
Mouse sets in L(R)
Farmer Schlutzenberg, TU Wien

June 26, 2025

Funded by the Austrian Science Fund (FWF) [grant Y 1498]. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s

Excellence Strategy EXC 2044-390685587, Mathematics Münster:
Dynamics-Geometry-Structure. Funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) - project number 445387776.

Mouse sets and correctness in L(R) June 26, 2025 1 / 29



1 Mouse sets in L(R)

2 Gaps

3 Ladder mice

4 Admissible gaps

5 Ladder mice just beyond admissible gaps

Mouse sets and correctness in L(R) June 26, 2025 2 / 29



Mouse sets in L(R)

Definition 1.1.

The L(R) language is language of set theory augmented with a constant Ṙ for R.

Σ
Jα(R)
n and Π

Jα(R)
n always in L(R) language.

Definition 1.2 (ΣR
n hierarchy).

• ΣR
1 denotes Σ1,

For integers n > 0:
• ΠR

n denotes ¬ΣR
n , so ΠR

1 = Π1

• ΣR
n+1 denotes ∃RΠR

n .

Definition 1.3.
Let α > 0 be an ordinal, and n > 0 an integer.

ODαn denotes the set of y ∈ R such that for some ξ < ω1 and some Σn formula φ,

y = unique real z such that Jα(R) |= φ(w , z),

whenever w ∈ WOξ.

Likewise ODR
αn, but with ΣR

n replacing Σn.

So ODR
αn ⊆ ODαn.
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Mouse sets in L(R)

In case α = 1, J1(R) = J (R).

Remark 1.4.

For n ≥ 1, (ΣR
n )

J (R) is recursively equivalent to Σ
J (R)
n , so OD1n = ODR

1n.
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Mouse sets in L(R)

Theorem 1.5 (Woodin, [1], 1990s).

Let λ > 0 be an ordinal. Then ODλ1 = ODR
λ1 is a mouse set.
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Gaps

Recall from Steel [5]: for α ≤ β,
– [α, β] is a gap iff this interval is maximal such that Jα(R) ≼1,R Jβ(R).
– A gap [α, β] is:

• projective-like iff Jα(R) ̸|= KP.
• non-projective-like or admissible iff Jα(R) |= KP.

– Admissible gaps are divided into weak and strong.
– A projective-like gap [γ, γ] is scale-cofinal iff γ is not of form β + 1, where [α, β] is a

strong gap.

Theorem 2.1 (Rudominer, Steel).
Let [α, α] be projective-like with α of uncountable cofinality. Let n ≥ 1. Then

ODR
αn = ODαn

is a mouse set.

(n = 1 version already true by Woodin’s result.)
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Ladder mice

Rudominer introduced ladder mouse Mld and admissible ladder mouse Madld.

Definition 3.1.
M-ladder the least mouse M such that there is ⟨θn⟩n<ω such that:

– θn is an M-cardinal,
– M#

n (M|θn) ◁M and M#
n (M|θn) |=“θn is Woodin”.

Write Mld = M.
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Ladder mice

Theorem 3.2 (Rudominer 1990s).
R ∩ Mld ⊆ OD12 ⊆ R ∩ Madld.

Theorem 3.3 (Woodin 2018, [2]).
R ∩ Mld = OD12 is a mouse set.

In fact, there is γ < ωMld
2 and a recursive function φ 7→ ϱφ such that for all Σ2 formulas φ

and all x ∈ RMld,
J (R) |= φ(x) ⇐⇒ Mld|ωMld

2 |= ϱφ(x , γ).
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Ladder mice

Theorem 3.4 (S., [3], 2024).
Assume ZF + AD + V = L(R). Let [α, α] be a scale-cofinal projective-like gap. Let
n ≥ 1. Then

ODαn = ODR
αn

is a mouse set.

Remarks:
• New proof that OD12 = R ∩ Mld, avoiding stationary tower.
• General case not quite a direct generalization of OD12.
• Also get anti-correctness...
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Ladder mice

Anti-correctness for ΠJ (R)
2 , under AD + V = L(R):

Theorem 3.5 (S., [3], 2024).

Anti-correctness holds for ΠJ (R)
2 and M = Mld. There is a unique Σ1-elementary

σ : J (RM) → J (R),

and moreover:
• Π

J (R)
2 is uniformly Σ

J (RM)
2 ,

• Π
J (RM)
2 is uniformly Σ

J (R)
2 .

