ndra Hüller, June 28,2025 Trauslating between large cardinals 16087, 1498. Sandra Hüller, June 28,2025 and iteration strategies When I was an undergraduate student in Münster I was intrested in attending Ralf's set theory seminar. I was late signing up because I thought I am missing some of the prerequisits for the class. So I went to his office asking whether it would still be possible to atkind. Ralf said sure and asked Do you want an easy topic or an intresting topic? I picked the intresting one and presented Martin's proof of Borel determinacy. In the following semester 1 attended the seminar again and presented the proof of analytic determinacy from sharps. This was when I fell in Bre with large cardinals and determinacy and my journey into inner model theory and PhD studies with Ralf storted.

X[#] ex. for every xew Martin Marti Large Cardinals analytic determinace Muttin, Steel, Muttin, Meenan, Zintin, Meenan, Zintin, Muttin, Meenan, Zintin, Xintin, (my PD thesis) $\Rightarrow AD^{LOR} + R^{\#}exists$ Martin, Steel, Woodin Mis exists C Woodin AD++ all sets of reals are Sustin (building on work of (building on work of (building) ADR a livrit 2 of Woodin cardinals & F 22 - Strong cardinals Lasson, Sargsyan, Wilson AD + all set of reals are universally Baire a limit of Woodin cardinals and strong cardinals Μ Key tool : Procedures to translate iteration strategies (of hybrid nice) into strong cosolinals.

Translation

procedures

Idea: Translate hybrid mice into ordinary mice while preserving their descriptive set theoretic complexity. . Steel ("Derived models associated to mice", 2008)

In [25], Steel develops a translation procedure that can be used to prove Woodin's result that

 $ZF + AD^+ + \theta_0 < \Theta$

is equiconsistent with

ZFC + there is a pair of cardinals κ, λ such that

 λ is a limit of Woodin cardinals and κ is $\langle \lambda$ -strong.

Steel's translation procedure in [25] originates from work of Closson, Neeman, and Steel and was later extended by Zhu in [33]. Steel's and Zhu's constructions use AD^+ theory and work in a specific hod mouse, more specifially, they use a real parameter for the translation. Therefore, their constructions have the disadvantage that the translation cannot be done in HOD itself but only in HOD of a real.

· Sargsyan ("Translation procedures in descriptive inner model theory", 2017)

THEOREM 2.8. Suppose \mathcal{K} is a translatable structure. Then, in \mathcal{K} , there is a proper class premouse \mathcal{M} such that \mathcal{M} has a proper class of Woodin cardinals and a strong cardinal.

QUESTION 3.1 (Wilson). Assume there are proper class of Woodin cardinals. Suppose the class

 $S = \{\lambda : \lambda \text{ is a limit of Woodin cardinals and the derived model at } \lambda \text{ satisfies } AD^+ + \theta_0 < \Theta\}$

is stationary. Is there a transitive model \mathcal{M} satisfying ZFC such that $Ord \subseteq \mathcal{M}$ and \mathcal{M} has a proper class of Woodin cardinals and a strong cardinal?

We show that the answer is yes.

THEOREM 3.2. Suppose there are proper class of Woodin cardinals. Assume further that the class S above is stationary. Then there is a transitive model \mathcal{M} satisfying ZFC such that $Ord \subseteq \mathcal{M}$ and \mathcal{M} has a proper class of Woodin cardinals and a strong cardinal.

-> Not clear how to generalize his method to infinitely many strongs -> Sorgsyan's model M is not iterable

