Mouse sets in $L(\mathbb{R})$ Farmer Schlutzenberg, TU Wien

June 26, 2025

 Funded by the Austrian Science Fund (FWF) [grant Y 1498]. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2044-390685587, Mathematics Münster:
 Dynamics-Geometry-Structure. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 445387776.

Mouse sets in $L(\mathbb{R})$

Definition 1.1.

The $\underline{L(\mathbb{R})}$ language is language of set theory augmented with a constant $\dot{\mathbb{R}}$ for \mathbb{R} .

 $\Sigma_n^{\mathcal{J}_{\alpha}(\mathbb{R})}$ and $\Pi_n^{\mathcal{J}_{\alpha}(\mathbb{R})}$ always in $L(\mathbb{R})$ language.

Definition 1.2 ($\Sigma_n^{\mathbb{R}}$ **hierarchy).**

• $\Sigma_1^{\mathbb{R}}$ denotes Σ_1 ,

For integers n > 0:

- $\Pi_n^{\mathbb{R}}$ denotes $\neg \Sigma_n^{\mathbb{R}}$,
- $\Sigma_{n+1}^{\mathbb{R}}$ denotes $\exists^{\mathbb{R}}\Pi_n^{\mathbb{R}}$.

so $\Pi_1^{\mathbb{R}} = \Pi_1$

Definition 1.1.

The $\underline{L(\mathbb{R})}$ language is language of set theory augmented with a constant $\dot{\mathbb{R}}$ for \mathbb{R} .

 $\Sigma_n^{\mathcal{J}_{\alpha}(\mathbb{R})}$ and $\Pi_n^{\mathcal{J}_{\alpha}(\mathbb{R})}$ always in $L(\mathbb{R})$ language.

Definition 1.2 ($\Sigma_n^{\mathbb{R}}$ **hierarchy).**

• $\Sigma_1^{\mathbb{R}}$ denotes Σ_1 ,

For integers n > 0:

- $\Pi_n^{\mathbb{R}}$ denotes $\neg \Sigma_n^{\mathbb{R}}$,
- $\Sigma_{n+1}^{\mathbb{R}}$ denotes $\exists^{\mathbb{R}}\Pi_n^{\mathbb{R}}$.

Definition 1.3.

Let $\alpha > 0$ be an ordinal, and n > 0 an integer.

 $OD_{\alpha n}$ denotes the set of $y \in \mathbb{R}$ such that for some $\xi < \omega_1$ and some Σ_n formula φ ,

y = unique real z such that $\mathcal{J}_{\alpha}(\mathbb{R}) \models \varphi(w, z)$,

whenever $w \in WO_{\xi}$.

Likewise $OD_{\alpha n}^{\mathbb{R}}$, but with $\Sigma_n^{\mathbb{R}}$ replacing Σ_n .

So $OD_{\alpha n}^{\mathbb{R}} \subseteq OD_{\alpha n}$.

so $\Pi_1^{\mathbb{R}} = \Pi_1$

In case $\alpha = 1$, $\mathcal{J}_1(\mathbb{R}) = \mathcal{J}(\mathbb{R})$.

Remark 1.4.

For $n \geq 1$, $(\Sigma_n^{\mathbb{R}})^{\mathcal{J}(\mathbb{R})}$ is recursively equivalent to $\Sigma_n^{\mathcal{J}(\mathbb{R})}$, so $OD_{1n} = OD_{1n}^{\mathbb{R}}$.

Theorem 1.5 (Woodin, [1], 1990s).

Let $\lambda > 0$ be an ordinal. Then $OD_{\lambda 1} = OD_{\lambda 1}^{\mathbb{R}}$ is a mouse set.

Gaps

Recall from Steel [5]: for $\alpha \leq \beta$,

- $[\alpha, \beta]$ is a gap iff this interval is maximal such that $\mathcal{J}_{\alpha}(\mathbb{R}) \preccurlyeq_{1,\mathbb{R}} \mathcal{J}_{\beta}(\mathbb{R})$.
- A gap $[\alpha, \beta]$ is:
 - projective-like iff $\mathcal{J}_{\alpha}(\mathbb{R}) \not\models \mathsf{KP}$.
 - <u>non-projective-like</u> or <u>admissible</u> iff $\mathcal{J}_{\alpha}(\mathbb{R}) \models \mathsf{KP}$.
- Admissible gaps are divided into weak and strong.
- A projective-like gap $[\gamma, \gamma]$ is <u>scale-cofinal</u> iff γ is <u>not</u> of form $\beta + 1$, where $[\alpha, \beta]$ is a strong gap.

