ⊔R2 ⊂ E1 ⊕E2 (also written as R1 ×R2 with an inner product defined on E1 ⊕E2 such
that E1 ⊥ E2.

Definition 4.40. A root system R is reducible if it can be written nontrivially as R = R1⊔R2

with R1 ⊥ R2 and R1, R2. A root system that is not reducible is called irreducible. One should
note that the property of being reduced is independent of the property of being irreducible.

It can be shown that all reducible root systems can be written uniquely as a disjoint union
of mutually orthogonal irreducible root systems. Given this, it suffices to classify irreducible
root systems.

Proposition 4.41. Let R be a reduced root system equipped with a polarization and a set of
simple roots Π.
1. If R = R1 ⊔R2 then Π = Π1 ⊔ Π2 where Πi = Ri ⊔ Π are the simple roots of Ri.
2. If Π = Π1 ⊔ Π2 with Π1 ⊥ Π2 then R = R1 ⊔R2 where Ri is generated by Πi.

Proof. 1 is immediate from the definitions. Let α ∈ R1 and β ∈ R2, then sα(β) = β and
sα commutes with sβ. Let Wi be the Weyl group generated by the simple reflections of Ri.
Then Wi acts trivially on Rj when i ̸= j and W = W1 × W2. Then R = W (Π1 ⊔ Π2) =
W (Π1) ⊔W (Π2).

We’ll need a way to keep track of the relative positions of simple roots. The inner product
won’t suffice since it isn’t invariant under the Weyl group.
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Definition 4.42. Fix an irreducible root system R with a set of simple roots Π and an order
on the simple roots Π = {α1, ...αr}. The Cartan matrix A = (aij) of Π is the r × r matrix
given by

aij = nαjαi
= ⟨α∨

i , αj⟩ =
2(αi, αj)

(αi, αi)

The definition immediately implies the following:

Lemma 4.43. -
1. aii = 2 for all i.
2. For any i ̸= j, aij is a nonpositive integer.
3. For any i ̸= j, aijaji = 4 cos2(φ) where φ is the angle between αi and αj. If αi and αj

are orthogonal (that is, φ = π/2), then |αi|2
|αj |2 =

aji
aij

.

We use a visual tool called a Dynkin diagram to represent the information in a Cartan
matrix.

Definition 4.44. The Dynkin diagram D of a set of simple roots Π is the semidirected
multigraph defined by the following rules:

1. Each simple root αi corresponds to a vertex vi of D.
2. Two vertices vi, vj with i ̸= j are connected by n edges where n depends on the angle φ
between αi and αj as follows:

• φ = π/2: n = 0

• φ = 2π/3: n = 1 (the A2 system)

• φ = 3π/4: n = 2 (the B2 system)

• φ = 5π/6: n = 3 (the G2 system)

3. The edges between vertices corresponding to two distinct, non-orthogonal simple roots
αi, αj with |αi| ̸= |αj| point to the shorter of the two roots. If |αi| = |αj|, the edges are
undirected.

Example 4.45. The Dynkin diagrams of the irreducible dimension two root systems:

A2

B2

G2

Theorem 4.46. Let Π be the set of simple roots of a reduced root system R.
1. The Dynkin diagram of R is connected iff R is irreducible.
2. The Dynkin diagram of R determines its Cartan matrix.
3. R is uniquely determined up to isomorphism by its Dynkin diagram.

So the problem of classifying root systems has been reduced to the problem of classifying
possible Dynkin diagrams.
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Theorem 4.47. Let R be a reduced irreducible root system. Its Dynkin diagram is isomorphic
to one of the diagrams below and each diagram is the Dynkin diagram of some reduced
irreducible root system (each diagram below has n vertices). We assume that n ≥ 1 for An,
n ≥ 2 for Bn and Cn, and n ≥ 4 for Dn.

An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Remark 4.48. The assumptions on n are because A1 = B1 = C1, A1 ⊔ A1 = D2, and
A3 = D3. Also note that B2

∼= C2.

Corollary 4.49. If R is a reduced irreducible root system, (α, α) takes on at most two
distinct values.

m =
max(α, α)

min(α, α)

is the maximum edge multiplicity of the Dynkin diagram. Therefore:
m = 1 for types A, D, and E
m = 2 for types B, C, and F
m = 3 for type G.

Diagrams of types A, D, and E are called simply-laced.

4.7 Serre relations and classification of semisimple Lie algebras

Let’s quickly review our progress in the classification of semisimple Lie algebras:
Every semisimple Lie algebra defined a reduced root system. This system is irreducible if

and only if the Lie algebra is simple. Irreducible root systems are classified by their Dynkin
diagrams, which we classified in the last section. If we can recover a Lie algebra from its
root system, then simple Lie algebras are classified by the Dynkin diagrams in theorem 4.45.
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Theorem 4.50. Let g be a semisimple complex Lie algebra with root system R ⊂ h∗ and a
non-degenrate invariant symmetric bilinear form (·, ·). Let Π = {α1, ...αr} be a set of simple
roots given by some fixed polarization of R. Then:
1. The subspaces

n± =
⊕
α∈R±

gα

are subalgebras of g and
g = n− ⊕ h⊕ n+

as a vector space.
2. Let ei ∈ gαi

and fi ∈ g−αi
such that (ei, fi) = 2/(αi, αi) and let hi = hαi

= 2Hα/(α, α) ∈ h.
Then {ei}ri=1 generates n+, {fi}ri=1 generates n− and {hi}ri=1 is a basis of h. This implies
{ei, fi, hi}ri=1 generates g.
3. ei, fi, and hi satisfy the following relations, called Serre relations:

1) [hi, hj] = 0

2) [hi, ej] = aijej

3) [hi, fj] = −aijfj

4) [ei, fj] = δijhi

5) (ad ei)
1−aijej = 0 for i ̸= j

6) (ad fi)
1−aijfj = 0 for i ̸= j

where aij = nαjαi
= ⟨α∨

i , αj⟩ are the entries of the Cartan matrix. We remind ourselves that
nαjαi

is twice the component of αj along αi.

Proof. 1.n+ and n− are subalgebras since [gα, gβ] ⊂ gα+β and the sum of positive/negative
roots is positive/negative. The triangular decomposition follows from root decomposition.
2. Recall that the simple roots form a basis of E = h∗ so the hi are a basis of h.
We’ll need the following lemma to complete the proof of (2):

Lemma 4.51. Let R be a reduced root system with a set of simple roots {αi}. If α is a
positive root which is not simple, then α = β + αi for some positive root β. That is, positive
roots differ exactly by a simple root.

Proof. If all inner produces (α, αi) are nonpositive, then {α, α1, ...αr} by lemma 4.20. This
isn’t possible since {αi} is a basis, so there is some i so that (α, αi) > 0. This implies
(α,−αi) < 0. Since the sum of two roots that are not scalars of each other whose inner
product is negative is a root, β = α−αi is a root so α = β+αi. One can check case-by-case
that β is positive.

We can now complete the proof of (2). We have gα = [gβ, ei]. The result follows from
induction on ht(α). The proof for fi is similar.
3. The first three relations are immediate from the definitions of Cartan subalgebras and
root subspaces. The fourth, when i = j is because elements ei, fi and hi satisfy the relations
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of Sl2C. When i ̸= j, [ei, fj] = 0 because [ei, fj] ∈ gαi−αj
but αi − αj isn’t a root (since the

coefficients on the simple roots must be the same sign).
To prove the last two relations, consider the subspace

⊕
k∈Z gαj+kαi

⊂ g as an sl2C
module. Since ad ei.fj = 0, fj is a highest weight vector with weight −aij. Using results
from the representation theory of sl2C (to be proved in the next section), we know that a
highest weight vector v of weight λ with e.v = 0 must also have fλ+1.v = 0. The proof of
(5) is similar.

The Serre relations completely describe complex semisimple Lie algebras, though the proof
of this fact is too difficult to include in these notes.

Theorem 4.52. Let R be a reduced root system. Let g(R) be the complex Lie algebra
generated by {ei, fi, hi}ri=1 subject to the Serre relations. Then g(R) is a finite-dimensional
semisimple Lie algebra with root system R.

