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DEFINITION 2.1. For any Z, meas,(Z) is the set of all k-additive measures
on Z<“. We let meas(Z) = meas,, (Z).

Clearly. if # € meas(Z). then there is exactly one n < w such that u(Z") =
1. We call n the dimension of u. and write n = dim(u).
If u.v € meas(Z), then we say that u projects to v iff for some m < n < w.
dim(u) = n. dim(v) = m. and forall 4 C Z™
v(Ad)=u{u|ulme A4}).
We say 1 and v are compatible if one projects to the other. If x4 projects to v,
then there is a natural embedding
7y Ult(Vv) — Ult(V u)

given by 7([f],) = [f*]u. where f*(u) = f(u | m) forallu € Z".

A tower of measures on Z is a sequence (u, | n < k), where k < w. such
that each u, € meas(Z), and whenever m < n < k. then dim(w,) = n and u,
projects to u,,. If (1, | n < w) is an infinite tower of measures, then

Ult(V. (un | n < w)) = dir lim,, <, UIt(V, u,).

where the direct limit is taken using the natural embeddings 7, ,,. which
commute with one another!. We say that the tower (u, | n < ) is countably
complete just in case whenever My(A4,) = 1 for all n < . then 3 f V n
(f | n e A,). Itis easy to show that (u, | n < ) is countably complete if
and only if Ult(V (i, | n < w)) is wellfounded, and so we shall say that a
tower is wellfounded just in case it is countably complete.

DEFINITION 2.2. A homogeneity system over Y with support Z is a function
fi: Y<? — meas(Z)

such that, writing u; = fi(s). we have that forall 5.7 € Y<¢,

1. dim(u,) = dom(¢). and
2. 5 Ct = u, projects to u;.

If ran(iz) C meas,(Z). then we say that i is k-complete.

DeriNITION 2.3. If &2 1s a homogeneity system over Y with support Z. then
foreach x € Y | we let /7 be the tower of measures (u,, | n < w), and set

Sz ={x € Y® | i, is countably complete}.

DEFINITION 2.4. Let 4 C Y : then 4 is k-homogeneous iff A = Sj. for
some k-complete homogeneity system ji. We say A is homogeneous if it is
k-homogeneous for some «.



DEFINITION 2.8. A weak homogeneity system over Y with support Z is an
injective function i: Y <“ — meas(Z) such that for all s € Y <¢

1. dim(u,) < dom(s). and
2. if u, projects to v, then Ji(uy; = v).

DEFINITION 2.9. If ji is a (k-complete) weak homogeneity system over Y,
then we set

W= {x €Y | Wik | k < ) €0 (s, | k < o)
1s a wellfounded tower) }

and say that W is (k-)weakly homogeneous via fi.

So a weak homogeneity system over Y associates continuously to each
x € Y a countable tree of towers of measures, and x is in the set being

represented iff at least one of the branches of this tree is a wellfounded tower?.

DEFINITION 2.15. Let T on X x Y and U on X x Z be two trees; then we
say T and U are k-absolute complements ift whenever G is < k-generic over V

VIGT | pIT] = X*\ p[U].

We say T is k-absolutely complemented iff 3U (T and U are rk-absolute
complements).

If p[T]1N p[U] = 0in V', then the same is true in any generic extension of V'
by the absoluteness of wellfoundedness. We shall use this simple observation
again and again. What absolute complementation adds is that 7 and U are
sufficiently “fat” that in the relevant V'[G], we have p[T|U p[U] = X®.

DEFINITION 2.16. (1) A set A C X? is k-universally Baire, or k-absolutely
Suslin iff A = p[T] for some k-absolutely complemented 7.
(2) UB, ={4 C ®w“ | Ais k-universally Baire}.
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Recall that for any Z, X and any ordinal v, meas,(Z) denotes the set of all
v-additive measures on Z<“. We write i = (us | s € X<¥) for a y-complete
homogeneity system over X with support Z if for each s € X<, u € meas,(Z).
For details on the definition of homogeneity systems we refer the reader to [22].