Gaps

Recall from Steel [5]: for $\alpha \leq \beta$,

- $[\alpha, \beta]$ is a <u>gap</u> iff this interval is maximal such that $\mathcal{J}_{\alpha}(\mathbb{R}) \preccurlyeq_{1,\mathbb{R}} \mathcal{J}_{\beta}(\mathbb{R})$.
- A gap $[\alpha, \beta]$ is:
 - projective-like iff $\mathcal{J}_{\alpha}(\mathbb{R}) \not\models \mathsf{KP}$.
 - <u>non-projective-like</u> or <u>admissible</u> iff $\mathcal{J}_{\alpha}(\mathbb{R}) \models \mathsf{KP}$.
- Admissible gaps are divided into weak and strong.
- A projective-like gap $[\gamma, \gamma]$ is <u>scale-cofinal</u> iff γ is <u>not</u> of form $\beta + 1$, where $[\alpha, \beta]$ is a strong gap.

Theorem 2.1 (Rudominer, Steel).

Let $[\alpha, \alpha]$ be projective-like with α of uncountable cofinality. Let $n \ge 1$. Then

$$OD_{\alpha n}^{\mathbb{R}} = OD_{\alpha n}$$

is a mouse set.

(n = 1 version already true by Woodin's result.)

Rudominer introduced ladder mouse $M_{\rm ld}$ and admissible ladder mouse $M_{\rm adld}$.

Definition 3.1.

<u>*M*-ladder</u> the least mouse *M* such that there is $\langle \theta_n \rangle_{n < \omega}$ such that:

- $-\theta_n$ is an *M*-cardinal,
- $M_n^{\#}(M|\theta_n) \triangleleft M$ and $M_n^{\#}(M|\theta_n) \models "\theta_n$ is Woodin".

Write $M_{\rm ld} = M$.

Theorem 3.2 (Rudominer 1990s).

 $\mathbb{R} \cap M_{\mathrm{ld}} \subseteq \mathrm{OD}_{12} \subseteq \mathbb{R} \cap M_{\mathrm{adld}}.$

Theorem 3.3 (Woodin 2018, [2]).

 $\mathbb{R} \cap M_{\mathrm{ld}} = \mathrm{OD}_{12}$ is a mouse set.

In fact, there is $\gamma < \omega_2^{M_{ld}}$ and a recursive function $\varphi \mapsto \varrho_{\varphi}$ such that for all Σ_2 formulas φ and all $x \in \mathbb{R}^{M_{ld}}$,

 $\mathcal{J}(\mathbb{R})\models \varphi(\mathbf{x})\iff M_{\mathrm{ld}}|\omega_2^{M_{\mathrm{ld}}}\models \varrho_{\varphi}(\mathbf{x},\gamma).$

Theorem 3.4 (S., [3], 2024).

Assume $ZF + AD + V = L(\mathbb{R})$. Let $[\alpha, \alpha]$ be a scale-cofinal projective-like gap. Let $n \ge 1$. Then

$$\mathrm{OD}_{lpha n} = \mathrm{OD}_{lpha n}^{\mathbb{R}}$$

is a mouse set.

Remarks:

- New proof that $OD_{12} = \mathbb{R} \cap M_{ld}$, avoiding stationary tower.
- General case not quite a direct generalization of OD₁₂.
- Also get anti-correctness...

Ladder mice

Anti-correctness for $\Pi_2^{\mathcal{J}(\mathbb{R})}$, under AD + $V = L(\mathbb{R})$:

Theorem 3.5 (S., [3], 2024).

Anti-correctness holds for $\Pi_2^{\mathcal{J}(\mathbb{R})}$ and $M = M_{ld}$. There is a unique Σ_1 -elementary

$$\sigma: \mathcal{J}(\mathbb{R}^M) \to \mathcal{J}(\mathbb{R}),$$

and moreover:

- $\Pi_2^{\mathcal{J}(\mathbb{R})}$ is uniformly $\Sigma_2^{\mathcal{J}(\mathbb{R}^M)}$,
- $\Pi_2^{\mathcal{J}(\mathbb{R}^M)}$ is uniformly $\Sigma_2^{\mathcal{J}(\mathbb{R})}$.

Anti-correctness for $\Pi_2^{\mathcal{J}(\mathbb{R})}$, under AD + $V = L(\mathbb{R})$:

Theorem 3.5 (S., [3], 2024).

Anti-correctness holds for $\Pi_2^{\mathcal{J}(\mathbb{R})}$ and $M = M_{ld}$. There is a unique Σ_1 -elementary

$$\sigma: \mathcal{J}(\mathbb{R}^M) \to \mathcal{J}(\mathbb{R}),$$

and moreover:

- $\Pi_2^{\mathcal{J}(\mathbb{R})}$ is uniformly $\Sigma_2^{\mathcal{J}(\mathbb{R}^M)}$,
- $\Pi_2^{\mathcal{J}(\mathbb{R}^M)}$ is uniformly $\Sigma_2^{\mathcal{J}(\mathbb{R})}$.

Theorem 3.6 (S., [3], 2024).