How do we translate into infinitely many strong cardinals? Start with a sufficiently **Definition 3.20.** Let \mathcal{W} be a proper class hybrid strategy premouse in the sense nice hybrid mouse W (higidly of [13, Chapter 1]. Then \mathcal{W} is a translatable structure iff there is a sequence of ordinals $(\delta_i \mid i < \omega)$ such that \mathcal{W} satisfies the following conditions. (1) $\mathcal{W} \models$ " δ_i is a Woodin cardinal and a cutpoint for every $i < \omega$ and these are the only Woodin cardinals". layored as in Grigor's thesis). (2) In \mathcal{W} , let $\mathcal{P}^0 = Lp^{\infty}_{\omega}(\mathcal{W}|\delta_0)$ and $\mathcal{P}^i = Lp^{\Sigma_{i-1},\infty}_{\omega}(\mathcal{W}|\delta_i)$ for i > 0, where Σ_i denotes the strategy for \mathcal{P}^i . Then \mathcal{P}^0 is suitable at κ_0 and \mathcal{P}^i is Σ_{i-1} suitable at κ_i for every i > 0. (3) Σ_i is a super fullness preserving iteration strategy for \mathcal{P}^i with hull conden-Si, icw, Woodin cardinals sation such that $\mathcal W$ is generically closed under Σ_i and there is a set of term relations $\vec{\tau}^{(i)} \subseteq \mathcal{P}^i$ such that whenever g is $\operatorname{Col}(\omega, \mathcal{P}^i)$ -generic over \mathcal{W} and $(\tau_k^{(i)} \mid k < \omega)$ is a generic enumeration of $\vec{\tau}^{(i)}$ in $\mathcal{W}[g]$, then $(\Sigma_i)^g$ is strongly guided by $(\tau_k^{(i)} \mid k < \omega)$. Ki, izw, the least 2 Siti (4) W is internally (Ord, Ord)-iterable. (5) $\mathcal{W} \vDash$ "there is no inner model with a superstrong cardinal".¹² (6) Let δ_{ω} be the limit of δ_i , $i < \omega$. Let G be $\operatorname{Col}(\omega, <\delta_{\omega})$ -generic over \mathcal{W} Strong Cardinal (in W and in what we have already constructed and let M be the derived model computed in $\mathcal{W}(\mathbb{R}^*)$. Let $\Phi = (\Sigma^{\mathcal{W}})^G \upharpoonright$ HC^{M} for $\Sigma^{\mathcal{W}} = \bigoplus_{i < \omega} \Sigma_{i}$. Then $\Phi \in M$ and in M, $Lp^{\infty}_{\omega}(\mathcal{W}|\delta_{i})$ is a κ_{i} -suitable \emptyset -iterable Φ -premouse (cf. [14, Definition 2.7] for the definition of Ø-iterability). Fully backgrdd construction **Definition 4.3.** Let \mathcal{W} be a translatable structure with Woodin cardinals ($\delta_i \mid i <$ ω). Let $(\kappa_i \mid i < \omega)$ be a sequence of cardinals such that for each $i < \omega, \kappa_i$ is the least $\langle \delta_{i+1}$ -strong cardinal above δ_i in \mathcal{W} . We say $(\mathcal{M}_{\xi}, \mathcal{N}_{\xi} \mid \xi \leq \Xi)$ is the mouse construction (or short \mathcal{M} -construction) in \mathcal{W} for $\Xi \leq$ Ord if it is given inductively but add in addition as follows (1) \mathcal{N}_0 is the result of a fully backgrounded extender construction in $\mathcal{W}|\delta_1$. (2) For $\xi + 1 < \Xi$, if $\mathcal{M}_{\xi} = (J_{\alpha}^{\vec{E}}, \in, \vec{E}, \emptyset)$ is a passive premouse, we define $\mathcal{N}_{\xi+1}$ as follows. generically Ably complete (a) If there is an extender F^* on the sequence of $\mathcal W$ and an extender F over \mathcal{M}_{ξ} , both with critical point $\kappa \notin \{\kappa_i \mid i < \omega\}$,¹⁴ such that $(J_{\alpha}^{\vec{E}}, \in, \vec{E}, F)$ is a premouse and for some $\nu < \alpha, V_{\nu+\omega}^{\mathcal{W}} \subseteq \text{Ult}(\mathcal{W}, F^*)$ and Cextenders with crit.pt. Ki $F \upharpoonright \nu = F^* \cap ([\nu]^{<\omega} \times J_{\alpha}^{\vec{E}}),$ we let 15 $\mathcal{N}_{\xi+1} = (J_{\alpha}^{\vec{E}}, \in, \vec{E}, F).$ at stages 2 > Sit1. (b) If (2a) fails and there is an extender F^* on the sequence of \mathcal{W} and an extender F over \mathcal{M}_{ξ} , both with critical point $\kappa = \kappa_i$ for some $i < \omega$ with $\alpha < \delta_{i+1}$,¹⁶ such that $(J_{\alpha}^{\vec{E}}, \in, \vec{E}, F)$ is a premouse and for some $\nu < \alpha, V_{\nu+\omega}^{\mathcal{W}} \subseteq \text{Ult}(\mathcal{W}, F^*)$ and $F \upharpoonright \nu = F^* \cap ([\nu]^{<\omega} \times J_{\alpha}^{\vec{E}}),$ i.e., extenders that are we let $\mathcal{N}_{\xi+1} = (J_{\alpha}^{\vec{E}}, \in, \vec{E}, F).$ (c) If (2a) and (2b) fail and there is a generically countably complete ctbly complete in any extender F in \mathcal{W} with critical point κ_i for some $i < \omega$ such that $\alpha > \delta_{i+1}$ and $(J_{\alpha}^{\vec{E}}, \in, \vec{E}, F)$ is a premouse, we let

$$\mathcal{N}_{\mathcal{E}+1} = (J^{\vec{E}}_{\alpha}, \in, \vec{E}, F).$$

(d) If (2a), (2b) and (2c) fail, we let

 $\mathcal{N}_{\xi+1} = (J_{\alpha+1}^{\vec{E}}, \in, \vec{E}, \emptyset).$

In all cases, we let $\mathcal{M}_{\xi+1} = \mathbb{C}_{\omega}(\mathcal{N}_{\xi+1})$, if it is defined.