Definition 2.1. A set A C X“ is y-homogeneously Suslin if there is a v-complete
homogeneity system i = (us | s € X<“) and a treeMb that A = p[T] and, for
all s € X< us(Ts) = 1. In particular, o X

A=85;=qep {v € XY| (ftan | n < w) is well-founded}.
Here Ty = {t [(s,€) € T'}. We write ¢,

Hom, = {A C X¥ | A is y-homogeneously Suslin}

and

Hom., = ﬂ Hom,, .
v<n
For n a limit of Woodin cardinals and H C Col(w, <n) generic over V, write
H | o= HNCol(w, <a). As usual, let

R*=Rj = | JRNVI[H | a].

a<n

[ , write
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U "/ i V/uTS o YOHN)

a<pB<n

Moreover, for any o« < n and A € Hom_ VD

and
Hom* = {A* | 3a < n A € (Hom.,)VH!},
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THEOREM 7.1 (Derived model theorem, Woodin). Let 4 be a limit of Woodin
cardinals, and L(R*, Hom™) be a derived model at 1; then

(1) L(R*,Hom") |= AD",
(2) Hom"* = {4 C R* | 4 is Suslin and co-Suslin in L(R*, Hom")}.

AD™ is the theory AD + DCgr + Ordinal Determinacy + “all sets of reals
are co-Borel”. These are local consequences of scales®.
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Before proving Lemma 7.4, let us use it to complete the proof of the de-
rived model theorem. So let G be Col(w. < A)-generic over V', where A is a
limit of Woodins, and R* = Ry, and Hom"™ = Homg. We show first that
L(R*,Hom") = AD. For if not, thereisa B € L(R*, Hom") such that

(HC*. €. B) = the game with payoff B is not determined.
By Lemma 7.4, we can find B € Hom ; such that
(HC. €. B) |= the game with payoff B is not determined.

. . . The first and most important fact about homogeneously Suslin sets is
b
This contradicts Martin’s Theorem 2.7. THEOREM 2.7 (Martin [4], essentially). If A C Y is | Y|*-homogeneous,

then the two-person game of perfect information on Y with payoff set A is
determined.
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The remaining axioms of AD™" are true in L(R*, Hom™) for similar reasons.
In each case the axiom can be expressed in the form “VB C R(HC, €, B) |=
¢”. and there are no Hom_; sets B such that (HC".€.B) |= ¢. For the
axiom DCgr both parts are obvious. The other two axioms have the form
VB C RJC C OR..., but using the Coding Lemma the quantifier on C
can be reduced to a real quantifier over the field of a prewellorder which is
projective in B. For Ordinal Determinacy, this is obvious, but for the assertion
that B has an infinity-Borel code C, we need a preliminary argument which
bounds the least size of such a code by some ordinal projective in B. This
can be done!'’. Finally, the fact that there are no Hom.; counterexamples
B to Ordinal Determinacy or the assertion that every set of reals 1s co-Borel
follows from the fact that every Hom_; set has a Hom_ scale, together with
Hom. ;- determinacy'!.

To see that all Hom™ sets are Suslin in L(R*, Hom"), fix C in Hom™. We
then have 4 € HomZ/[G ] forsomea < A, suchthat C = 4*. By Theorem 5.3

there is B € Homzl[«tc '] which codes a scale on A. This fact can be expressed
using only real quantifiers, and thus by Lemma 7.3, B* codes a scale on 4™
in L(R*, Hom"). so C is Suslin in L(R*, Hom"), as desired. Since Hom" is
closed under complement, all Hom™ sets are co-Suslin in L(R*, Hom™).

Conversely, suppose A4 is Suslin and co-Suslin in L(R*, Hom*), and let
T and U be the trees which witness this. We can fix a set C € Hom"
such that 7" and U are ordinal definable over L(R*, Hom™) from C. (Every
set in L(R*, Hom") has this form.) We then have W € V[G | «a]. where
a < 4, such that C = p[W] N R*. It follows that 7 and U are definable
in V[G] from the parameter R* and parameters in V[G | a]. But V[G] =
V[G | a][H] where H is generic for Col(w, < A). and there is a term 7 such
that 7y = R* and Col(w. < ) is homogeneous with respect to 7. in that
Vp.q3n(r is an automorphism of Col(w. < 1) and z(p) is compatible with
g and nt = 7). Since T and U are subsets of V[G | «]. we have that
T.U € V[G | a]. Butnow T and U project to complements over R*, and
hence in any V[G | f] for f < A. Since the collapse forcing is universal,
this implies that 7" and U are < A-absolute complements in V[G | a]. Thus
p[T] € Hom", as desired. This completes the proof of the derived model
theorem, modulo Lemma 7.4.
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THEOREM 5.3 (Steel). Let A be alimit of Woodin cardinals: then every Hom,;
set has a Hom_ scale.