Let $[\alpha, \alpha]$ be scale-cofinal projective-like. Then for a cone of reals x, there is an x-mouse $M = M_{ld}^{\alpha}(x)$ analogous to M_{ld} , and there is a unique $\bar{\alpha}$ and

$$\sigma: \mathcal{J}_{\bar{\alpha}}(\mathbb{R}^{M}) \to \mathcal{J}_{\alpha}(\mathbb{R}),$$

which is cofinal Σ_1 -elementary, and moreover:

•
$$\Pi_2^{\mathcal{J}_{\alpha}(\mathbb{R})}(\{x\})$$
 is uniformly $\Sigma_2^{\mathcal{J}_{\bar{\alpha}}(\mathbb{R}^M)}(\{x\})$,

• $\Pi_2^{\mathcal{J}_{\alpha}(\mathbb{R}^M)}(\{x\})$ is uniformly $\Sigma_2^{\mathcal{J}_{\alpha}(\mathbb{R})}(\{x\})$.

Remark 4.1.

If $[\alpha, \beta]$ is admissible gap, i.e. $\mathcal{J}_{\alpha}(\mathbb{R}) \models \mathsf{KP}$, then

 $OD_{\xi n} = OD_{\alpha 1}$

for all $\xi \in [\alpha, \beta)$ and $n < \omega$.

Theorem 4.2 (ess. Martin).

Let $[\alpha, \beta]$ be a strong gap. Then $OD_{\alpha 1} = OD_{\beta n}$ for every $n \in [1, \omega)$.

Remark 4.1.

If $[\alpha, \beta]$ is admissible gap, i.e. $\mathcal{J}_{\alpha}(\mathbb{R}) \models \mathsf{KP}$, then

 $OD_{\xi n} = OD_{\alpha 1}$

for all $\xi \in [\alpha, \beta)$ and $n < \omega$.

Theorem 4.2 (ess. Martin).

Let $[\alpha, \beta]$ be a strong gap. Then $OD_{\alpha 1} = OD_{\beta n}$ for every $n \in [1, \omega)$.

Question 4.3.

Let $[\alpha, \beta]$ be a weak gap and $n \ge 2$. What can we say about

 $OD_{\beta n}$ and $OD_{\beta n}^{\mathbb{R}}$?

Similarly, if $[\alpha, \beta]$ is a strong gap, what about

 $OD_{\beta+1,n}$ and $OD_{\beta+1,n}^{\mathbb{R}}$?

The following lemma comes from joint work with Steel, relates to methods from core model induction:

Lemma 4.4.

Let α, β, γ be such that either:

- $[\alpha, \beta]$ is a weak gap and $\beta = \gamma$, or
- $[\alpha, \beta]$ is a strong gap and $\beta + 1 = \gamma$.

Then $\mathcal{J}_{\gamma}(\mathbb{R})$ is a "derived model".

The following lemma comes from joint work with Steel, relates to methods from core model induction:

Lemma 4.4.

Let α, β, γ be such that either:

- $[\alpha, \beta]$ is a weak gap and $\beta = \gamma$, or
- $[\alpha, \beta]$ is a strong gap and $\beta + 1 = \gamma$.

Then $\mathcal{J}_{\gamma}(\mathbb{R})$ is a "derived model".

More precisely, there is a mouse operator

$$\mathscr{P}: \mathbf{X} \mapsto \mathbf{P}_{\mathbf{X}} = \mathscr{P}(\mathbf{X}),$$

defined for a cone of reals *x*, such that:

- \mathscr{P} is definable from params over $\mathcal{J}_{\gamma}(\mathbb{R})$,
- P_x is a sound ω -small x-mouse which projects to ω ,
- $P_x \models$ "there are ω Woodin cardinals",
- $\mathcal{J}_{\gamma}(\mathbb{R})$ is a "derived model" of an \mathbb{R} -genericity iterate of P_x
- the fine structure of $\mathcal{J}_{\gamma}(\mathbb{R})$ corresponds to that of P_{x} .

Theorem 5.1 (S., [3]).

Let $[\alpha, \gamma]$ be a weak gap, or $\gamma = \beta + 1$ where $[\alpha, \beta]$ is a strong gap. Then for a cone of reals x, there is a " γ -ladder" x-mouse $M_{\text{ld}}^{\gamma}(x)$ definable from x over $\mathcal{J}_{\gamma}(\mathbb{R})$, analogous to M_{ld} over $\mathcal{J}(\mathbb{R})$.

Theorem 5.1 (S., [3]).

Let $[\alpha, \gamma]$ be a weak gap, or $\gamma = \beta + 1$ where $[\alpha, \beta]$ is a strong gap. Then for a cone of reals x, there is a " γ -ladder" x-mouse $M_{\text{ld}}^{\gamma}(x)$ definable from x over $\mathcal{J}_{\gamma}(\mathbb{R})$, analogous to M_{ld} over $\mathcal{J}(\mathbb{R})$.

Remark 5.2.