(3) For $\xi + 1 < \Xi$, if $\mathcal{M}_{\xi} = (J_{\alpha}^{\vec{E}}, \in, \vec{E}, F)$ is active, we let

$$\mathcal{N}_{\varepsilon+1} = (J^{\vec{E}'}_{\omega+1}, \in, \vec{E}', \emptyset)$$

for $\vec{E}' = \vec{E}^{\frown} F$. Moreover, we let $\mathcal{M}_{\xi+1} = \mathbb{C}_{\omega}(\mathcal{N}_{\xi+1})$, if it is defined. (4) If $\lambda \leq \Xi$ is a limit ordinal or $\lambda = \text{Ord}$, we let $\mathcal{N}_{\lambda} = \mathcal{M}_{\lambda}$ be the unique passive premouse such that for all ordinals β , $\omega\beta \in \mathcal{N}_{\lambda} \cap \text{Ord iff } J_{\beta}^{J}$ is defined and eventually constant as α converges to λ , and for all such $\omega\beta \in \mathcal{N}_{\lambda} \cap \operatorname{Ord}, J_{\beta}^{\mathcal{N}_{\lambda}}$ is given by the eventual value of $J_{\beta}^{\mathcal{N}_{\alpha}}$ as α converges to λ .

We say the \mathcal{M} -construction breaks down and stop the construction if $\mathbb{C}_{\omega}(\mathcal{N}_{\xi})$ is not defined for some $\xi \in \text{Ord.}$ Otherwise we say the \mathcal{M} -construction converges and $\mathcal{M} = \mathcal{M}_{Ord}$ is the result of the construction.

Theorem 1.2. Let \mathcal{W} be a translatable structure as in Definition 3.20 and let \mathcal{M} be the result of an \mathcal{M} -construction in \mathcal{W} as in Definition 4.3. Then \mathcal{M} is a countably iterable proper class premouse with a cardinal λ that is a limit of Woodin cardinals and a limit of strong cardinals.

order with $|\mathbb{P}| < \kappa$ and G is \mathbb{P} -generic over V, then in V[G], for every sequence $(a_i \mid i < \omega)$ of sets in $[\lambda]^{<\omega}$ and every sequence $(A_i \mid i < \omega)$ of sets $A_i \in E_{a_i}$ there is a function $\tau: \bigcup_i a_i \to \kappa$ such that $\tau^{"}a_i \in A_i$ for each $i < \omega$.

Definition 4.1. We say a (κ, λ) -extender E is generically countably complete if it is countably complete in all $< \kappa$ -generic extensions, i.e., whenever \mathbb{P} is a partial

forzing extension of size

> Idea: Ultrapowers by such extenders (in these generic extensions) can be realized.

Why are the Ki strong in M? We inductively show that the M-construction converges, hulls of the resulting model are sufficiently itsable, and the ki are strong in M. For simplicity, suppose M converges. Toward a contradiction, suppose i is minimal s.t. Hi is not Z-strong for some Z/ZSi+1). E is given by: $(a, f) \in E \iff (i(a), i(f)) \in F$ -3 + Sitn -3* F $E \qquad i \qquad \forall \\ \vec{3} \qquad \vec{1} \qquad \vec{$ W II \mathcal{M}^* Mr www trans Catable Structure Compare the construction of the against Need enough itedoility to the construction of M. J make this work (see next page) · M-side does not move This needs a deep understanding of the non-backgrounded excluders it -side only moves above hi I that get added by the M-construction · u* iterates into a model of the construction of M · Foverlaps 3t in M, witnessing that his 2 Sitn - strong in M · Argue that $E \in \overline{W}$ and E gets added to \overline{U} by the M-construction in \overline{W} mis is non-trivial and uses a chasackrization of the extenders invalved This yields the desired contradiction.

is It sufficiently iterable? Combine the standard lifting to the background model for fully backgrounded constructions (Mitchell-Steel) with almost linearity of the iteration tree (Schindles) when considering extenders not given by a background.