Let us say that an iteration tree 7 is 2*- closed iff for all a, MZ = “ Ult(V, ET) is closed

under 2“-sequences”. We say that 7 is above pu if crit(Eg)> i for all a. The following
lemma is essentially due to K. Windszus. (See [1].)

Lemma 1.1 Let m: M — Vjy be elementary, where M 1is countable and transitive and let
e M. Put

W = {T|T is a2¥-closed iteration tree
on M of length w + 1, T is above
and M™T is wellfounded}

Then W is 7(p)-homogeneously Suslin.
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We will need the following slight generalization of flipping functions, see [21,
Lemma 2.1]. As usual, if Y C meas, (Z) for some v and Z, we write TWy for the
set of all towers of measures i = (; | ¢ < w) such that p; € Y for each i < w.

Lemma 2.5. Let § be a Woodin cardinal and let Y C meass+(Z) be such that
Y| < 3. Then for any v < 0, there is some Z' and R C meas,(Z') as well as a
Lipschitz function

f: TWy - TWpg
such that

(1) f is 1-to-1, and
(2) for all <vy-generics G and all ji € (TWy)VIE],
i is well-founded < f(ji) is ill-founded.

Here recall that a function f: TWy — TWg is Lipschitz if the value of f(i) [ n
is determined by i [ n, for all i and n. Moreover, since the size of the forcing is
small, f induces a map f: (TWy )VI¢ — (TWg)VIE,
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The central tool that we will use from coarse inner model theory, besides general
iterability results as in [8], is Neeman’s genericity iteration. We recall the statement
here for the reader’s convenience.

Definition 2.3 (Neeman, [11]). Let M be a model of ZFC, x a real, and P € M a
partial order. An iteration tree 7 on M is said to absorb x to an extension by an
image of P if for every well-founded cofinal branch b through 7, there is a generic
extension M, [g] of M/, the final model along b, by the partial order j{ »(P) so

that z € M [g].

Theorem 2.4 (Neeman, [10, 11]). Let M be a model of ZFC, let § be a Woodin
cardinal in M such that e (8) is countable in V. Then for every real x there is an
iteration tree T of length w on M which absorbs x into an extension by an image

of Col(w, d).
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Proof. We may as well assume A € Homg/\. Fl (‘%’» %V\d gé L(’@ H‘D/‘A?\)
Claim 1. For some B € L(RY,Hom} ), (HC, €, 4, B) = ¢. ‘

Proof. Fix a < A- absolutely complemented pair (S,U) such that A = p[S]. Let

T M — Vp,

where 6 is sufficiently large and M is countable transitive, with 7((S,U,\) = (S,U,\).

Working in VC"I(“’*R)7 ‘we can use the genericity iterations of [4] to form an R-genericity (]/R'_ (/L
iteration of M, below A, that is, a sequence ' .
¢
[=(T,|n<w) A«){(DL WL/

such that the 7,, are length w + 1 iteration trees whose composition

Fix o ZFAASL(LC el oL
T = a.T, e o8) Oﬁﬂ{v (E)w&t |~‘—wa“\“]:

via SM e

is a normal iteration tree on M, with
M, = lim,M,,

the direct limit along the main branch of 7 (where M, is the base model of 7,,, and the last \/9
model of 7,,_; if n > 0), being such that R" is the reals of a symmetric collapse over M,
below ), the image of X. Let

Ing: My — M

be the canonical embedding, for 0 < n < k < w, and A = ipx(Xo). We write
@;\“%
Homj = U{p[T] NRY | 31‘36 RY(M, = T is < )\, absolutely complemented)},
R

so that L(RY, Homj) is a derived model of M, at A, whose set of reals is R* = RY. Because
our individual genericity iterations 7, have length w + 1, M is iterable enough that we can
do them, realizing the M,, and M., in Vj in the process. Thus we have realizing maps

o My, — Vp,
for all k£ < w, such that
0, = 0} © in,k‘
whenever n < k < w. (09 = w.) Finally, we arrange that there is an increasing sequence W 9
ordinals J,, k < w, with sup A, such that '