Corollary 4.53. -
1. If g is a semisimple Lie algebra with root system R, g ∼= g(R).
2. There is a natural bijection between isomorphism classes of reduced root systems and
isomorphism classes of finite-dimensional complex semisimple Lie algebras. g is simple iff
R is irreducible.

With this corollary, we can finally describe finite-dimensional complex semisimple Lie
algebras

Theorem 4.54. Simple, finite-dimensional complex Lie algebras are classified by Dynkin
diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, and G2.

4.8 Length of a Weyl group element

We define in this section the notion of the length l(w) of a Weyl group element w ∈ W which
we will need later. Let R be a reduced root system. Define l(w) by

l(w) = the number of root hyperplanes separating C+ and w(C+) = |{α ∈ R+ : w(α) ∈ R−}

We note that l(w) depends on the choice of polarization and that simple roots have length 1.

Lemma 4.55. Let ρ be 1/2 the sum of all positive roots. then ⟨ρ, α∨
i ⟩ = 2(ρ, αi)/(αi, αi) = 1.

Proof. We have si(ρ) = ρ− αi and si(λ) := λ− ⟨α∨
i , λ⟩αi

Theorem 4.56. Let w = si1 ...sin be a reduced product of simple reflections. Then l(w) = n.

Proof. We can connect C+ and w(C+) by a path going through each root hyperplane Lαi
so

l(w) ≤ n. The proof can be completed by showing that if we cross a root hyperplane more
than once, the expression we began with is not reduced.

Corollary 4.57. The action of W on Weyl chambers is simply transitive.

Proposition 4.58. There is a unique w0 ∈ W such that w0(C+) = C− (this exists by the
last corollary). Then l(w0) = |R+| and is the unique longest element of W .
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4.9 Examples:

In this section, we list the properties of An and G2.

4.9.1 An = sln+1C, n ≥ 1

Dynkin diagram:
An

Lie algebra:

• g = sln+1C = {traceless matrices}

• dim(g) = (n+ 1)2 − 1

• z(g) = {0}

• Simple: YES

• Real form: slnC ∼= sun ⊗ C
Cartan subalgebra:
(Let ei ∈ h∗ be the functional which sends a matrix to its ith diagonal entry)

• h = g ∩ {diagonal matrices}

• h∗ =
⊕

Cei/C(e1 + ...+ en+1)

• E = h∗R =
⊕

Rei/R(e1 + ...+ en+1) with inner product (λ, µ) =
∑

λiµi where λ and µ
are representatives chosen to be traceless

Root system:

• R = {ei − ej : i ̸= j}, |R| = n(n+ 1), simply-laced

• gα = CEij

• hα = α∨ = Eii − Ejj

• R+ = {ei − ej : i < j}, |R+| = n(n+1)
2

• Π = {ei − ei+1}ni=1, |Π| = n

• Highest weight/maximal root: θ = e1 − en+1 = (1, 0, .., 0,−1)

Cartan matrix: 

2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


Weight and root lattices:
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• P = {(λ1, ...λn+1) : λi − λj ∈ Z}/R(1, ..., 1) = {(λ1, ...λn, 0)λi ∈ Z}

• Q = {(λ1, ...λn+1) : λi − λj ∈ Z,
∑

λi = 0}

• P/Q ∼= Zn+1

Fundamental and dominant weights

• Π̂ = {
∑k

i=2 ei}
n+1
k=2 = {ω1, ..., ωn}

• P+ = {(λ1, ..., λn+1) : λi − λi+1 ∈ Z≥0}/R(1, ..., 1) =
{(λ1, ..., λn, 0) : λi ∈ Z, λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0}

• ρ = 1
2

∑
α∈R+

α = (n, n− 1, ..., 1, 0) = (n/2, (n− 2)/2, ..., (−n)/2)

Weyl group:

• W = Sn+1, |W | = (n+ 1)!

• si = (i i+ 1)

• C+ = {(λ1, ..., λn+1) : λ1 > λ2 > ... > λn+1}/R(1, ..., 1) =
{(λ1, ..., λn, 0) : λ1 > λ2 > ... > λn > 0}

Lie groups with this Lie algebra:

• G = SLn+1C = {determinant 1 matrices}, Z(G) = {λIn+1 : λ
n+1 = 1} ∼= Z

• G = PSLn+1 = PGLn+1C = SLn+1C/Z, Z(G) = {0}

4.9.2 G2 = g2

Dynkin diagram:
G2

Let α = e1 − e2 and β = 2e2 − e1 − e3
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Root system:

• R = {±α,±(c1α + β),±(3β + 2α) : c1 ∈ {0, 1, 2, 3}}, |R| = 12

• R+ = {α, c1α + β, 3β + 2α}, |R+| = 6

• Π = {(e1 − e2), (2e2 − e1 − e3)} |Π| = 2

• φ = π/6, |α| = 1, |β| =
√
3

Weight and root lattices

• P = Q = {(c1 + c2)e1 + c2e2 − (3c1 + 2c2)e3}

Cartan matrix (
2 −3
−1 2

)
Fundamental and dominant weights:

• Π̂ = {2α + β, 3α + 2β} = {e1 − e3, e1 + e2 − 2e3} = {ω1, ω2}

• P+ = {c1ω1 + c2ω2 : c1, c2 ∈ Z≥0} = {(c1 + c2)e1 + c2e2 − (3c1 + 2c2)e3 : c1, c2 ≥ 0}

• ρ = 3α + 3
2
β

Weyl group:

• W = D6, |W | = 12

• {si} = {f, fr2}

4.10 Accidental Isomorphisms

In this section, we will describe the “accidental” low-dimensional Lie algebra isomorphisms
corresponding to the previously mentioned isomorphisms of Dynkin diagrams. We can use
this to find Lie groups that are locally isomorphic.

The isomorphisms of Dynkin diagrams A1 = B1 = C1 correspond to the fact that sl2C ∼=
so3C ∼= sp2C are isomorphic. Recall so3C has a basis

Jx =

0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 , Jz =

0 −1 0
1 0 0
0 0 0


subject to the relations [Jx, Jy] = Jz, [Jy, Jz] = Jx, [Jz, Jx] = Jy.

sl2C has a basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
subject to the relations [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . The isomorphism so3C → sl2C
can be given by

Jx 7→ − i

2
(e+ f), Jy 7→

1

2
(f − e), JZ 7→ −ih

2

38



We also note that when n = 2, the an element of GL2C is in SP2C iff its determinant is 1,
so sp2C and sl2C are equal, not just isomorphic.

We also want to note that there is an isomorphic su2 → so3R, which explains why
su2C ∼= sl2C. Knowing this fact, we could take the basis of sl2C as our basis of su2, but the
convention is to use the Pauli matrices σi as follows:

iσ1 =

(
0 i
i 0

)
, iσ2 =

(
0 1
−1 0

)
, iσ3 =

(
i 0
0 −i

)
(It is easy to construct a mapping of this basis to the one we chose for sl2C.) Then the
isomorphism su2 → so3R can be given by

iσ1 7→ −2JX , iσ2 7→ −2Jy, iσ3 7→ −2Jz

and in fact, this lifts to a double cover of Lie groups SU2 → SO3R.
We now list, but won’t prove the three other exceptional Lie algebra isomorphisms:

• A1 ⊔ A1 = D2 corresponds to the fact that sl2C⊗ sl2C ∼= so4C

• B2 = C2 corresponds to the fact that sp4C ∼= so5C

• A3 = D3 corresponds to the fact that sl4C ∼= so6C

These Lie algebra isomorphisms imply local isomorphism between their Lie groups. We
might ask which of these Lie groups are isomorphic and which are covers of each other? We
present the answers here for complex Lie groups, without proof. For those interested, Terence
Tao has an article available on his website in which he proves these.

• SL2C ∼= SP2C

• SL2C is a double cover of SO3C, both are 3-dimensional

• SL2C⊗ SL2C is a double cover of SO4C, both are 6-dimensional

• SP4C is a double cover of SO5C, both are 10-dimensional

• SL4C is a double cover of SO6C, both are 15-dimensional

5 Representation Theory Primer

5.1 Definitions and basic properties

We begin this section with a quick review of some important definitions and properties of
representations. Most proofs will be omitted.