Definition 6.1. Let \mathcal{N} be the result of an \mathcal{M} -construction in some translatable structure or an iterate of the result of such a construction. Write $(\kappa_i^{\mathcal{N}}, \delta_i^{\mathcal{N}} \mid i < \omega)$ for the sequence of the specific cardinals κ_i and δ_i , $i < \omega$, chosen in the definition of the \mathcal{M} -construction.

- (1) An extender E on the \mathcal{N} -sequence is called *strongness witness* or *non-backgrounded* iff the critical point of E is $\kappa_i^{\mathcal{N}}$ for some $i < \omega$ and the length of E is above $\delta_{i+1}^{\mathcal{N}}$. Otherwise we say E is *backgrounded*.
- (2) An iteration tree \mathcal{T} on \mathcal{N} is called *almost linear on strongness witnesses* iff (a) for all $\alpha + 1 < \operatorname{lh}(\mathcal{T})$ such that $E_{\alpha}^{\mathcal{T}}$ is a strongness witness we have $\operatorname{pred}_{T}^{*}(\alpha+1) \in [0,\alpha]_{T}$, where $\operatorname{pred}_{T}^{*}(\alpha+1)$ denotes the unique ordinal $\beta + 1$ such that $\mathcal{M}_{\beta+1}^{\mathcal{T}}$ is obtained as an ultrapower by a strongness witness $E_{\beta}^{\mathcal{T}}$ and $i_{\beta+1,\operatorname{pred}_{T}(\alpha+1)} \colon \mathcal{M}_{\beta}^{*,\mathcal{T}} \to \mathcal{M}_{\operatorname{pred}_{T}(\alpha+1)}^{\mathcal{T}}$ is an iteration via backgrounded extenders, and
 - (b) any $\alpha < \ln(\mathcal{T})$ has only finitely many *T*-successors $\beta + 1$ such that $E_{\beta}^{\mathcal{T}}$ is a strongness witness.

The following lemma uses similar ideas as the proof of [21, Lemma 2.4].

Lemma 6.2. Let \mathcal{N} be the result of an \mathcal{M} -construction in some translatable structure. Then any normal iteration tree \mathcal{T} on \mathcal{N} is almost linear on strongness witnesses.

Lemma 6.3. Let $i < \omega$, suppose $(\mathsf{IH})_i$ and let

$$\pi\colon \mathcal{W}\to \mathcal{W}|\Omega$$

The	prec	ise	-			
ikrabi	ility	sto	der	vei	nt':	
	U ·					

for some sufficiently large³¹ Ω be such that letting $\operatorname{crit}(\pi) = \nu$, $\mathcal{W}|\kappa_i \subseteq \overline{\mathcal{W}}$, $(\kappa_j, \delta_j \mid j < \omega) \in \operatorname{rng}(\pi)$, the sequence of models of the construction of $\mathcal{M}^{(i+1)}|\Omega$ is in the range of π , $\nu \in (\kappa_i, \delta_{i+1})$ is an inaccessible cardinal in \mathcal{W} , and $\pi(\nu) = \delta_{i+1}$. Let $\overline{\mathcal{M}}$ be the collapse of $\mathcal{M}^{(i+1)}|\Omega$. Then $\overline{\mathcal{M}}$ is $(\delta_{i+1}, \delta_{i+1})$ -iterable with respect to extenders with critical point above κ_i .

The picture for $\iota_0 \mathcal{T}_1$ realization one case on ι_0 $\mathrm{Ult}(\mathcal{M}^1, E$ the proof genosically othy complete extender itration via FIGURE 4. Realization into a backgrounded iteration of \mathcal{M} when applying a single non-backgrounded extender E. The other cases are similar, using that the iteration tree is almost linear on strongness witnesses.

What is next? Other translation procedures ? Work in progress joint with Dominik Adolf, Benny Siskind and Lena Wallnet. Key idea : Translate complexity in derived models into large cardinals in a mouse. (B/c a long Soloway sequence is essentially a complicated iteration strategy) Theorem (Adolf-M-Siskind-Wallner, 2026): let M be an itsable canonical inner model with a limit of Woodin cardinals 7. Suppose that D(11,7), the derived model of M at 7, Satisfies 07 0w. Men, in M, I is a limit of -I - strong cardinals. $\frac{\text{Conjecture (Adolf-M-Siskind-Wallnes): This can be generalized}_{\text{Incorrent (AHSW, to obtain a converse to Adolf-Sargsyan dorived models}_{>2026?)} of mice (for derived models with <math>AD_{R}^{+} \theta \ge \theta_{SV_{1}}$ and even $AD_{R}^{+} \theta = \theta_{SV_{2}}$). This would answer a question of Adolf and Sarguan.

On the way to the doad sea,

July 2022

With an unplauned tour around Jerusalen blc of Biden's visit.

Thank you and happy birthday, Ralf!