Theorem 3.6 (S., [3], 2024).
Let [α, α] be scale-cofinal projective-like. Then for a cone of reals x, there is an
x-mouse M = Mα

ld(x) analogous to Mld, and there is a unique ᾱ and

σ : Jᾱ(RM) → Jα(R),

which is cofinal Σ1-elementary, and moreover:
• Π

Jα(R)
2 ({x}) is uniformly Σ

Jᾱ(RM)
2 ({x}),

• Π
Jᾱ(RM)
2 ({x}) is uniformly Σ

Jα(R)
2 ({x}).
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Admissible gaps

Remark 4.1.
If [α, β] is admissible gap, i.e. Jα(R) |= KP, then

ODξn = ODα1

for all ξ ∈ [α, β) and n < ω.

Theorem 4.2 (ess. Martin).
Let [α, β] be a strong gap. Then ODα1 = ODβn for every n ∈ [1, ω).

Question 4.3.
Let [α, β] be a weak gap and n ≥ 2. What can we say about

ODβn and ODR
βn?

Similarly, if [α, β] is a strong gap, what about

ODβ+1,n and ODR
β+1,n?
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Admissible gaps

The following lemma comes from joint work with Steel, relates to methods from core
model induction:

Lemma 4.4.
Let α, β, γ be such that either:

– [α, β] is a weak gap and β = γ, or
– [α, β] is a strong gap and β + 1 = γ.

Then Jγ(R) is a “derived model”.

More precisely, there is a mouse operator

P : x 7→ Px = P(x),

defined for a cone of reals x , such that:
• P is definable from params over Jγ(R),
• Px is a sound ω-small x-mouse which projects to ω,
• Px |= “there are ω Woodin cardinals”,
• Jγ(R) is a “derived model” of an R-genericity iterate of Px

• the fine structure of Jγ(R) corresponds to that of Px .
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Ladder mice just beyond admissible gaps

Theorem 5.1 (S., [3]).
Let [α, γ] be a weak gap, or γ = β + 1 where [α, β] is a strong gap.
Then for a cone of reals x, there is a “γ-ladder” x-mouse Mγ

ld(x) definable from x over
Jγ(R), analogous to Mld over J (R).

Remark 5.2.
– Mγ

ld(x) has infinitely many Woodins; a “ladder” ascends to its least Woodin δ0.
– Defined using operator P associated to Jγ(R).
– Mγ

ld(x)|δ0 is closed under P,
– Mγ

ld(x) = P(Mγ
ld(x)|δ0).

– used in proof of mouse set theorems for ODγn
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Ladder mice just beyond admissible gaps

Theorem 5.3.
Let [α, γ] be a weak gap, or γ = β + 1 where [α, β] is a strong gap. Let e be least such
that ρJγ(R)

e+1 = R. Then ODγn is a mouse set for:
– n ≤ e + 1 (ODγn = ODα1 here),
– n ≥ e + 3.

Question 5.4.

What about n = e + 2? What about ODγ,e+2({p⃗Jγ(R)
e+1 })?

• Probably not quite the right question.
• For such γ, e, a more natural variant of ODR

γ,e+n exists; call it OD∗R
γ,e+n.
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Ladder mice just beyond admissible gaps

Theorem 5.5 (S., [3], 2024).
Let γ, e be as above. Then:

1. For n ≥ 3,
OD∗R

γ,e+n = ODγ,e+n

is a mouse set.
2. For a cone of reals x,

OD∗R
γ,e+2(x) = R ∩ Mγ

ld(x)

is an x-mouse set.

Question 5.6.
What about OD∗R

γ,e+2 (lightface)?

Conjecture 5.7.
It is the mouse set R ∩ N, where N = output of appropriate L[E]-construction formed
inside Mγ

ld(x) for a cone of x .
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Ladder mice just beyond admissible gaps

Definition 5.8.
Let γ be end of weak gap / successor of strong gap. Let e be least such that
ρ
Jγ(R)
e+1 = R. Then for n ≥ 1 define Σ∗R

e+n and Π∗R
e+n as follows:

– Σ∗R
e+1 = rΣe+1({p⃗}) where p⃗ = p⃗Jγ(R)

e+1 ,
– Π∗R

e+n = ¬Σ∗R
e+n,

– Σ∗R
e+n+1 = ∃RΠ∗R

e+n.