- $-M_{\rm ld}^{\gamma}(x)$ has infinitely many Woodins; a "ladder" ascends to its least Woodin δ_0 .
- Defined using operator \mathscr{P} associated to $\mathcal{J}_{\gamma}(\mathbb{R})$.
- $M_{\rm ld}^{\gamma}(x) | \delta_0$ is closed under \mathscr{P} ,
- $M_{\mathrm{ld}}^{\gamma}(x) = \mathscr{P}(M_{\mathrm{ld}}^{\gamma}(x)|\delta_0).$
- used in proof of mouse set theorems for $OD_{\gamma n}$

Theorem 5.3.

Let $[\alpha, \gamma]$ be a weak gap, or $\gamma = \beta + 1$ where $[\alpha, \beta]$ is a strong gap. Let e be least such that $\rho_{e+1}^{\mathcal{J}_{\gamma}(\mathbb{R})} = \mathbb{R}$. Then $OD_{\gamma n}$ is a mouse set for: $-n \leq e+1$ ($OD_{\gamma n} = OD_{\alpha 1}$ here), $-n \geq e+3$.

Theorem 5.3.

Let $[\alpha, \gamma]$ be a weak gap, or $\gamma = \beta + 1$ where $[\alpha, \beta]$ is a strong gap. Let e be least such that $\rho_{e+1}^{\mathcal{J}_{\gamma}(\mathbb{R})} = \mathbb{R}$. Then $OD_{\gamma n}$ is a mouse set for: $-n \leq e+1 (OD_{\gamma n} = OD_{\alpha 1} here),$ $-n \geq e+3.$

Question 5.4.

What about n = e + 2? What about $OD_{\gamma,e+2}(\{\vec{p}_{e+1}^{\mathcal{J}_{\gamma}(\mathbb{R})}\})$?

- Probably not quite the right question.
- For such γ , e, a more natural variant of $OD_{\gamma,e+n}^{\mathbb{R}}$ exists; call it $OD_{\gamma,e+n}^{*\mathbb{R}}$.

Theorem 5.5 (S., [3], 2024).

Let γ , e be as above. Then: 1. For n > 3,

$$\mathrm{OD}_{\gamma,\boldsymbol{e}+\boldsymbol{n}}^{*\mathbb{R}} = \mathrm{OD}_{\gamma,\boldsymbol{e}+\boldsymbol{n}}$$

is a mouse set.

2. For a cone of reals x,

$$\mathrm{OD}_{\gamma,e+2}^{*\mathbb{R}}(x) = \mathbb{R} \cap M_{\mathrm{ld}}^{\gamma}(x)$$

is an x-mouse set.

Question 5.6.

What about $OD_{\gamma,e+2}^{*\mathbb{R}}$ (lightface)?

Conjecture 5.7.

It is the mouse set $\mathbb{R} \cap N$, where N = output of appropriate $L[\mathbb{E}]$ -construction formed inside $M_{\text{ld}}^{\gamma}(x)$ for a cone of x.

15/29

Definition 5.8.

Let γ be end of weak gap / successor of strong gap. Let e be least such that $\rho_{e+1}^{\mathcal{J}_{\gamma}(\mathbb{R})} = \mathbb{R}$. Then for $n \geq 1$ define $\Sigma_{e+n}^{*\mathbb{R}}$ and $\Pi_{e+n}^{*\mathbb{R}}$ as follows:

$$- \Sigma_{e+1}^{*\mathbb{R}} = r\Sigma_{e+1}(\{\vec{p}\})$$
 where $\vec{p} = \vec{p}_{e+1}^{\mathcal{J}_{\gamma}(\mathbb{R})}$,

$$- \Pi_{e+n}^{*\mathbb{R}} = \neg \Sigma_{e+n}^{*\mathbb{R}},$$

$$-\Sigma_{e+n+1}^{*\mathbb{R}}=\exists^{\mathbb{R}}\Pi_{e+n}^{*\mathbb{R}}$$

Define $OD_{\gamma,e+1+n}^{*\mathbb{R}}$ (for $n \ge 0$) using these classes.

Anti-correctness for M_1 : for Π_3^1 formulas φ and $x \in \mathbb{R} \cap M_1$:

$$\varphi(\mathbf{x}) \iff \mathbf{M}_1 \models \psi_{\varphi}(\mathbf{x}),$$

where $\psi_{\varphi}(x)$ is the Σ_3^1 formula asserting "there is a Π_2^1 -iterable $\varphi(x)$ -prewitness".

Definition 5.9 (Woodin).

Let φ be Π_3^1 and $x \in \mathbb{R}^{M_1}$. A $\varphi(x)$ -prewitness is a premouse *N* with $x, \delta \in N$ such that:

- $N \models \mathsf{ZF}^- + ``\delta$ is Woodin"
- $N \models$ "the extender algebra at δ forces $\varphi(x)$ ".

Theorem 5.10 (Woodin).

Let φ be Π_3^1 and $x \in \mathbb{R}^{M_1}$. Then TFAE:

- φ(**x**)
- There is a $\varphi(x)$ -prewitness $N \triangleleft M_1 | \omega_1^{M_1}$
- There is a Π_2^1 -iterable $\varphi(x)$ -prewitness $P \in \mathrm{HC}^{M_1}$.