0p < (’,I'it(l'kyw) s

together with Mj-generic objects gx for Col(w, dx), such that
V= RN Mg,
k<w

and g € AIn[gn] if k <n. If k <n <w, then i, lifts to an embedding
7;lc,n: ]\[k[gk] - ]Mn[gk]?

moreover, RY =, _,, M[gi]-

Since a,, 0 iy, ((S,U)) = (S,U), we easily get that RY N p[ig,(S]) = A. Written another
way, i()_w(A)* = A. The claim will then follow from the elementarity of i, provided we can
show Hom is a Wadge initial segment of Hom",. Since Homj is closed downward under
Wadge reduction, it suffices to show:

Subclaim 1.1. Homj C Hom‘é)‘
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Let us write Hom = HomZA, and Hom [ « for the collection of sets in Hom having %
Wadge rank < «. By Claim 1, we have a lexicographically least pair (a, S)jsuch that m\l\/&m 7L® 82/

there is a B € Lg(Hom | «) such that (HC, €, 4, B) = ¢xLet {(ag, fpe this pair. Let
C € Hom [ ag be such that some such B is ordinal definable\over Lg, (Hom [ «) from the
parameter (A, C‘ oWe can eliminate the need for the ordinals by minimizing them, and as a TD e \%V\A Lf\
result we can fix B such that (HC, €, A, B) |= ¢, and a formula ¥ such that

z € B& Lg,(Hom | ap) =z, (A, C)). %)r‘f’ witn. orclinel
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Theorem 1.10. Let k be a supercompact cardinal and suppose there is a proper
class of Woodin cardinals. Let g C Col(w,2") be V-generic, h be V[g]-generic and
k C Col(w,2¥) be V[g = h|-generic. Then, in Vg h x k|, thereis j : V — M
such that j(k) = wl\/[g*h] and L(v8,,;,Rgsn) is a derived model of M, i.e., for some
M-generic G C Col(w, <w, #*"y,

L(“‘Bg*ha IRg:kh) e (L(Hom*, R*))M[G] :
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Definition 4.1. Let (ﬂg))Kw be a sequence of homogeneity systems for homoge-
neously Suslin sets in V[g| with measures induced by V-measures and let fi, fo, fo, f1 €

/
I\

V' be functions on towers of measures as above. Then a ((ﬂg))i@,, f1, Fos P2, fl)-
block for V[g| at k is a sequence

(M, M;, 3, 9; | i < w)

of models M; and M; as well as M;-generics g; together with elementary embeddings

mis M; — VX
such that for all i < w,
(1) M; = M;g;] is countable in V[g], : %1‘/3 /HNL
(2) i € Vigl M‘V\ Tl M" Lo
: oz A
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Dekails of S setup

Let g be Col(w,2%)-generic over V. Fix some set-sized partial order P and

some P-generic h over V[g]. Our aim in this section is to find a model M and an

elementary embedding j: V' — M such that wY 9*h] i3 a limit of Woodin cardinals

in M and
L( ﬁhv IRg*h) = L(HOIH*, R*)A’][G]’

where G is Col(w, <w¥ lo *h])—generic over M. To obtain the desired M and j we

will first obtain L(I‘;fk o Rgin) as a derived model of a model My, where Mg is an
iterate of a small substructure of V', see Corollary 4.14 at the end of this section.
Theorem 1.10 will be an immediate consequence of the proof of Corollary 4.14.

For notational simplicity, we assume that P is trivial and omit A from the argu-
ment in most of what follows. The more general case works similarly and we will
use P at certain places in the argument below to indicate where some care is needed
for the general argument.

Let g’ be Col(w, I'}®)-generic over V[g] and let (4; | i < w) be an enumeration of

[ in Vg * ¢g']. Moreover, let (z; | i < w) be an enumeration of RV, Let 6o > &
be a Woodin cardinal such that P € Vj, (in case [P is not trivial). Moreover, let

H<50<(51<(52<63<64<(55<(56

be such that §;, 0 <1 < 6, are Woodin cardinals.