Definition 5.1. A representation of a Lie group (resp. Lie algebra) G (resp. g) is a vector
space V together with a morphism ρ : G → GL(V ) (resp. ρ : g → gl(V ). If G (resp. g) is
real and V is complex, we require that ρ be smooth and view GL(V ) as a real manifold.
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We will often write g.v to mean ρ(g)v.

Definition 5.2. A morphism f : V → W of two representations V , W of the same object
G is a linear map f : V → W that commutes with the action of G: f ◦ ρ(g) = ρ(g) ◦ f . The
space of all such morphisms, called G-morphisms, is denoted HomG(V,W ).

Remark 5.3. An algebra representation is equivalent to a module over the algebra.

Theorem 5.4. -
1) Every representation ρ : G → GL(V ) defines a representation ρ∗ : g → gl(V ) and every
G-morphism is also a g-morphism.
2. If G is simply connected then ρ 7→ ρ∗ is an equivalence of categories. In particular, every
g-representation lifts uniquely to a G-representation and HomG(V,W ) = Homg(V,W ).
3. If G is connected but not necessarily simply connected, write G = G̃/Z with G̃ simply
connected and Z a discrete central subgroup. Then a G representation is the same as a G̃/Z
representation with ρ(Z) = id.

Lemma 5.5. Any complex representation of a Lie algebra g has a unique structure as a
gC-representation. Moreover, Homg(v,W ) = HomgC(V,W ). This implies the categories of
complex representations of g and gC are equivalent.

Proof. Given ρ : g → gl(V ), define ρ : gC → gl(V ) by ρ′(x+ iy) = ρ(x) + iρ(y). One checks
this is C-linear and respects the Lie bracket.

Remark 5.6. These results imply the categories of finite-dimensional representations of
SL2C, SU2, sl2C, andsu2 are equivalent since sl2C = (su2)C.

Definition 5.7. A subrepresentation W ⊂ V is a subspace stable under the action of ρ(g)
for all g ∈ G. The quotient space V/W also has the structure of a representation.

Theorem 5.8. If V and W are two representations of G or g, then V ⊕W,V ⊗W , and V ∗

are also representations of G.

Proof. The action of G or g on V ⊕W is given by ρ(g)(v + w) = ρ(g)v + ρ(g)w.
The action of G on V ⊗ W is simply ρ(g)(v ⊗ w) = ρ(g)v ⊗ ρ(g)w. The action of g is

ρ(x)(v ⊗ w) = ρ(x)v ⊗ w + v ⊗ ρ(x)w. This comes from the Leibniz rule.
To define the action of G on V ∗, we force the pairing V ⊗ V ∗ → C to be a morphism of

representations. Thus, ⟨ρ(g)v, ρ(g)v∗⟩ = ⟨v, v∗⟩ so ρV ∗(g) = ρ(g−1)t where At : V ∗ → V ∗ is
the adjoint operator to A : V → V . For g, we similarly get ρV ∗(x) = −ρV ∗(x)t.

We now go over some important examples

Example 5.9. (Coadjoint representation)
Any Lie algebra g has a representation ad : g → g∗ called the coadjoint representation given
by the following action on g∗:

⟨ad∗x.f, y⟩ = ⟨f, ad x.y⟩
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Example 5.10. (End(V ) and Hom(V,W ))
Let V be a G-(resp g-)representation. End(V ) ∼= V ⊗V ∗ is a representation with action given
by g.A = ρV (g)AρV (g

−1) (resp. x.A = ρV (x)A−AρV (x). Similarly, for two representations
V and W , Hom(v,W ) is a representation with action g.A = ρW (g)AρV (g

−1) (resp. x.A =
ρW (x)A− AρV (x)

Theorem 5.11. (Hom(v,W ))G = HomG(V,w) the space of intertwining operators. In par-
ticular, V G = Hom(C, V )G = HomG(C, V ).

Example 5.12. (Space of bilinear forms)
The space of bilinear forms on a representation V is also a representation given by

g.B(v, w) = B(g−1.vg−1.w)

and
x.B(v, w) = −(B(x.v, w) +B(v, x.w))

Definition 5.13. Let V be a G-representation. v ∈ V is called invariant if g.v = v for all
g ∈ G. We denote the subspace of invariant vectors by V G.

Similarly, if V is a g-representation, v ∈ V is called invariant if x.v = 0 for all x ∈ g.
The corresponding subspace is denoted V g.

Now consider the space of bilinear forms on V as a representation. If B is a bilinear form
on V as in the above definition, B is invariant under the action of G iff B(g.v, g.w) = B(v, w)
and invariant under g iff B(x.v, w) +B(v, x.w) = 0.

Theorem 5.14. A bilinear form B is invariant iff the map V → V ∗ defined by v 7→ B(v, ·)
is a morphism of representations.

Definition 5.15. A representation is called simple or irreducible if it has no proper sub-
representations. If it does, it is called reducible. A representation is called semisimple or
completely reducible if it is isomorphic to a direct sum of simple representations. That is,
V =

⊕
niVi where Vi are simple and ni is called the multiplicity of Vi in V .

Example 5.16. Not every representation is semisimple. For instance, consider G = R, g =
R. Fix a matrix A ∈ End(V ) and consider the g-representation defined by ρ(t) = tA. The
corresponding representation of G is given by ρ(t) = exp(tA). Writing this representation
as a direct sum of irreducibles is equivalent to diagonalizing A, which is not always possible.

Lemma 5.17. Let ρ : G → GL(V ) be a representation (one can replace G with g and the
theorem holds). Let A : V → V be a diagonalizable intertwining operator where Vλ ⊂ V is
an eigenspace of A with eigenvalue λ. Each Vλ is a subrepresentation and V =

⊕
Vλ

Corollary 5.18. Let Z ∈ Z(G) such that ρ(Z) is diagonalizable. Then V is a direct sum of
the eigenspaces of ρ(Z). The same is true for central elements of g.
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5.2 Schur’s lemma and intertwining operators

Theorem 5.19. (Schur’s Lemma)
1. Let V be an irreducible complex representation of G. The space of intertwining operators
HomG(V, V ) = Cid. That is, any endomorphism of an irreducible representation is constant.
2. If V and W are nonisomorphic irreducible complex representations, HomG(V,W ) = 0

Proof. Let Φ : V → W be an intertwining operator. KerΦ and ImΦ are subrepresentations
of V and W respectively. Since V is irreducible, KerΦ = 0 or KerΦ = V so either Φ is
injective or 0. We can do the same for ImΦ ⊂ W , so either Φ is an isomorphism or 0. This
completes the proof of (2).

To prove (1), notice that by (2), any nonzero intertwining operator Φ : V → V is an
isomorphism. Let λ be an eigenvalue of Φ. Φ−λid is not invertible but is also an intertwining
operator. This implies it is 0, so Φ = λid.

Example 5.20. (The center of a Lie group)
Since Cn is irreducible as a GLnC representation, all operators that commute with GLnC
are scalars. Thus Z(GLnC) = {λid, λ ∈ C×} and similarly z(glnC) = {λid, λ ∈ C}. We can
use a similar argument to find that:

Z(SLnC) = Z(SUn) = {λid : λn = 1} z(slnC) = z(sun) = 0

Z(Un) = {λid : |λ| = 1} z(slnC) = z(un) = {λid, λ ∈ iR}

Z(SOnC) = Z(SOnR) =
{

±1 for n even
1 for n odd

}
z(sonC) = z(sonR) = 0

Corollary 5.21. (Classification of intertwining operators)
Let V be a completely reducible representation of a Lie group G or Lie algebra g.
1. If V =

⊕
Vi with each Vi irreducible, pairwise non-isomorphic, then any intertwining

operator is of the form
⊕

λiidVi
.

2. If V =
⊕

niVi irreducible, pairwise non-isomorphic, then any intertwining operator is of
the form

⊕
(Ai ⊗ idVi

with Ai ∈ End(Cni).