Define OD∗R
γ,e+1+n (for n ≥ 0) using these classes.
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Ladder mice just beyond admissible gaps

Anti-correctness for M1: for Π1
3 formulas φ and x ∈ R ∩ M1:

φ(x) ⇐⇒ M1 |= ψφ(x),

where ψφ(x) is the Σ1
3 formula asserting “there is a Π1

2-iterable φ(x)-prewitness”.

Definition 5.9 (Woodin).

Let φ be Π1
3 and x ∈ RM1.

A φ(x)-prewitness is a premouse N with x , δ ∈ N such that:
• N |= ZF−+“δ is Woodin”
• N |=“the extender algebra at δ forces φ(x)”.

Theorem 5.10 (Woodin).

Let φ be Π1
3 and x ∈ RM1. Then TFAE:

• φ(x)
• There is a φ(x)-prewitness N ◁M1|ωM1

1
• There is a Π1

2-iterable φ(x)-prewitness P ∈ HCM1.
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Ladder mice just beyond admissible gaps

We want, for Π2 formulas φ, a Σ2 formula ψφ such that:

J (R) |= φ(x) ⇐⇒ J (RMld) |= ψφ(x).

ψφ(x) should say “there is a Π1-iterable φ(x)-prewitness”.

Remark 5.11.

– Π1-iterability is Π
J (R)
1 .

– Mld is Σ
J (R)
1 -correct.

– Every Π1-iterable premouse P ∈ HCMld is iterable.
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Ladder mice just beyond admissible gaps

Fix a Π1 formula ϱ, and x ∈ RMld.
There is a natural game G (ϱ, x), in which player 2 tries to prove that

J (R) |= ∃Rw ϱ(x ,w),

as follows:
– Player 1 plays arbitrary objects in Mld.
– Player 2 tries to build X ,w by finite approximation, such that:

• X ≼1 Mld,
• X includes all elements played by player 1,
• w ∈ R is extender algebra generic at each θn, while
• for no n does

M#
n (Mld|θn)[w ]

verify ¬ϱ(x ,w).
– The first n moves are within M#

n (Mld|θn), and the game up to there is definable
there.

Then:
• Gϱ is closed for player 2.
• If player 2 wins, then ∃w ϱ(x ,w).
• If player 1 wins, the rank analysis (in V ) computes a winning strategy.
• G M#

n (Mld|θn)(ϱ, x ,n) denotes the restriction of G (ϱ, x) to first n moves.
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Ladder mice just beyond admissible gaps

Definition 5.12.

An n-partial ladder is a premouse N such that for some θ⃗,

• θ⃗ = ⟨θi⟩i≤n is a strictly increasing (n + 1)-tuple of ordinals of N,
• θi is an N-cardinal for all i ≤ n,
• θ+N

n is the largest cardinal of N,
• N is closed under M#

k -operator, for each k < ω,

• θi is Woodin in M#
i (N|θi), and θi is the least such N-cardinal, for each i ≤ n.

Write θ⃗N = θ⃗.
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Ladder mice just beyond admissible gaps

Let φ(x) = ∀Rw ¬ϱ(w , x) (recall ϱ is Π1).
For a φ(x)-witness, we want roughly:

– an (iterable) 0-partial ladder premouse P0 with x ∈ P0

where player 1’ wins the following game G P0
x :

0.1 Player 1’ plays:
– P0

0.2 Player 2’ plays:
– A correct tree T0 on P0, based on P0|θP0

0 ; let P ′
0 = MT0

∞ and θ′0 = θ
P′

0
0 ,

– a play σ0 of G
M#

0 (P′
0|θ

′
0)

ϱ,x ,1 of length 1, following rules, player 2 has not lost,
1.1 Player 1’ plays:

– A 1-partial ladder P1 such that P ′
0|(θ′0)+P′

0 ◁ P1 ◁ P ′
0,

1.2 Player 2’ plays:
– A correct tree T1 on P1 which is above θ′0 and based on P1|θ1;

let P ′
1 = MT1

∞ and θ′1 = θ
P′

1
1 ,

– a play σ1 of G
M#

1 (P′
1|θ

′
1)

ϱ,x ,2 of length 2, extending σ0, following rules, player 2 has
not lost,

2.1 Player 1’ plays:
– A 2-partial ladder P2 such that P ′

1|(θ′1)+P′
1 ◁ P2 ◁ P ′

1,
2.2 , 3.1, ... etc...

