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Introduction

Part of this talk is on-going joint work with M. Zeman.

The main topic of this talk centers around small fragments of the Martin’s
Maximum and their variations that are forcable over models of determinacy.

This work is partially supported by the National Science Foundation via career
grant DMS-1945592 and the Simons Fellowship.
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Martin’s Maximum

Definition

Martin’s Maximum (MM) is the statement that whenever P is a stationary-set
preserving forcing poset, and (Dα : α < ω1) is a sequence of dense subsets of P
then there is a filter G ⊆ P such that G ∩Dα ̸= ∅ for all α < ω1.

Stationary-set preserving forcing posets include a large class of posets like proper
and semi-proper forcings. Therefore, MM implies PFA,SPFA.

Theorem (Foreman-Magidor-Shelah)

Con(ZFC+ there is a supercompact cardinal) implies Con(MM).

Question: What is the consistency strength of MM?
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Martin’s Maximum (cont.)

Some small fragments of MM are much weaker, consistency-wise, than full MM.
Write MM(κ) for MM restricted to posets of size ≤ κ.

Theorem (Dobrinen-Krueger-Marun-Mota-Zapletal, 2023)

The theories ZFC and MM(ω1) are equiconsistent.
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Martin’s Maximum (cont.)

Theorem (Woodin)

Con(ADR +Θ is regular) implies Con(MM(c)).

On the other hand, inner model theoretic techniques show that MM(c) is strictly
stronger than ZFC:

(Woodin) MM(c) implies Projective Determinacy.

(Steel-Zoble) MM(c) implies ADL(R).

Question: What is the consistency strength of MM(c)? What about larger
fragments of MM(c) and their consequences?
In this talk, we will mostly consider the following “small” fragments of MM:

1 MM(c)+there is a semi-saturated ideal on ω2.

2 MM(c) + ¬□ω2 .

3 MM(c) + ¬□(ω3).
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Consequences of Martin’s Maximum

For an infinite cardinal λ, the principle □λ asserts the existence of a sequence
⟨Cα | α < λ+⟩ such that for each α < λ+,

Cα is club in α;

for each limit point β of Cα, Cβ = Cα ∩ β;

the order type of Cα is at most λ.

The principle □(λ) asserts the existence of a sequence ⟨Cα | α < λ⟩ such that
1 for each α < λ,

each Cα is club in α;
for each limit point β of Cα, Cβ = Cα ∩ β; and

2 there is no thread through the sequence, i.e., there is no club E ⊆ λ such
that Cα = E ∩ α for each limit point α of E.

Observation: ¬□(λ+) ⇒ ¬□λ.
A semi-saturated ideal I on ω2 can be extended to a semi-saturated ideal I+g on
V [g] for a V -generic g ⊆ Coll(ω, ω1); in particular, if H is V [g]-generic for the

boolean algebra ℘(ω
V [g]
1 )/I+g , then letting jH : V [g] → N be the generic

embedding, jH(ω
V [g]
1 ) = ω

V [g]
2 .
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Consequences of Martin’s Maximum (cont.)

MM implies:

2ω = 2ω1 = ω2.

The non-stationary ideal on ω1 is saturated.

Strong and Weak reflection principles.

∀κ ≥ ω2¬□(κ).

MM does not imply the existence of a semi-saturated ideal on ω2. But Woodin
shows

Theorem (Woodin)

Suppose M ⊨ V = L(℘(R)) + ADR +Θ is regular. Let G ⊆ Pmax be M -generic
and H ⊆ Add(ΘM , 1) be M [G]-generic, then M [G][H] ⊨ MM(c)+ there is a
semi-saturated ideal on ω2.
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Consistency Strength
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MM(c)’s consistency

Question: Why is the consistency of MM(c) hard to determine?

Conjecture (Woodin)

Assume MM(c). Suppose M ⊨ AD+ such that R ∪ON ⊂ M and ΘM = ω3.
Then M ⊨ ADR.

In the core model induction context, we have this version of Woodin’s Conjecture:
Suppose MM(c) holds, and that there are no models of “ADR +Θ is regular”. Let

Γ = {A ⊂ R : L(A,R) ⊨ AD+}.

Then ΘL(Γ) < ω3 if L(Γ) ⊨ AD+.
Note that Γ ̸= ∅ by Steel-Zoble and that MM(c) implies R♯ exists and
Steel-Zoble’s proof gives R♯ ∈ Γ, so ΘL(R) < ω3.
If Γ ⊨ Θ = θ0, then every A ∈ Γ is in an R-mouse , the union of such mice is
denoted by Lp(R), so L(Γ) ∩ ℘(R) = Lp(R).
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MM(c)’s consistency (cont.)
We consider the following extensions of MM(c):

1 MM(c)+there is a semi-saturated ideal on ω2.

2 MM(c) + ¬□ω2 .

3 MM(c) + ¬□(ω3).

From MM(c) + ¬□(ω3), one can show that ΘLp(R) < ω3. For if not, let C⃗ be the
canonical coherent sequence build over Lp(R). Then □(ω3) implies there is a
thread D through the sequence and D defines a new sound mouse projecting to
R. Contradiction.
C⃗ can in fact be turned into a □ω2 -sequence (T.-Zeman), so MM(c) + ¬□ω2

suffices as well. It turns out theory (1) also suffices.