Theorem 5.22. Any irreducible complex representation of an abelian group or commutative
Lie algebra is one-dimensional.

Proof. Every ρ(g) commutes with the action of G so ρ(g) = λid for some scalar λ since
ρ(g) ∈ GLnC.

Example 5.23. (Irreducible representations of R)
Complex irreducible representations of g = R are a 7→ λa for some λ ∈ C. The representa-
tions of G = R would then be exp(λa) but exp is the identity on R.

Example 5.24. (Irreducible representations of S1)
Note S1 = R/Z so an S1 representation is exactly an R representation such that every
integer acts trivially. Thus they are one-dimensional complex vector spaces Vk, k ∈ Z where
ρ(a) = e2πika. If instead, we view S1 as the unit complex numbers, then in Vk z ∈ S1 acts by
zk.
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5.3 Unitary representations

We want to determine what kinds of representations will be completely reducible. It turns
out that a large family of them are.

Definition 5.25. A complex representation V of a real Lie group G is called unitary if there
exists a G-invariant inner product (positive definite Hermitian form) on V : (g.v, g.w) =
(v, w). A representation V of a real Lie algebra g is called unitary if there exists a g-invariant
inner product: (x.v, w) + (v, x.w) = 0.

Example 5.26. Let V be the space of complex-valued functions on a finite set S. Let G
be a finite group acting by permutations on S. Then G acts on V by g.f(s) = f(g−1s).
(f1, f2) =

∑
s∈S f1(s)f2(s) is an invariant inner product so this representation is unitary.

Theorem 5.27. Unitary representations are completely reducible.

Proof. We induct on the dimension of V . The statement is trivial in dimension 1. If V is
not irreducible, it has a subrepresentation W and V = W ⊕ W⊥. We claim W⊥ is also a
subrepresentation: Let w ∈ W⊥. Then (g.w, v) = (w, g−1.v) = 0 for any v ∈ W . Thus
gw ∈ W⊥. A similar argument holds in the case of Lie algebras.

Theorem 5.28. Finite group representations are unitary.

Proof. Let B(·, ·) be an inner product on V . The inner product defined by

1

|G|
∑
g∈G

B(g.v, g.w)

is positive definite and G-invariant.

Corollary 5.29. Finite group representations are completely reducible

We would like to extend this argument to Lie groups, but it isn’t immediately clear how.
The following theorem, whose proof is omitted and relies on some measure theory beyond the
scope of these notes, allows us to do this.

Theorem 5.30. Let G be a compact real Lie group. Then G admits a canonical Borel
measure dg that is left- and right-invariant, invariant under the map g 7→ g−1 and that
satisfies

∫
G
dg = 1. This is called the Haar measure on G

This allows us to extend the argument we made to prove 5.28 to any compact Lie group.
Before doing so, we mention that explicitly writing the Haar measure of a group is usually
very difficult since a group rarely comes equipped with a reasonable choice of a coordinate
system.

Theorem 5.31. Any finite-dimensional representation of a compact Lie group is unitary
and therefore completely reducible.

Proof. Let B(·, ·) be an inner product on V . The inner product defined by

B̃(v, w) =

∫
G

B(g.v, g.w)dg

is positive definite and G-invariant.It is positive definite since B̃(v, v) is the integral of a
positive function. G-invariance follows from right-invariance of the Haar measure.
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5.4 Characters and Peter-Weyl theorem

Having determined that any representation V of a compact Lie group is completely reducible
in the form V =

⊕
niVi, we might be interested in figuring out how to compute this decom-

position. In this subsection, G is a compact real Lie group with a Haar measure dg.

Definition 5.32. Fix a basis of a representation V . ρ(g) is matrix-valued. We define the
matrix coefficients ρij : G → F by ρij(g) = (ρ(g))ij.

Remark 5.33. Matrix coefficients are continuous by the continuity of ρ.

Theorem 5.34. -
1. Let V and W be non-isomorphic irreducible representations of G. Fix bases of V and W .
Note we have an inner product on C∞(G,C) given by

(f1, f2) =

∫
G

f1(g)f2(g)dg

Then For any i, j, k, l, the matrix coefficients ρVij , ρ
W
kl are orthogonal.

2. Let V be an irreducible representation of G and fix an orthonormal basis with respect
to a G-invariant inner product (such an inner product exists by theorem 5.31). The matrix
coefficients ρVij are pairwise orthogonal with respect to this inner product and each has norm
1/dimV . Equivalently

(ρVij , ρ
V
kl) =

1

dim(V )
δikδjl

The proof relies on the following lemma

Lemma 5.35. -
1. Let V and W be non-isomorphic irreducible representations of G and f some linear map
V → W . Then

∫
G
gfg−1dg = 0.

2. If f is a linear map V → V (V is still irreducible), then
∫
G
gfg−1dg = tr(f)

dim(V )
id.

Proof. Let F =
∫
G
gfg−1dg. Then for any h ∈ G, hFh−1 = F so by Schur’s lemma, F

= 0 for V ̸= W and λid for V ∼= W . tr(F ) = tr(gfg−1) = tr(f), we must have λ =
(tr(f)/dim(V ))id

We are now ready to prove theorem 5.34.

Proof. Fix orthonormal bases {vi}, {wi} of V andW respectively. Applying the above lemma
to the map Eki : V → W given by Eki(vi) = wk, Eki(vj) = 0 for i ̸= j gives∫

G

ρW (g)Ekiρ
V (g−1)dg = 0

Since ρ is unitary we have ρ(g−1) = ρ(g)t. Using this and rewriting the above in matrix
form we have ∫

G

ρWkl (g)ρ
V
ji(g)dg = 0
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If our bases are not orthonormal, the previous expression differs only by a change of basis,
so it still resolves to 0. This proves the first part of the theorem.

Now, to prove the second statement apply the lemma to a matrix unit Eki to see∑
l,j

Elj

∫
G

ρVlk(g)ρ
V
ji(g) =

tr(Eki)

dim(V )
id

which completes the proof.

Now that we have a way of constructing an orthonormal set of functions on a G, we would
like it to be coordinate-free. We can do this with one particular choice of matrix coefficients:

Definition 5.36. The character of a representation V is the function χV : G → C defined
by

χV (g) = trV (ρ(g)) =
∑

ρVii (g)

Theorem 5.37. (Properties of characters)
1. If V = C is the trivial representation, χV = 1.
2. χV⊕W = χV + χW .
3. χV⊗W = χV · χW .
4. χV (ghg

−1) = χV (h) i.e. characters are invariant under conjugation by elements of G.
5. χV ∗ = χV .
6. χV is independent of the choice of basis of V .

Since characters are essentially a special case of matrix coefficients, we immediately have
the following:

Theorem 5.38. -
1. Let V and W be non-isomorphic complex irreducible representations of a compact Lie
group G. χV and χW are orthogonal with respect to the inner product defined by

(f1, f2) =

∫
G

f1(g)f2(g)dg

2. For any irreducible representation V , (χv, χV ) = 1.

In other words, the set {χV : V ∈ Ĝ} is an orthonormal family of functions G → C.
Here Ĝ denotes the set of isomorphism classes of irreducible representations of G. We have
the following corollary.

Corollary 5.39. Let V be a complex representation of a compact real Lie group.
1. V is irreducible iff (χV , χV ) = 1.
2. V can be written uniquely as V ∼= niVi with Vi pairwise non-isomorphic irreducible
representations and n1 = (χv, χv)

Remark 5.40. While this gives us a method to count multiplicities in a representation, in
practice, this isn’t often a feasible way to do so. We will develop a better way to count
multiplicities when our Lie algebra is semisimple in section 6.6.
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Now we are going to reformulate theorem 5.34 without a choice of basis. Define a function
ρv∗,v : G → C by g 7→ ⟨v∗, ρ(g)v⟩. When v = vj and v∗ = v∗i , the is a matrix coefficient so we
can view ρv∗,v as a generalization of matrix coefficients. This associates to any representation
V a map V ∗ ⊗ V → C∞(G,C) given by v∗ ⊗ v 7→ ⟨v∗, ρ(g)v⟩.