The first player to break a rule loses; otherwise player 2’ wins.
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Let φ(x) = ∀Rw ¬ϱ(w , x) (recall ϱ is Π1).
For a φ(x)-witness, we want roughly:

– an (iterable) 0-partial ladder premouse P0 with x ∈ P0

where player 1’ wins the following game G P0
x :

0.1 Player 1’ plays:
– P0

0.2 Player 2’ plays:
– A correct tree T0 on P0, based on P0|θP0

0 ; let P ′
0 = MT0

∞ and θ′0 = θ
P′

0
0 ,

– a play σ0 of G
M#

0 (P′
0|θ

′
0)

ϱ,x ,1 of length 1, following rules, player 2 has not lost,
1.1 Player 1’ plays:

– A 1-partial ladder P1 such that P ′
0|(θ′0)+P′

0 ◁ P1 ◁ P ′
0,
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– A correct tree T1 on P1 which is above θ′0 and based on P1|θ1;

let P ′
1 = MT1
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P′

1
1 ,
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M#

1 (P′
1|θ

′
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Ladder mice just beyond admissible gaps

Write M = Mld. For i < ω write θM
i for the i th “rung” of M, and QM

i = M#
i (M|θM

i ).
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Ladder mice just beyond admissible gaps

Game G M , K = M = Mld: Fix a recursive enumeration ⟨ψi⟩i<ω of all formulas in the
passive premouse language. Write Bi = extender algebra of M at θM

i . In round n < ω,
player 1 first plays some a⃗n ∈ (M|θM

n )<ω, and then player 2 plays b⃗n, x⃗n ∈ (M|θM
n )<ω

such that:
1. (Cofinality of X ) a⃗n ∪ b⃗n ⊆ x⃗n, and if n > 0 then θK

n−1 ∈ x⃗n.
2. (Σ1-elementarity of X ): If n > 0 then for all i , j , k < n, letting x⃗ ′

ℓ = x⃗ℓ ∩ M|θK
i , if

M|θK
i |= ∃z ψj(x⃗ ′

0, . . . , x⃗
′
k−1, z)

then there is some x ∈ x⃗n such that M|θK
i |= ψj(x⃗ ′

0, . . . , x⃗
′
k−1, x).

3. b⃗n = ⟨bni⟩i≤n where bni ∈ Bi for each i ≤ n.

4. If n > 0 then bni ≤Bi bn−1,i for each i < n.
5. For all i ≤ j ≤ n, (noting that bni ∈ Bj) for each j < i and b ∈ Bj , we have bnj ≤Bj bni .
6. If n > 0 then for each A ∈ x⃗n−1 and each i < n, if A ∈ M|θM

i is a maximal antichain
of Bi then there is a ∈ A such that bni ≤Bi a.

7. For each i ≤ n, there is no W ◁QM
i with θK

i < ORW such that

QM
i |= bni forces “W is an above-θK

i , ¬ψ(x , y0, ẇ)-prewitness”,

where ẇ denotes the Bi-generic real.
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Ladder mice just beyond admissible gaps

Definition 5.13.

Given a transitive swo’d X ∈ HC, an X -premouse N and n < ω, we say that
(N, θ0, . . . , θn) is an n-partial-potential-ladder iff:

– θ0 < θ1 < . . . < θn,
– θi is a cutpoint of N, for each i ≤ n,
– N |=“θi is a limit cardinal which is not Woodin and not measurable” for each i ≤ n,
– θ+N

n < ORN and θ+N
n is the largest cardinal of N.

Definition 5.14.

Suppose (N, θ⃗) is an n-partial-potential-ladder. Then Q(N,θ⃗)
i ⊴ N denotes the

Q-structure for N|θi , for i ≤ n. Given x , y0 ∈ RN and a Π1 formula ψ(u, v ,w), let

G (N,θ⃗) = G (N,θ⃗)
∃Rψ(x ,y0)

denote the set of partial plays σ =
〈
(a⃗i , b⃗i , x⃗i)

〉
i<n

, relative to ⟨(θi ,Qi)⟩i<n where

Qi = Q(N,θ⃗)
i .
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Ladder mice just beyond admissible gaps

Definition 5.15.