We want, for Π_2 formulas φ , a Σ_2 formula ψ_{φ} such that:

$$\mathcal{J}(\mathbb{R}) \models \varphi(\mathbf{X}) \iff \mathcal{J}(\mathbb{R}^{M_{\mathrm{ld}}}) \models \psi_{\varphi}(\mathbf{X}).$$

 $\psi_{\varphi}(x)$ should say "there is a Π_1 -iterable $\varphi(x)$ -prewitness".

Remark 5.11.

- Π_1 -iterability is $\Pi_1^{\mathcal{J}(\mathbb{R})}$.
- M_{ld} is $\Sigma_1^{\mathcal{J}(\mathbb{R})}$ -correct.
- Every Π_1 -iterable premouse $P \in \mathrm{HC}^{M_{\mathrm{ld}}}$ is iterable.

Fix a Π_1 formula ρ , and $x \in \mathbb{R}^{M_{\text{Id}}}$.

There is a natural game $\mathscr{G}(\varrho, x)$, in which player 2 tries to prove that

$$\mathcal{J}(\mathbb{R}) \models \exists^{\mathbb{R}} w \ \varrho(x, w),$$

as follows:

- Player 1 plays arbitrary objects in $M_{\rm ld}$.
- Player 2 tries to build X, w by finite approximation, such that:
 - $X \preccurlyeq_1 M_{\mathrm{ld}}$,
 - X includes all elements played by player 1,
 - $w \in \mathbb{R}$ is extender algebra generic at each θ_n , while
 - for no n does

$$M_n^{\#}(\overline{M_{\mathrm{ld}}|\theta_n})[w]$$

verify $\neg \rho(x, w)$.

- The first *n* moves are within $M_n^{\#}(M_{\text{Id}}|\theta_n)$, and the game up to there is definable there.

Then:

- \mathscr{G}_{ϱ} is closed for player 2.
- If player 2 wins, then $\exists w \ \varrho(x, w)$.
- If player 1 wins, the rank analysis (in V) computes a winning strategy.
- $\mathscr{G}^{M_n^{\#}(M_{\text{Id}}|\theta_n)}(\varrho, x, n)$ denotes the restriction of $\mathscr{G}(\varrho, x)$ to first *n* moves.

Definition 5.12.

An <u>*n*-partial ladder</u> is a premouse N such that for some $\vec{\theta}$,

- $\vec{\theta} = \langle \theta_i \rangle_{i < n}$ is a strictly increasing (n + 1)-tuple of ordinals of N,
- θ_i is an *N*-cardinal for all $i \leq n$,
- θ_n^{+N} is the largest cardinal of *N*,
- N is closed under M[#]_k-operator, for each k < ω,

• θ_i is Woodin in $M_i^{\#}(N|\theta_i)$, and θ_i is the least such *N*-cardinal, for each $i \leq n$. Write $\vec{\theta}^N = \vec{\theta}$.

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$

where player 1' wins the following game $\mathscr{G}_{x}^{P_{0}}$:

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

0.1 Player 1' plays:

 $- P_0$

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

- 0.1 Player 1' plays:
 - P_0
- 0.2 Player 2' plays:
 - A correct tree \mathcal{T}_0 on P_0 , based on $P_0|\theta_0^{P_0}$; let $P'_0 = M_{\infty}^{\mathcal{T}_0}$ and $\theta'_0 = \theta_0^{P'_0}$,
 - a play σ_0 of $\mathscr{G}_{\rho,\chi_1}^{M_0^{\#}(P_0'|\theta_0')}$ of length 1, following rules, player 2 has not lost,

21/29

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

- 0.1 Player 1' plays:
 - P_0
- 0.2 Player 2' plays:
 - A correct tree \mathcal{T}_0 on P_0 , based on $P_0|\theta_0^{P_0}$; let $P'_0 = M_{\infty}^{\mathcal{T}_0}$ and $\theta'_0 = \theta_0^{P'_0}$,
 - a play σ_0 of $\mathscr{G}_{0,x,1}^{M_0^{\#}(P_0'|\theta_0')}$ of length 1, following rules, player 2 has not lost,
- 1.1 Player 1' plays:

- A 1-partial ladder P_1 such that $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$,

21/29

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

- 0.1 Player 1' plays:
 - $-P_0$
- 0.2 Player 2' plays:
 - A correct tree \mathcal{T}_0 on P_0 , based on $P_0|\theta_0^{P_0}$; let $P'_0 = M_{\infty}^{\mathcal{T}_0}$ and $\theta'_0 = \theta_0^{P'_0}$,
 - a play σ_0 of $\mathscr{G}_{0,x,1}^{M_0^{\#}(P_0'|\theta_0')}$ of length 1, following rules, player 2 has not lost,
- 1.1 Player 1' plays:

- A 1-partial ladder P_1 such that $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$,