We note that V ∗ ⊗ V is a G − bimodule with the module structures given by the action
of G on the factors V ∗ and V . Also note that if V is unitary, it defines an inner product on
V ∗ (which can be done by taking the dual basis of an orthogonal basis and declaring it to be
orthogonal). We can define an inner product on V ∗ ⊗ V by

(v∗1 ⊗ w1, v
∗
2 ⊗ w2) =

1

dim(V )
(v∗1, v

∗
2)(w1, w2)

Lemma 5.41. Define the map

m :
⊕
Vi∈Ĝ

V ∗
i ⊗ V → C∞(G,C)

by m(v∗ ⊗ v)(g) = ⟨v∗, g.v⟩. Then:
1. m is a G-bimodule isomorphism: m((g.v∗ ⊗ v) = Lg(m(v∗ ⊗ v)) and m((v∗ ⊗ g.v) =
Rg(m(v∗ ⊗ v)).
2. m preserves the inner product.

Proof. (1) can be done via explicit computation and (2) follows from theorem 5.34.

Corollary 5.42. m is injective

Proof. Orthogonal transformations are injective.

This map is also surjective if we replace the direct sum by a Hilbert direct sum:

Theorem 5.43. (Peter-Weyl theorem)
m gives an isomorphism ⊕̂

Vi∈Ĝ
V ∗
i ⊗ Vi → L2(G, dg)

where
⊕̂

is the Hilbert space direct sum (the completion of
⊕

with respect to the metric
induced by the inner product).

Equivalently, the set of linear combinations of matrix coefficients is dense in L2(G, dg).

The proof requires too much analysis to be included in these notes.

Corollary 5.44. (Peter-Weyl theorem II)
The set of characters {χV , V ∈ Ĝ} is an orthonormal Hilbert basis of L2(G, dg)G, the
conjugation-invariant functions L2 functions on G.
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5.5 Representations of sl2C
We’ll now discuss the representation theory of sl2C, the results of which were taken for
granted in sections 3 and 4. The representation theory of sl2C forms the groundwork for that
of all semisimple complex Lie algebras, as we have already seen glimpses of in the previous
sections.

Proposition 5.45. sl2C representations are completely reducible

Proof. sl2C representations are the same as su2 representations which are the same as SU2

representations which is compact.

Recall that sl2C has a basis {e, f, h} with relations

[e, f ] = h [h, e] = 2e [h, f ] = −2f

The main idea in the representation theory of sl2C is to diagonalize h.

Definition 5.46. Let V be a representation of sl2C. A vector v ∈ V is a vector of weight
λ ∈ C if it is an eigenvector for h with eigenvalue λ. We denote the space of vectors of
weight λ by V [λ] ⊂ V .

Lemma 5.47. eV [λ] ⊂ V [λ + 2] and fV [λ] ⊂ V [λ − 2]. In other words, e is a raising
operator and f is a lowering operator.

Proof. hev = [h, e]v + ehv = 2ev + λev = (λ+ 2)ev. The proof for f is similar.

Theorem 5.48. Every finite-dimensional sl2C representation be written in the form

V =
⊕
λ

V [λ]

This is called the weight decomposition of V .

Proof. Since sl2C are completely reducible, it suffices to prove this for irreducible V . Let
V ′ be the subspace spanned by eigenvectors of h. Then V ′ =

∑
λ V [λ]. Eigenvectors with

distinct eigenvalues are linearly independent so this is a direct sum. By the above lemma,
V ′ is stable under the action of sl2C so it is a subrepresentation. Since V is irreducible and
V ′ ̸= 0 (since an eigenvector always exists), V = V ′.

Definition 5.49. Let λ be a weight of V such that Reλ ≥ Reλ′ for all other weights λ′. We
call λ a highest weight and eigenvectors with eigenvalue λ are called highest weight vectors.

Lemma 5.50. Let v ∈ V [λ] be a highest weight vector. Then:
1. ev = 0.
2. Let

vk =
fk

k!
v, k ≥ 0

Then
hvk = (λ− 2k)vk

fvk = (k + 1)vk+1

evk = (λ− k + 1)vk−1, k ≥ 0
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Proof. We have ev ∈ V [λ+ 2] but V [λ+ 2] = 0 since λ is a highest weight. This proves (1).
The formula for the action of f follows immediately from the definition of vk. The formula

for the action of h follows from the fact that fV [λ] ⊂ V [λ− 2]. The formula for the action
of e can be proven by induction: For k = 1, ev1 = efv = [e, f ]v + fev = hv = λv. Now

evk+1 =
1

k + 1
efvk =

1

k + 1
(hvk + fevk)

Applying the induction hypothesis, this becomes

1

k + 1

(
(λ− 2k)vk + (λ− k + 1)fvk−1

)
=

1

k + 1
((λ− 2k + (λ− k + 1)k)vk = (λ− k)vk

It will be useful to view V as a finite-dimensional quotient of an infinite dimensional
vector space with basis {vk}:

Lemma 5.51. Let λ ∈ C. Define Mλ as the vector space with basis {vi}∞i=0. This is called
a Verma module, and we will study them in more detail later.
1) The formulas from the previous lemma, with the added condition that ev0 = 0 give Mλ

the structure of an (infinite-dimensional) sl2C representation.
2) Every irreducible finite-dimensional representation is a quotient of Mλ. In particular, if V
is a representation with highest weight λ, V = Mλ/W for some subrepresentation W ⊂ Mλ.

Proof. (1) can be shown immediately via explicit calculation. (2) can be seen by first noting
that Mλ is irreducible iff λ ∈ Z>0. Suppose that the irreducible finite-dimensional repre-
sentations of sl2C have positive integer highest weight. Knowing this, we can take W to
be the subrepresentation generated by {vi}∞i=λ+1 and weight decomposition completes the
proof.

Lemma 5.52. The irreducible finite-dimensional representations of sl2C have non-negative
integer highest weight.

Proof. Let V be such a representation with highest weight λ. Let V 0 be a highest weight

vector and defined vk = fk

k!
v0 as before. Since V is finite-dimensional, there is some n ≥ 0

such that vn ̸= 0 but V n+1 = 0. Then

0 = evn+1 = (λ− (n+ 1) + 1)vn = (λ− n)vn

which implies λ = n.

Theorem 5.53. (Classification of sl2C representations)
Fix n ≥ 0 and define Vn to be the finite-dimensional vector space with basis {vi}ni=0. Define
the action of sl2C by:

hvk = (n− 2k)vk

fvk = (k + 1)vk+1, for k < n and fvn = 0

evk = (n+ 1− k)vk−1, for k > n and fv0 = 0

1. Vn is an irreducible representation of sl2C with highest weight n.
2. Vm and Vn are not isomorphic for n ̸= m.
3. Every finite-dimensional irreducible sl2C representation is isomorphic to some Vn.
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Proof. Let Mλ be the Verma module as defined above. If λ = n is a non-negative integer,
the subspace Jλ ⊂ Mλ spanned by vn+1, Vn+2, ... is a subrepresentation so Vλ = Mλ/Jλ is
a finite-dimensional representation of sl2C. It is irreducible since any vk for 0 ≤ k ≤ n
generates Vλ. Since Vn is n+ 1 dimensional, Vn ̸∼= Vm for n ̸= m.

Now let V be an irreducible representation of highest weight λ and let v ∈ V [λ]. By
lemma 5.52, λ is integer. By lemma 5.51, V ∼= Mλ/Jλ and we are done.

Theorem 5.54. (Structure of sl2C representations)
Let V be a finite-dimensional complex sl2C representation.
1. V admits a decomposition, called a weight decomposition, with integer weights:

V =
⊕
n∈Z

V [n]

2. dim(V [n]) = dim(V [−n]) and for n ≥ 0, the maps en : V [n] → V [−n] and fn : V [−n] →
V [n] are isomorphisms.

Proof. It suffices to show this when V is an irreducible representation Vn. Then using 5.50.2,
this can be shown explicitly.

We state quickly, without proof, how to decompose tensor products of irreducible repre-
sentations into a direct sum.