Let X ∈ HC be transitive swo’d, N be an X -premouse, θ⃗, ϱ ∈ N<ω, x , y0 ∈ RN , and
∆ ∈ N. Let ψ(u, v ,w) be a Π1 formula. We say (N, θ⃗,∆) is a

(∀R¬ψ(x , y0), ϱ)-prewitness

iff, letting n = lh(ϱ), then (N, θ⃗) is an n-partial-potential-ladder, and letting

(Nn, θ⃗n, ϱn,∆n) = (N, θ⃗, ϱ,∆),

then ϱ ∈ G (N,θ⃗)
∃Rψ(x ,y0)

and ∆ is a non-empty tree whose elements σ have form

σ = (σn+1, . . . , σn+k)

where k < ω and for 0 ≤ i ≤ k , σn+i has form

σn+i = (Nn+i , θ⃗n+i , ϱn+i ,∆n+i)

(so σn = (N, θ⃗, ϱ,∆), but σn is not actually an element of σ), and moreover, for each
σ ∈ ∆, with σ, k , σn+i as above, the following conditions hold...
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Ladder mice just beyond admissible gaps

1. If σ ̸= ∅ then for every i < k , we have the following:
(a) Nn+i+1 ◁ Nn+i ,
(b) (Nn+i+1, θ⃗n+i+1) is an (n + i + 1)-potential-partial-ladder,
(c) ρNn+i+1

1 = ρ
Nn+i+1
ω = θ

+Nn+i
n+i ,

(d) θ⃗n+i+1 ↾(n + i + 1) = θ⃗n+i ,
(e) ϱn+i+1 ∈ G

(Nn+i+1,θ⃗n+i+1)

∃Rψ(x ,y0)
(so lh(ϱn+i+1) = n + i + 1),

(f) ϱn+i = ϱn+i+1 ↾(n + i),
(g) ∆n+i+1 ∈ Nn+i+1 is a tree,
(h) (σn+i+2, . . . , σn+k) ∈ ∆n+i+1.

2. ∆n+k = {τ
∣∣ σ ̂ τ ∈ ∆}.

3. Letting θn+k = max(θ⃗n+k), there is a⃗ ∈ (Nn+k |θn+k)
<ω such that for all

b⃗, x⃗ ∈ (Nn+k |θn+k)
<ω such that

ϱ′ = ϱn+k ̂ 〈
(a⃗, b⃗, x⃗)

〉
∈ G

(Nn+k ,θ⃗n+k )

∃Rψ(x ,y0)
,

there is σ′ ∈ ∆ such that σ′ = σ ̂ 〈
(N ′, θ⃗′, ϱ′,∆′)

〉
for some N ′, θ⃗′,∆′.

A (∀R¬ψ(x , y0))-prewitness is a (∀R¬ψ(x , y0), ∅)-prewitness.
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Ladder mice just beyond admissible gaps

Lemma 5.16.
Let φ(x) be ∀RΣ1, of form

∀Rw ¬ϱ(w , x),

where ϱ is Π1. Let x ∈ RMld. TFAE:
(i) J (R) |= φ(x)
(ii) Player 1 wins Gϱ,x

(iii) there is a φ(x)-prewitness (P0,∆) with P0 ◁Mld|ωMld
1 .

(iv) there is a φ(x)-prewitness (P0,∆) ∈ HCMld with J (RMld) |=“P0 is Π1-iterable”.
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Ladder mice just beyond admissible gaps

End of weak gap
Example: [α, β] is weak, and for Pg(x) the corresponding mouse on a cone of x ,

ω = ρ
Pg(x)
1 < λPg(x) < ORPg(x),

λP /∈ pPg(x)
1 , (λP)+P < ORP , and Σ

Jβ(R)
1 is µ-reflecting.(see [4]).

Definition 5.17.
For an X -premouse R, say that R is relevant if there is δ = δR

0 < ORR such that:
– R |=“δ is the least Woodin > rank(X )”,
– R = Pg(R|δ),
– R|δ is Pg-closed.

Definition 5.18.
For relevant R, let:

–
〈
αR

n

〉
n<ω be the canonical ω-sequence cofinal in ORR,

– γR
n = sup(δR

0 ∩ HullR|αR
n

1 (X ∪ {pR
1 }),

– tR
n = Th

R|αR
n

1 (X ∪ γR
n ∪ {pR

1 }).

Definition 5.19 (Ladder mouse at end of weak gap).

For a cone of y , Mβ
ld(y) is the least relevant y -mouse N such that letting δ = δN

0 , for
each n < ω, there is a relevant R ◁ N|δ with tR

n = tN
n (after substituting pR

1 for pN
1 ).
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