As there is a proper class of Woodin cardinals, each A; is homogeneously Suslin
in V[g]. In what follows we identify measures in V[g] with their restrictions to
V-measures when the measures are above the size of g. Let W5 € Vj, be a set of
measures with Wy C meas + (Z2) such that for each ¢ < w we can fix a homogeneity

system ﬂg) = (ugi) | s € w<®) such that for each s € w<«, u{") € Wy, and
Ai={z ew” | (/'L:(vi[)n | n < w) is well-founded}.

We can arrange that W5 is of size < dg.
By Lemma 2.5, there is some W; C measazr(Zl), Wy € Vs,, as well as a 1-to-1
Lipschitz function
fi: TWy, - TWy,
in V such that for all <§; -generics G over V[g] and all ji € (TWy, )" 9IC]]
i is well-founded <= f;(f) is ill-founded.

Then we have by Lemma 2.5 again that there is some Wy C measg+(Zy), Wy € Vs,,
1
as well as a 1-to-1 Lipschitz function

fO: TWW1 - TWW()
in V such that for all <§; -generics G over V[g] and all ji € (TWyy,)"9C],
fi is well-founded <= fo(f7) is ill-founded.

Moreover, there is some Wy C meas; + (Zg), Wy € Vs, with a 1-to-1 Lipschitz
C
function

far TWw, = TWy,
in V such that for all <dg -generics G over V[g] and all ji € (TWyy,)V19IE]]
fi is well-founded <= f5(j7) is ill-founded
as well as some Wl - 1nea5|p|+(21), Wl € Vs, with a 1-to-1 Lipschitz function
fii TWyp, — TWy,
in V such that for all <|P|*-generics G over V[g] and all /i € (TW%)V[Q] [,
fi is well-founded <= f, (i) is ill-founded.

Using these flipping functions! we let ﬁgi) =f1” ﬁg) and ﬁ(()i) = fo ”ﬁgi) as well
as [/2’(2) = fo ”ﬂgl) and ,E'l’(z) = fi ”ﬂ;’(z) for each ¢ < w. Figure 1 illustrates the
situation.
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But recall that we are not assuming any iterability of V. So in order to ensure ;EX)

J \%
that we can keep iterating we prove that there are realizations of each iterate into /
a large model. Let Vx
j: V=V
be a x-supercompact embedding with critical point k. So (V*)X C V* and j(k) > x. - : o1
In particular, V;, C V* and g is generic over V*. Note that j o m; € V*[g] for all Lo o0
i < w as V*[g] is closed under countable sequences in V[g]. Write o M
1
My

Ui:jOWiZMi—)V;k(X)

for all i < w. Then the sequence (Mz, M;,0i,9; | i <w) forms a weak block, defined
as follows:

Definition 4.2. Let (7(9);.,, be a sequence of homogeneity systems in V*[g] and
let f5, f&, fa, fr € V* be functions on towers of measures. Then a (7)<, i, f&, fa, f1)-
weak block for V*[g] at k is a sequence

(M;, My, 04,9: | i < w)

of models M; and M; as well as M;-generics g; together with elementary embeddings
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Lemma 4.3. For each i < w, j”ﬂgi) gives rise to a homogeneity system for A; in

V*[g].

Ty

U " s &WM
a%\: W 20 ugggﬁ f&‘(ph«j WWS,
com W sealiZ wdp \/ﬂw 2
The wedlete H; and Agir teoime are hals of VYt e concible i \/VQ]W

6= GVMES) 0S C\/”)rxé\fg, So ve caw tn dhe

Note: Twis
4 oot
m‘:}‘u‘aﬁ . - VA %V&[)mm
Kfm‘% Horbin ~Steet. dmlotlity Provt, reiey < j
A ctinet; oz M chadion Co\o;‘eﬂ( o V¥ will ke aboe K (os JUI7H, 50 S (k) 7K for all iz )

eVl v (Wev.