Theorem 5.55. (Clebsch–Gordan decomposition for sl2C)
Let Vn be the n+ 1 dimensional complex irreducible representation of sl2C. Then:

Vn ⊗ Vm
∼= Vn+m ⊕ Vn+m−2 ⊕ ...⊕ Vm−n

Using the what we know about the representations of sl2C, we can also study the repre-
sentation theory of so3R:
Theorem 5.56. (Representation theory of so3R)
1. Every finite-dimensional so3R representation admits a weight decomposition:

V =
⊕
n∈Z

V [n]

where V [n] = {v ∈ V : Jzv = in
2
v}. Here,

Jz =

0 −1 0
0 0 0
0 0 0


2. A representation V of so3R lifts to a representation of SO3R iff all weights are even.
That is, if V [k] = 0 for odd k.

Proof. We only briefly sketch the proof. Recall there is an isomorphism (so3R)C = so3C →
sl2C which sends Jz to − ih

2
. Using the weight decomposition of sl2C, (1) follows. Now,

recall that sl2C is the complexification of su2 and that SU2 is a double cover of SO3R with
kernel {1,−1}. Note −1 = eiπh. Thus, representations of sl2 where eiπh acts trivially lift to
representations of SO3R. This completes the proof.

Remark 5.57. In the physics literature, j = λ/2 is called the spin of the representation
where λ is the highest weight.
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6 Representations of Complex Semisimple Lie Alge-

bras

6.1 Complete reducibility and Casimir element

We will now show that the representations of a semisimple Lie algebra are completely re-
ducible.

Remark 6.1. This can be proven using the theory of compact groups as follows. Any
semisimple complex Lie algebra g is the complexification of a real Lie algebra k = Lie(K)
where K is compact and simply connected. Representations of such groups were shown to be
completely reducible in section 5.3, which implies representations of g are reducible since kC
representations are equivalent to k-representations. This is called Weyl’s unitary trick.

Proposition 6.2. (Casimir element)
Let g be a Lie algebra, B a non-degenerate symmetric bilinear form on g, Xi a basis of g, xi

the dual basis with respect to B. The element

CB =
∑

xix
i ∈ Ug

is central and does not depend on the choice of basis. CB is called the Casimir element
determined by.B When g is semisimple, it is assumed that B is the Killing form.

Proof. The element I =
∑

xi ⊗ xi ∈ g⊗ g∗ ∼= End(g, g) is the identity element of End(g, g)
which also implies I is ad g-invariant. The map g ⊗ g∗ → g ⊗ g → Ug is a morphism of
representations, so CB =

∑
xix

i is ad g-inaviant and thus central.

Example 6.3. (Casimir element of sl2C)
We first compute e∗, f ∗, and h∗ using the fact that for x, y ∈ {e, f, h}, tr(xy∗) = δxy. This
gives C = ef +fe+ 1

2
h2. Since C is central, ρ(C) : V → V for a representation V commutes

with the action of sl2C and is thus an intertwining operator. By Schur’s lemma, this means it
acts as a constant on irreducible representations and that reducible representations decompose
into subrepresentations which are eigenspaces of C.

Proposition 6.4. If g is simple, the Casimir element is unique up to a constant.

Proof. This follows from the fact that any symmetric invariant bilinear form on a simple Lie
algebra is a scalar multiple of the Killing form.

Remark 6.5. C always acts nontrivially in a nontrivial representation. This is not very
easy to prove, so we won’t.

Theorem 6.6. (Weyl’s theorem)
Any complex finite-dimensional representation of a semisimple Lie algebra g is completely
reducible.

The proof is omitted since it uses some basic notions of Lie algebra cohomology which are
not covered in these notes. Unfortunately, this means we won’t see the Casimir element in
action, but you can take my word for it that it is important.

As an immediate consequence, we get the following result, stated without proof in section
2.5. Levi decomposition can be proved similalry.
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Corollary 6.7. (Reductive decomposition)
Any reductive Lie algebra can be written as a direct sum of semisimple and commutative
ideals:

g = z⊕ gss

Proof. Since z(g) acts trivially in the adjoint representation of g, the representation decends
to a representation of g′ = g/z(g). Since g is reductive, g′ is semisimple so g considered as a
representation of g′ is completely reducible. Since z(g) is stable under the adjoint action of
g′(andg), it is a subrepresentation which we will denote z and we can thus write g = z ⊕ I
for some I ⊂ g which is stable under the adjoint action of g′. Since this implies I is stable
under the disjoint action of g, I is an ideal so g = z⊕ I not just as a representation but as
a Lie algebra. Since I = g/g′, it is semisimple.

6.2 Weight decomposition and character theory

We will now finally begin our journey towards the classification of complex finite-dimensional
representations of semi-simple Lie algebras. As was the case with sl2C, the trick will be to
decompose representations into eigenspaces for a Cartan subalgebra. In the case of sl2C,
we had h = ⟨h⟩. We’ll need to introduce a few concepts before we can give a classification
theorem.

Definition 6.8. Let V be a representation of a complex semisimple Lie algebra g. A vector
v ∈ V is called a vector of weight λ ∈ h∗ if for all h ∈ h, hv = ⟨λ, h⟩v. The space
of all vectors of weight λ is called a weight space and is denoted V [λ]. When the weight
space is nonempty, λ is called a weight of V . We denote the set of all weights of V as
P (V ) = {λ ∈ h8 : V [λ] ̸= 0}.

Remark 6.9. Vectors of different weights are linearly independent, so P (V ) is finite when
V is finite-dimensional.

Recall that the weight lattice P ⊂ E is the lattice {λ ∈ E : ⟨λ, α∨
i ∈ Z for all simple roots αi}.

Also recall that the coroot α∨ ∈ E∗ is defined by ⟨α∨, λ⟩ = 2(α,λ)
(α,α)

. That is, ⟨α∨, λ⟩ is twice
the component of λ along α.

Theorem 6.10. Every finite-dimensional representation of g admits a weight decomposition

V =
⊕

λ∈P (V )

V [λ]

and all weights of V are integral, that is, P (V ) ⊂ P .

Proof. Let α be a root and recall that there is an sl2C subalgebra in g generated by elements
eα, fα, and hα as follows:

eα ∈ gα and fα ∈ g−α are chosen such that (e, f) = 2/(α, α) and

hα =
2Hα

(α, α)
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where Hα ∈ h is defined by the property that (α, β) = ⟨Hα, β⟩ for all β ∈ h∗.

We have seen hα is diagonalizable in V considered as a module over (sl2C)α. Since {hα : α ∈
R} spans h and the sum of commuting diagonalizable operators is diagonalizable, any h ∈ h
is diagonalizable. Since h is commutative, they can be simultaneously diagonalized. Since
sl2C has integer weights, this implies P (V ) ⊂ P and concludes the proof.

Remark 6.11. As expected, the weight decomposition agrees with the root decomposition.

Lemma 6.12. For x ∈ gα, x.V [λ] ⊂ V [λ+ α]

Proof. Using the Serre relations, one can show this explicitly as was done with sl2C.

We will be often interested in the dimensions of the weight subspaces V [λ]. Let C[P ]
be the algebra generated by the symbols eλ, λ ∈ P subject to the relations eλeµ = eλ+µ and
e0 = 1. C[P ] is isomorphic to the algebra of complex-valued polynomial functions on the
torus T = h/2πiQ∨ by defining eλ(t) = e⟨t,λ⟩ for t ∈ T . This is isomorphic to the algebra of
Laurent polynomials in rank(g) variables.

Definition 6.13. The character ch(V ) ∈ C[P ] of a finite-dimensional representation V of
g is

ch(V ) =
∑

(dim(V [λ])eλ

Remark 6.14. The use of the term character here is closely related to its use in group
representations. Every t ∈ h corresponds to exp(t) ∈ G. Then

ch(V )(t) = trV (exp(t))

which justifies the choice of notation eλ.