- 1.2 Player 2' plays:
 - A correct tree \mathcal{T}_1 on P_1 which is above θ'_0 and based on $P_1|\theta_1$;

let
$$P'_1 = M^{\mathcal{T}_1}_{\infty}$$
 and $\theta'_1 = \theta^{P'_1}_1$,

- a play σ_1 of $\mathscr{G}_{\varrho,x,2}^{M_1^{\#}(P_1'|\theta_1')}$ of length 2, extending σ_0 , following rules, player 2 has not lost,

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

- 0.1 Player 1' plays:
 - P_0
- 0.2 Player 2' plays:
 - A correct tree \mathcal{T}_0 on P_0 , based on $P_0|\theta_0^{P_0}$; let $P'_0 = M_\infty^{\mathcal{T}_0}$ and $\theta'_0 = \theta_0^{P'_0}$,
 - a play σ_0 of $\mathscr{G}_{0,x,1}^{M_0^{\#}(P_0'|\theta_0')}$ of length 1, following rules, player 2 has not lost,
- 1.1 Player 1' plays:

- A 1-partial ladder P_1 such that $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$,

- 1.2 Player 2' plays:
 - A correct tree T_1 on P_1 which is above θ'_0 and based on $P_1|\theta_1$;

let
$$P'_1 = M^{\mathcal{T}_1}_{\infty}$$
 and $\theta'_1 = \theta^{P'_1}_1$,

- a play σ_1 of $\mathscr{G}_{\varrho,x,2}^{M_1^{rr}(P_1'|\theta_1')}$ of length 2, extending σ_0 , following rules, player 2 has not lost,
- 2.1 Player 1' plays:

- A 2-partial ladder P_2 such that $P'_1|(\theta'_1)^{+P'_1} \triangleleft P_2 \triangleleft P'_1$,

21/29

For a $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse P_0 with $x \in P_0$ where player 1' wins the following game $\mathscr{G}_x^{P_0}$:

- 0.1 Player 1' plays:
 - P_0
- 0.2 Player 2' plays:
 - A correct tree \mathcal{T}_0 on P_0 , based on $P_0|\theta_0^{P_0}$; let $P'_0 = M_\infty^{\mathcal{T}_0}$ and $\theta'_0 = \theta_0^{P'_0}$,
 - a play σ_0 of $\mathscr{G}_{a \times 1}^{M_0^{\#}(P_0'|\theta_0')}$ of length 1, following rules, player 2 has not lost,
- 1.1 Player 1' plays:

- A 1-partial ladder P_1 such that $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$,

- 1.2 Player 2' plays:
 - A correct tree T_1 on P_1 which is above θ'_0 and based on $P_1|\theta_1$;

let
$$P_1' = M_\infty^{\mathcal{T}_1}$$
 and $heta_1' = heta_1^{P_1'}$,

- a play σ_1 of $\mathscr{G}_{\varrho,x,2}^{M_1^{rr}(P_1'|\theta_1')}$ of length 2, extending σ_0 , following rules, player 2 has not lost,
- 2.1 Player 1' plays:

- A 2-partial ladder P_2 such that $P'_1|(\theta'_1)^{+P'_1} \triangleleft P_2 \triangleleft P'_1$,

2.2 , 3.1, ... etc...

The first player to break a rule loses; otherwise player 2' wins.

Write $M = M_{\text{ld}}$. For $i < \omega$ write θ_i^M for the *i*th "rung" of M, and $Q_i^M = M_i^{\#}(M|\theta_i^M)$.

Game \mathscr{G}^M , $K = M = M_{\text{ld}}$: Fix a recursive enumeration $\langle \psi_i \rangle_{i < \omega}$ of all formulas in the passive premouse language. Write \mathbb{B}_i = extender algebra of M at θ_i^M . In round $n < \omega$, player 1 first plays some $\vec{a}_n \in (M|\theta_n^M)^{<\omega}$, and then player 2 plays $\vec{b}_n, \vec{x}_n \in (M|\theta_n^M)^{<\omega}$ such that:

- 1. (Cofinality of X) $\vec{a}_n \cup \vec{b}_n \subseteq \vec{x}_n$, and if n > 0 then $\theta_{n-1}^K \in \vec{x}_n$.
- 2. (Σ_1 -elementarity of X): If n > 0 then for all i, j, k < n, letting $\vec{x}'_{\ell} = \vec{x}_{\ell} \cap M | \theta_i^K$, if

$$\boldsymbol{M}|\theta_{i}^{K}\models\exists z\;\psi_{j}(\vec{x}_{0}^{\prime},\ldots,\vec{x}_{k-1}^{\prime},z)$$

then there is some $x \in \vec{x}_n$ such that $M|\theta_i^K \models \psi_j(\vec{x}'_0, \dots, \vec{x}'_{k-1}, x)$.

3.
$$\vec{b}_n = \langle b_{ni} \rangle_{i < n}$$
 where $b_{ni} \in \mathbb{B}_i$ for each $i \leq n$.