4.1. Making a real generic over a weak block. Let 7y be the iteration tree

I/T/Q’ on M; resulting from making = generic below 0, according to Neeman’s genericity
L5 7 iteration (see Theorem 2.4) followed by a realizable branch (into V[, ). Such a re-
o _ i ! alizable branch exists by [8] as the iteration tree resulting from Neeman’s genericity
L iteration is countable in V[g]. Write ¢: M7 — Vj*(x) for the realization. We may
and will assume that the critical points of all extenders used in 7o are > (&, )M
T IP)

4.2. Making a homogeneity system generic over a weak block. Let 77 be
the iteration tree on M7° resulting from making iz, | VSJZW generic below i, (03)
according to Neeman’s genericity iteration (see Theorem 2.4) followed by a realiz-
able branch (into Vj?x))' Note that iz, | VSJK can be coded as a real in V[g]. As
above, a realizable branch exists by [8] as the iteration tree resulting from Neeman’s

genericity iteration is countable in V[g]. Let .*: M* — J(x) be the realization, so,

in particular, t* o7 = ;. We may and will assume that 77 is acting above 27—0(52).
Let
Vo = i1, (P0)-
Figure 4 summarizes the genericity iterations.
Write 7 = iy 0 i75: M — M* and let g* be Col(w, 7(d3))-generic over M* with
g* € Vlg]. Then (z,75) € M*[g*]. As 7(fo) and 7(f1) are 1-to-1, we can let

v = (r(fo)) "' "5
and

vy = (r(f1)) "o

Then v}, 75 € M*[g*]. This is why we call this step “making a homogeneity system
generic” even though the actual object that is made generic is iz, | VM

62
Let W* = 7(W;) for i € {0,1,2}. We have 1/1 = (1(fo)) 17 (i, " () =
(7(f0))~1 7 (77 () as g is below d5 and hence i1, " (#) is below the critical point
of i7;. Hence, as vy = fo o, vy = 77v;. Similarly, v = 770p. Moreover, as
(fl) fi as well as 770 = vy and 770 = ¥}, we have vy = 7(f}) "} and

/’7—

vy = f1 704 and hence 4, 7y € M*[g*].
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Lemma 4.4. Let v > 7(03) be a cardinal in M* with v < 7(84) and let h* be
Col(w,y)-generic over M*[g*] with h* € V]g]. Then for any uw € M*[g* * h*] N Ry,

u€ A<= ((3)uin | n < w) is well-founded <= (U7 )uin | n < w) is ill-founded.

Note that M*[g* * h*] is in V[g], so it makes sense to write “u € A” in the
statement of Lemma 4.4.

Proof of Lemma 4.4. The second equivalence easily follows from the facts that vy =
7(f1) " (73) and 7(f1) is a flipping function for towers of measures in M*[g*xh*]. For

the first equivalence, recall that o U {f], fi} C rng(o;) and hence fio U {f], fi} C

rng(¢*). Moreover, i1 C rng(o;) as well as iy C rng(¢*). Note that

()" (f2)un) | n < w) is ill-founded = (*((¢*) " ((fA2)utn)) | n < w) is ill-founded
<  ((#2)utn | n < w) is ill-founded.

Therefore, using the fact that (:*)~(f}) is a flipping function for towers of
measures in M*[g* x h*], we have

ueA <= ((2)un | n <w) is well-founded

()" (fi2)urn) | n < w) is well-founded

() THDAE) M ((B2)urn)) | n < w) s ill-founded

(oo, Ut oo, )((fiz)urn)) | n < w) is ill-founded
F)(T(72)un) | 7 < w) is ill-founded

T((71)upn) | n < w) is ill-founded
it

(T(72)w

rrerny

~—

utn | M < w) is ill-founded.

Moreover,

S
R
BN

f2)uin | n < w) is ill-founded

*

) (1) urn) | n < w) is well-founded
o0

B

(
(fi1)utn | n < w) is well-founded
(
(

(1) un) | 0 < w) is well-founded
T((I/l)um) | n < w) is well-founded

(
(
(
(
(
(

(U7 )uin | » < w) is well-founded.
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Our next goal is to extend the characterization in Lemma 4.4 to an ultrapower
of M* by a short extender F € M*. The key issue for this goal is that we aim for
such an extension with systems of measures that are <m}f . (k)-complete, even if
M (k) > 7(6). Here 7" : M* — Ult(M*, E) denotes the ultrapower embedding.
To achieve the goal, we will use uB-preserving extenders (see Definition 3.1).