Example 6.15. Let g = sl2C. The weight lattice P = Zα
2
so C[P ] is generated by enα/2, n ∈

Z. Writing x = eα/2 and the results of 5.5, we have

ch(Vn) = xn + xn−2 + ...+ x−n =
xn+1 − x−n−1

x− x−1

Lemma 6.16. -
1. ch(C) = 1.
2. ch(V1 ⊕ V2) = ch(V1) + ch(V2).
3. ch(V1 ⊗ V2) = ch(V1)ch(V2).
4. ch(V ∗) = ch(V ) where eλ = e−λ.

We might recall that the characters of sl2C are invariant under its Weyl group Z2 which
acts by inversion. This turns out to always be the case:

Theorem 6.17. Let V be a finite -dimensional representation of g. The set of weights and
the dimensions of the weight subspaces are invariant under the action of the Weyl group.
That is to say, for all w ∈ W , dim(V [λ]) =dim(V [w(λ)]). Equivalently, w(ch(V )) = ch(V )
where the action of W on C[P ] is w(eλ) = ew(λ).

Proof. It suffices to prove this for simple reflections si since these generate W . Let ⟨λ, α∨
i ⟩ =

n ≥ 0. The operators fn
i : V [λ] → V [λ− nαi] and eni : V [λ− nαi] → V [λ] are isomorphism.

Therefore, dim(V [λ]) = dim(V [λ− nαi]). By definition, si(λ) = λ− ⟨λ, α∨
i ⟩αi = λ− nαi, so

we are done.
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6.3 Highest weight representations and Verma modules

Recall that when we studied the representation theory of sl2C, we constructed infinite-dimensional
representations Mλ called, Verma modules, that are in some sense “universal:” Every finite-
dimensional irreducible representation of sl2C is a quotient of Mλ. In this section, we will
do the same for a general complex semisimple Lie algebra.

Recall the triangular decomposition of a Lie algebra g given by a choice of polarization:

g = n− ⊕ h⊕ n+, n± =
⊕
α∈R±

gα

The subalgebras n± are called the positive and negative nilpotent subalgebras.

Definition 6.18. A representation V of g is called a highest weight representation of highest
weight λ if it is generated by a vector v ∈ V [λ] such that eαv = 0 for all α ∈ R+. v is called
a highest weight vector.

Theorem 6.19. Every finite-dimensional irreducible representation of a semisimple Lie al-
gebra is a highest weight representation.

Proof. Let λ ∈ P (V ) be such that for all α ∈ R, λ+ α ̸∈ P (V ). Such λ always exists: Take
h ∈ h such that ⟨h, αi⟩ > 0 for all α ∈ R+. Then pick λ such that ⟨h, λ⟩ is maximal.

Let v ∈ V [λ]benonzero. We have eαv = 0 for any α ∈ R+ since λ+ α is not a weight of
V . The representation generated by v is a nontrivial highest weight subrepresentation, but
since V is irreducible V must be this representation

Remark 6.20. We briefly note that highest weight representations of the same highest weight
need not be isomorphic if they are not irreducible. We will explore this further in the next
section.

Lemma 6.21. Any highest weight vector v of weight λ in a highest weight representation
satisfies the following:
1. hvλ = ⟨h, λ⟩vλ for all h ∈ h.
2. evλ = 0 for all e ∈ n+.

Definition 6.22. Define the universal highest weight representation Mλ, called a Verma
module, as the representation generated by a single vector vλ subject to the relations of the
previous lemma. That is

Mλ = Ug/Iλ

where Iλ is the left ideal in Ug generated by e ∈ n+ and (h− ⟨h, λ⟩ with h ∈ h.

There is an equivalent definition of Mλ given by a Borel subalgebra. We will take a quick
detour to describe this since it will prove useful later.

Definition 6.23. The Borel subalgebra b ⊂ g with respect to a given triangular decomposition
is the subalgebra b = n+ ⊕ h.

Lemma 6.24. -
1. n+ and n− are nilpotent.
2. b is solvable with derived algebra n+.
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Theorem 6.25. (Borel-Morozov)
b is a maximal solvable subalgebra and any solvable subalgebra of g can be mapped to a sub-
algebra of b by an inner automorphism. In particular, any two maximal solvable subalgebras
are conjugate. One can actually take this as the definition of a Borel subalgebra.

Remark 6.26. We can also define Mλ as the product Mλ = Ug ⊗Ub Cλ where Cλ. is the
one-dimensional representation defined by lemma 6.29. We mention for completeness that
this is the same as saying Mλ = IndUg

UbCλ, although we won’t cover induced representations
in these notes.

Theorem 6.27. If V is a highest weight representation of weight λ can be realized as Mλ/W
for some subrepresentaiton W ⊂ Mλ

Theorem 6.28. -
1. Every v ∈ Mλ can be written as uvλ for some u ∈ Un−. That is to say, we have an
isomorphism Un− → Mλ given by u 7→ uvλ.
2. Mλ admits a weight space decomposition

Mλ =
⊕

µ∈P (Mλ)

Mλ[µ]

where the set of weights of Mλ is

P (Mλ) = λ−Q+ where Q+ =
{∑

niαi, ni ∈ Z≥0

}
3. dim(Mλ[λ] = 1.

Proof. Recall that by the PBW theorem, if g = g1 ⊕ g2, Ug = Ug1 ⊗ Ug2. In our case,
Ug ∼= Un− ⊗ Ub as Un− modules so

Mλ = Ug⊗Ub Cλ = Un− ⊗ Ub⊗Ub Cλ = Un− ⊗ Cλ

This implies all 3 parts of the theorem.

Having seen that all highest weight representations are quotients of Mλ, we will generalize
the above to any highest weight representation.

We can define a partial order on h∗ by λ ≤ µ iff λ − µ ∈ Q+ and λ < µ iff λ ≤ µ and
λ ̸= µ.

Theorem 6.29. Let V be a highest weight representation with highest weight vector λ.
1. Every v ∈ V can be written as v = uvλ with u ∈ Un−. That is to say, the map Un− → V
given by u 7→ uvλ is surjective.
2. V admits a weight decomposition:

V = ⊕µ≤λV [µ]

where each weight subspace is finite-dimensional.
3. dim(V [λ]) = 1.
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Proof. (1) follows from the previous theorem on Verma modules. To prove (2), we will use
this lemma, the proof of which follows from elementary linear algebra:

Lemma 6.30. Let h be a commutative finite-dimensional Lie algebra and M an h-module
with a weight decomposition

M =
⊕

M [λ], M [λ] := {v : hv = ⟨h, λ⟩v for all h ∈ h

Then any quotient and submodule of M admits a weight decomposition.

(2) follows immediately. To see (3), note that dim(V [λ]) ≤ dim(Mλ[λ]) = 1 and V [λ] is
nonempty.

The following is a useful corollary:

Corollary 6.31. Any highest weight representation has a unique highest weight and a unique
highest weight vector up to a scalar.

Proof. By 6.29.2, we must have λ ≤ µ and µ ≤ λ.

6.4 Classification of finite-dimensional irreducible representations

Finally, we will classify all finite-dimensional irreducible representations of semisimple Lie
algebras. We have already seen that all of these are highest weight representations, so it will
suffice to classify irreducible finite-dimensional highest weight representations. We start by
proving the following important result:

Theorem 6.32. For any λ ∈ h∗, there is a unique irreducible highest weight representation
with highest weight λ with highest weight λ denoted Lλ.

Since all highest weight representations with highest weight λ are of the form V = Mλ/W
for some subrepresentation W , V is irredcuble iff W is maximal so it suffices to show there
exist a unique maximal proper submodule. Every submodule of Mλ admits a weight decompo-
sition so we have W [λ] = 0 since otherwise, W [λ] = Mλ[λ] which would imply W = Mλ. Let
Jλ be the sum of all submodules W such that W [λ] = 0. This is clearly proper and contains
every other submodule of Mλ, so Lλ = Mλ/Jλ is the unique irreducible representation of
highest weight λ.

Remark 6.33. As was the case with sl2, for generic λ, Mλ is irreducible.