- 4. If n > 0 then $b_{ni} \leq^{\mathbb{B}_i} b_{n-1,i}$ for each i < n.
- 5. For all $i \leq j \leq n$, (noting that $b_{ni} \in \mathbb{B}_j$) for each j < i and $b \in \mathbb{B}_j$, we have $b_{nj} \leq^{\mathbb{B}_j} b_{ni}$.
- 6. If n > 0 then for each $A \in \vec{x}_{n-1}$ and each i < n, if $A \in M | \theta_i^M$ is a maximal antichain of \mathbb{B}_i then there is $a \in A$ such that $b_{ni} \leq^{\mathbb{B}_i} a$.
- 7. For each $i \leq n$, there is no $W \triangleleft Q_i^M$ with $\theta_i^K < OR^W$ such that

 $Q_i^M \models b_{ni}$ forces "*W* is an above- θ_i^K , $\neg \psi(x, y_0, \dot{w})$ -prewitness",

where \dot{w} denotes the \mathbb{B}_i -generic real.

Definition 5.13.

Given a transitive swo'd $X \in HC$, an X-premouse N and $n < \omega$, we say that $(N, \theta_0, \ldots, \theta_n)$ is an <u>n-partial-potential-ladder</u> iff:

- $\theta_0 < \theta_1 < \ldots < \theta_n,$
- $-\theta_i$ is a cutpoint of *N*, for each $i \leq n$,
- $N \models \theta_i$ is a limit cardinal which is <u>not</u> Woodin and <u>not</u> measurable for each $i \le n$,
- $-\theta_n^{+N} < OR^N$ and θ_n^{+N} is the largest cardinal of *N*.

Definition 5.14.

Suppose $(N, \vec{\theta})$ is an *n*-partial-potential-ladder. Then $Q_i^{(N,\vec{\theta})} \leq N$ denotes the Q-structure for $N|\theta_i$, for $i \leq n$. Given $x, y_0 \in \mathbb{R}^N$ and a Π_1 formula $\psi(u, v, w)$, let

$$\mathscr{G}^{(N,\vec{\theta})} = \mathscr{G}^{(N,\vec{\theta})}_{\exists^{\mathbb{R}}\psi(x,y_0)}$$

denote the set of partial plays $\sigma = \left\langle (\vec{a}_i, \vec{b}_i, \vec{x}_i) \right\rangle_{i < n}$, relative to $\langle (\theta_i, Q_i) \rangle_{i < n}$ where $Q_i = Q_i^{(N,\vec{\theta})}$.

Definition 5.15.

Let $X \in \text{HC}$ be transitive swo'd, N be an X-premouse, $\vec{\theta}, \varrho \in N^{<\omega}$, $x, y_0 \in \mathbb{R}^N$, and $\Delta \in N$. Let $\psi(u, v, w)$ be a Π_1 formula. We say $(N, \vec{\theta}, \Delta)$ is a

 $(\forall^{\mathbb{R}} \neg \psi(\mathbf{x}, \mathbf{y}_0), \varrho)$ -prewitness

iff, letting $n = \ln(\varrho)$, then $(N, \vec{\theta})$ is an *n*-partial-potential-ladder, and letting

$$(N_n, \vec{\theta}_n, \varrho_n, \Delta_n) = (N, \vec{\theta}, \varrho, \Delta),$$

then $\rho \in \mathscr{G}_{\exists^{\mathbb{R}}\psi(x,y_0)}^{(N,\vec{\theta})}$ and Δ is a non-empty tree whose elements σ have form

$$\sigma = (\sigma_{n+1}, \ldots, \sigma_{n+k})$$

where $k < \omega$ and for $0 \le i \le k$, σ_{n+i} has form

$$\sigma_{n+i} = (N_{n+i}, \vec{\theta}_{n+i}, \varrho_{n+i}, \Delta_{n+i})$$

(so $\sigma_n = (N, \vec{\theta}, \varrho, \Delta)$, but σ_n is not actually an element of σ), and moreover, for each $\sigma \in \Delta$, with σ, k, σ_{n+i} as above, the following conditions hold...

1. If $\sigma \neq \emptyset$ then for every *i* < *k*, we have the following:

(a)
$$N_{n+i+1} \triangleleft N_{n+i}$$
,
(b) $(N_{n+i+1}, \vec{\theta}_{n+i+1})$ is an $(n + i + 1)$ -potential-partial-ladder,
(c) $\rho_1^{N_{n+i+1}} = \rho_{\omega}^{N_{n+i+1}} = \theta_{n+i}^{+N_{n+i}}$,
(d) $\vec{\theta}_{n+i+1} \upharpoonright (n + i + 1) = \vec{\theta}_{n+i}$,
(e) $\varrho_{n+i+1} \in \mathscr{G}_{\exists^{\mathbb{R}}\psi(x,y_0)}^{(N_{n+i+1},\vec{\theta}_{n+i+1})}$ (so $\ln(\varrho_{n+i+1}) = n + i + 1$),
(f) $\varrho_{n+i} = \varrho_{n+i+1} \upharpoonright (n + i)$,
(g) $\Delta_{n+i+1} \in N_{n+i+1}$ is a tree,
(h) $(\sigma_{n+i+2}, \dots, \sigma_{n+k}) \in \Delta_{n+i+1}$.
2. $\Delta_{n+k} = \{\tau \mid \sigma^{\uparrow} \tau \in \Delta\}$.