Theorem (T., 2025)

Let (T ) be one of the 3 theories above. Assume (T ) + (†). Then there is a model
M ⊨ ADR + DC.

Here (†) is the statement: Whenever A is a set of ordinals that is OD from a
countable set of ordinals, for any X ∈ ℘ω1

(A) there is a transitive model M of
ZFC containing {A,X} such that M ⊨ “ωV

1 is measurable.”
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Forcing Fragments of Martin’s Maximum over Models of AD+
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Some results

Theorem (Woodin)

Suppose M ⊨ V = L(℘(R)) + ADR +Θ is regular. Let G ⊆ Pmax be M -generic
and H ⊆ Add(ΘM , 1) be M [G]-generic, then M [G][H] ⊨ MM(c)+ there is a
semi-saturated ideal on ω2.

It is easy to see that (†) holds in M [G][H] and it’s very plausible that ADR +Θ is
regular is consistent with MM(c) + (†)+ there is a semi-saturated ideal on ω2. In
which case, we’d obtain an equiconsistency result.

Theorem (Caicedo-Larson-Sargsyan-Schindler-Steel-Zeman)

If Con(ADR +Θ is Mahlo), then Con(MM(c) + ¬□(ω3).

Theorem (Blue-Larson-Sargsyan, Sargsyan)

For any k < ω, the theory MM(c) + ∀n ≤ k¬□(ω2+n) is consistent with ZFC+
there is a Woodin limit of Woodin cardinals.
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Optimal results

Theorem (Dichotomy Theorem 1, T.-Zeman, 2025)
1 If ADR +Θ is regular holds and the set

S = {α = θα : HOD℘α(R) ⊨ Θ is regular} is non-stationary, then there is a

coherent sequence C⃗ = {Cα : α < Θ} without a thread.

2 If ADR +Θ is regular holds and the set
Θ− {α = θα : HOD℘α(R ⊨ Θ is singular} is stationary then

V Pmax⋆Add(ω3,1) ⊨ MM(c) + ¬□ω2 .

Theorem (Dichotomy Theorem 2, T.-Zeman, 2025)

1 If ADR +Θ is not weakly compact (i.e. there is a Θ-tree T on Θ without a

cofinal branch) then there is a coherent sequence C⃗ = {Cα : α < Θ} that
has no thread.

2 If ADR +Θ is weakly compact then V Pmax⋆Add(ω3,1) ⊨ MM(c) + ¬□(ω3).
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Towards the equiconsistency

Theorem (Jensen-Schimmerling-Schindler-Steel, 2007)

Assume 2ω = ω2 + 2ω2 = ω3 + ¬□(ω3) + ¬□ω3 . Then there are non-domestic
mice.

Theorem (T., 2016)

Assume 2ω = ω2 + 2ω2 = ω3 + ¬□(ω3) + ¬□(ω4). Then there are models of
ADR +Θ is weakly compact (and more).

Theorem (T.-Zeman, 2025)

Assume 2ω = ω2 + 2ω2 = ω3 + ¬□(ω3) + ¬□ω3
. Then there are models of

ADR +Θ is weakly compact (and more).
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Towards the equiconsistency (cont.)

Assume MM(c) +¬□ω2 . If Θ
Γ = ω3 and there are no models of “ADR +Θ is

regular holds and the set Θ− {α = θα : HOD℘α(R ⊨ Θ is singular} is

stationary”, we can build a coherent sequence C⃗ ′ = {C ′
α : α < ω3} as in

Dichotomy Theorem 1, but this sequence can be turned into a □ω2
-sequence

C⃗. ¬□ω2
gives a thread through C⃗. Contradiction.

Assume MM(c) + ¬□(ω3). If Θ
Γ = ω3 and there are no models of ADR +Θ

is weakly compact, then by Dichotomy Theorem 2, we can build a coherent
sequence a coherent sequence C⃗ = {Cα : α < ω3} from a ω3-tree T that has
no cofinal branch in LpΣ(Γ) (this can’t in general be turned into a

□ω2-sequence). ¬□(ω3) gives a thread through C⃗ which witnesses T has a
cofinal branch in LpΣ(Γ). Contradiction.

If ΘΓ < ω3, one needs to show either hypothesis (maybe +(†)) implies the
existence of models of “ADR +Θ is measurable”.
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Conjectures and Questions

Conjecture

The theories “MM(c)+there is a semi-saturated ideal on ω2 (+ (†))” and
“ADR +Θ is regular” are equiconsistent.

Question

Can we make do without (†)?
Can we weaken the hypothesis “semi-saturation” to “weak-presaturation of
JNS”?

Conjecture

The theories “ADR +Θ is regular holds and the set
Θ− {α = θα : HOD℘α(R ⊨ Θ is singular} is stationary ” and “MM(c) + ¬□ω2

(+ (†))” are equiconsistent.

Conjecture

The theories “ADR +Θ is weakly compact” and “MM(c) + ¬□(ω3) (+ (†))” are
equiconsistent.
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Thank you!
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