Corollary 6.34. Every irreducible finite-dimensional representation V is isomorphic to
some Lλ

We need to determine which of these Lλ are finite-dimensional. To do this, we define the
following:

Definition 6.35. A weight λ ∈ h∗ is dominant integral if for all α ∈ R+ (or equivalently,
α ∈ Π),

⟨λ, α∨⟩ ∈ Z>0

We denote the set of dominant integral weights by P+
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Lemma 6.36. Recall the weight lattice P ⊂ h∗,

P = {λ ∈ E : ⟨λ, α∨⟩ ∈ Z for all α ∈ R} = {λ ∈ E : ⟨λ, α∨⟩ ∈ Z for all α∨ ∈ Q∨}

where Q∨ is the coroot lattice.
1. We have P+ = P ∩ C+ where

C+ = {λ ∈ h∗ : ⟨λ, α∨
i > 0 for all α ∈ Π}

where C+ is the positive Weyl chamber.
2. For any λ ∈ P , its Weyl group orbit Wλ contains exactly one element of P+.

Proof. (1) follows from the definitions and (2) follows from the fact that any W -orbit in h∗R
contains exactly one element of C+. To see that, note that W acts transitively on Weyl
chambers and fixes the root hyperplanes.

This lemma will help us prove the following result, which will be the key to the classifica-
tion we are seeking:

Lemma 6.37. An irreducible highest weight representation Lλ is finite-dimensional iff λ ∈
P+.

Proof. We only give a sketch of the proof: If Lλ is finite-dimensional, recall we have a
subalgebra (sl2C)i defined by ei ∈ gαi

, fi ∈ g−αi
such that (e, f) = 2/(α, α) and

hα =
2Hα

(α, α)

where Hα is the element of h such that for all β ∈ h∗,

(α, β) = ⟨Hα, β⟩ = (Hα, Hβ)

The highest weight vector vλ ∈ sl2C satisfies eivλ = 0 and hivλ = ⟨hi, λ⟩vλ = ⟨α∨
i , λ⟩vλ

and generates a finite-dimensional highest weight (sl2C)i submodule. By the representation
theory of sl2C, ⟨hi, λ⟩ ∈ Z+ for any simple root αi and therefore, we have ⟨λ, α∨⟩ ∈ Z+ for
any positive root.

Now suppose λ is finite-dimensional. The proof breaks into three steps:
1. Define vsi(λ) = fni+1

i vλ ∈ Mλ[si(λ)] where ni = ⟨α∨
i , λ⟩ ∈ Z>0.

2. Let Mi be the submodule generated by vsi(λ). This is a highest weight submodule of
weight λsi(λ) and therefore cannot have λ > si(λ) as a weight.
3. Define

L̃λ = Mλ/
∑

Mi

and note it is a nonzero highest weight representation. When λ is dominant integral, this
is finite-dimensional (although this is nontrivial to show). Since Lλ is a quotient of Mλ by
a maximal proper submodule, it must be contained in L̃λ which is finite dimensional. This
completes the proof.

We finally get the following result as a corollary:
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Theorem 6.38. For every λ ∈ P+, Lλ is an irreducible finite-dimensional representation.
These are pairwise non-isomorphic and every irreducible finite-dimensional representation is
isomorphic to some Lλ.

Example 6.39. (Weights of the adjoint representation)
Let g be a simple Lie algebra and consider its adjoint representation. This is irreducible with
weights α ∈ R and 0 with multiplicity dim(h). This must have a highest weight θ i.e. a
weight θ ∈ R+ such that θ+α ̸∈ R∪{0} for all α ∈ R+. This is sometimes called a maximal
root. In the case of slnC, θ = e1 − en. This root is also the unique root with maximal height.

6.5 Weyl character formula and dimension

Recall that the character of a finite-dimensional representation V is

ch(V ) =
∑

dim(V )[λ]eλ ∈ C[P ]

Since the character of a representation tells us a lot about its weight decomposition, it will
be nice to have an explicit formula for computing it. We state here some results about this,
the proofs of which are omitted for brevity.

Lemma 6.40. (Character of Mλ)

ch(Mλ) =
eλ∏

α∈R+
(1− e−α)

where 1
1−e−α is a formal series 1 + e−α + e−2α + ...

Theorem 6.41. (Weyl character formula)
Let Lλ be the irreducible finite-dimensional (highest weight) representation with highest weight
λ ∈ P+. We have:

ch(Lλ) =

∑
w∈W (−1)l(w)ew(λ)∏

α∈R+
(1− e−α

=

∑
w∈W (−1)l(w)ew(λ+ρ)∏
α∈R+

(eα/2 − e−α/2

We note that one intuitive proof of the Weyl character formula uses the BGG resolution
for its key steps. Sadly, that is not covered in these notes.

There are two useful corollaries:

Corollary 6.42. (Weyl denominator identity)∏
α∈R+

(eα/2 − e−α/2 =
∑
w∈W

(−1)l(w)ew(ρ)

This polynomial is called the Weyl denominator. In particular the Weyl denominator is
ske-symmetric: w(δ) = (−1)l(w)δ.

Proof. Apply the Weyl denominator and is denoted δ.l character formula when λ = 0. We
see that Lλ = C and ch(Lλ) = 1. The equality follows
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Corollary 6.43. For λ ∈ P+

ch(Lλ) = Aλ+ρ/Aρ

where
Aµ =

∑
w∈W

(−1)l(w)ew(µ)

We would like to use the following:

dim(V ) =
∑
λ∈R

dim(V [λ]) = ch(V )(0)

but both the denominator and numerator of the Weyl character formula vanish at 0. Thus,
we introduce the following:

Definition 6.44. Let V be a finite-dimensional representation of a Lie algebra g. Define
the q-dimension, dimq(V ) ∈ C[q±1] by

dimqV = trV (q
2ρ) =

∑
λ

dim(V [λ])q2(ρ,λ)

where (·, ·) is a W -invariant symmetric bilinear form on h∗ such that (λ, µ) ∈ Z for any
λ, µ ∈ P . Note that at q = 1, this is just the usual notion of dimension.

Proposition 6.45.
dimqV = πρ(ch(V ))

where πρ : C[P ] → C[q±1] is given by πρ(e
λ) = q2(λ,ρ).

Theorem 6.46. For λ ∈ P+ dominant integral:

dimq(Lλ) =
∏

α∈R+

q(λ+ρ,α − q−(λ+ρ,α

q(ρ,α) − q−(ρ,α)

Corollary 6.47.

dim(Lλ) =
∏

α∈R+

(λ+ ρ, α)

(ρ, α)
=

∏
α∈R+

⟨λ+ ρ, α∨⟩
⟨ρ,∨ ⟩

Proof. We only note that this follows from the fact that

lim
q→1

qn − q−m

qm − q−m
=

n

m
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6.6 Multiplicities

We have now seen that any finite-dimensional representation of a semisimple Lie algebra is
completely reducible and thus can be written as

V =
⊕
λ∈P+

nλLλ

for some nλ ∈ Z≥0. We will now attempt to compute the multiplicities nλ.

Theorem 6.48. The characters ch(Lλ) with λ ∈ P+ are a basis of the algebra of W -invariant
polynomials C[P ]W .

Proof. Note we have a basis {mλ}λ∈P+ of C[P ]W where

mλ =
∑
µ∈Wλ

eµ

where Wλ is the Weyl group orbit of λ. Any such orbit contains a unique dominant integral
root, so this is indeed a basis. By weight decomposition, we have

ch(Lλ) =
∑
µ≤λ

cµe
µ = mλ +

∑
µ∈P+,µ<λ

cµmmu

Then the matrix representing ch(Lλ) in our chosen basis is upper-triangular with 1s on the
diagonal and thus invertible.

Corollary 6.49. -
1. We can count multiplicities by writing ch(V ) in the basis ch(Lλ):

ch(V ) =
∑
λ∈P+

nλch(Lλ)

2. We have a way to recursively compute these coefficients: If λ ∈ P (V ) is maximal, then
nλ = dim(V [λ]). Now, consider ch(V ) − nλch(Lλ) and repeat this until you reach the 0
polynomial.

6.7 Example: Representations of slnC and Young diagrams

To do:

6.8 Example: Representations of g2

To do:
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