3. Letting $\theta_{n+k} = \max(\hat{\theta}_{n+k})$, there is $\vec{a} \in (N_{n+k}|\theta_{n+k})^{<\omega}$ such that for all $\vec{b}, \vec{x} \in (N_{n+k}|\theta_{n+k})^{<\omega}$ such that

$$\varrho' = \varrho_{n+k} \,\widehat{\langle (\vec{a}, \vec{b}, \vec{x}) \rangle} \in \mathscr{G}_{\exists^{\mathbb{R}}\psi(x, y_0)}^{(N_{n+k}, \vec{\theta}_{n+k})},$$

there is $\sigma' \in \Delta$ such that $\sigma' = \sigma \cap \left\langle (N', \vec{\theta'}, \varrho', \Delta') \right\rangle$ for some $N', \vec{\theta'}, \Delta'$. A $(\forall^{\mathbb{R}} \neg \psi(x, y_0))$ -prewitness is a $(\forall^{\mathbb{R}} \neg \psi(x, y_0), \emptyset)$ -prewitness.

Lemma 5.16.

Let $\varphi(x)$ be $\forall^{\mathbb{R}}\Sigma_1$, of form

$$\forall^{\mathbb{R}} \boldsymbol{w} \neg \varrho(\boldsymbol{w}, \boldsymbol{x})$$

where ρ is Π_1 . Let $x \in \mathbb{R}^{M_{ld}}$. TFAE:

- (i) $\mathcal{J}(\mathbb{R}) \models \varphi(\mathbf{X})$
- (ii) Player 1 wins $\mathscr{G}_{\varrho,x}$
- (iii) there is a $\varphi(x)$ -prewitness (P_0, Δ) with $P_0 \triangleleft M_{\text{ld}} \mid \omega_1^{M_{\text{ld}}}$.
- (iv) there is a $\varphi(x)$ -prewitness $(P_0, \Delta) \in \mathrm{HC}^{M_{\mathrm{Id}}}$ with $\mathcal{J}(\mathbb{R}^{M_{\mathrm{Id}}}) \models "P_0$ is Π_1 -iterable".

End of weak gap

Example: $[\alpha, \beta]$ is weak, and for $P_g(x)$ the corresponding mouse on a cone of x,

$$\omega = \rho_1^{P_{g}(x)} < \lambda^{P_{g}(x)} < \mathrm{OR}^{P_{g}(x)},$$

 $\lambda^{P} \notin p_{1}^{P_{g}(x)}, (\lambda^{P})^{+P} < OR^{P}, \text{ and } \Sigma_{1}^{\mathcal{J}_{\beta}(\mathbb{R})} \text{ is } \mu\text{-reflecting.(see [4]).}$

Definition 5.17.

For an X-premouse R, say that R is relevant if there is $\delta = \delta_0^R < OR^R$ such that:

- $R \models \delta$ is the least Woodin > rank(X)",
- $-R = P_{g}(R|\delta),$
- $R|\delta$ is P_{g} -closed.

Definition 5.18.

For relevant *R*, let:

$$-\langle \alpha_n^R \rangle_{n < \omega}$$
 be the canonical ω -sequence cofinal in OR^R,

$$- \gamma_n^{R} = \sup(\delta_0^{R} \cap \operatorname{Hull}_1^{R|\alpha_n^{R}}(X \cup \{p_1^{R}\})$$

$$- t_n^R = \mathsf{Th}_1^{R|\alpha_n^R}(X \cup \gamma_n^R \cup \{p_1^R\}).$$

Definition 5.19 (Ladder mouse at end of weak gap).

For a cone of y, $M_{\text{Id}}^{\beta}(y)$ is the least relevant y-mouse N such that letting $\delta = \delta_0^N$, for each $n < \omega$, there is a relevant $R \triangleleft N | \delta$ with $t_n^R = t_n^N$ (after substituting p_1^R for p_1^N).

John R. Steel.

A theorem of Woodin on mouse sets.

In Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors, <u>Ordinal Definability and Recursion Theory: The Cabal Seminar,</u> <u>Volume III</u>, pages 243–256. Cambridge University Press, 2016. Cambridge Books Online. Preprint available at author's website.

Mitch Rudominer.

The mouse set theorem just past projective. Journal of Mathematical Logic, page 2450014.

Farmer Schlutzenberg. Ladder mice. arXiv:2406.06289.

Farmer Schlutzenberg and John Steel. Σ₁ gaps as derived models and correctness of mice. arXiv:2307.08856, 2023.

John R. Steel. Scales in L(R). In Cabal seminar 79–81, volume 1019 of Lecture Notes in Math., pages 107–156. Springer, Berlin, 1983.