Applications of the fusion technique

Eyal Kaplan

June 2025

Eyal Kaplan (UC Berkeley)

Applications of the fusion technique

Motivation

Measures in forcing extensions

Let $\mathbb{P} \in V$ be a forcing notion, $G \subseteq \mathbb{P}$ generic over V, and assume that κ is a measurable cardinal in V[G].

Let $W \in V[G]$ be a κ -complete ultrafilter on κ , and denote by

 $j_W \colon V[G] \to M[H]$ its ultrapower embedding. j_W is determined from:

1 the embedding
$$j_W \upharpoonright V \colon V \to M$$
.

2 the $j_W(\mathbb{P})$ -generic (over M) set $H = j_W(G)$.

Thus, in order to characterize measures in forcing extensions, we need to analyze the two above components.

In the recent years, a large body of work was invested in developing methods to limit, restrict and control each of the components; this naturally leads to a simple measure structure in the generic extension.

For the analysis of $j_W \upharpoonright V$, we mention two useful tools:

- Schindler's theorem about iterates of the core model (2006): assuming that V = K is the core model, j_W ↾ V : V → M is an iterate of it (along the main branch of an iteration tree).
- Hamkins' Gap-forcing theorem (1998): if $\delta < \kappa$ and $\mathbb{P} = \mathbb{P}_0 * \dot{\mathbb{P}}_1$ where \mathbb{P}_0 is nontrivial, $|\mathbb{P}_0| < \delta$ and $||_{\mathbb{P}_0} "\dot{\mathbb{P}}_1$ is $(\delta + 1)$ -strategically-closed" then, for every definable (in V[G], from a parameter) $j: V[G] \to M[H]$ with $\operatorname{crit}(j) = \kappa$, $j \upharpoonright V: V \to M$ is definable in V.

Once all the possible restrictions $j_W \upharpoonright V \colon V \to M$ for measures $W \in V[G]$ are identified, the focus turns to classifying all possible generics $H \subseteq j_W(\mathbb{P})$ with $j_W[G] \subseteq H$ in V[G].

A very partial list of examples for analysis of **normal measures** in forcing extensions:

- Friedman-Magidor (2008): starting from a measurable cardinal, produced a model with exactly two normal measures (or any 0 ≤ τ ≤ κ⁺⁺, where κ is the measurable cardinal, and, say, GCH holds). Similar results, starting from stronger assumptions, were obtained with the violation of GCH on a measurable cardinal.
- Ben-Neria (2016): any well-founded order can be realized as the Mitchell order on a measurable cardinal.
- Apter-Cummings (2023): a model in which GCH is violated on a strong cardinal, and the Mitchell order on it is linear.
- Ben-Neria (2014), and later K. (2024): analysis of all normal measures after performing the Magidor iteration of Prikry forcings.

Examples of analysis of **non-normal measures** in forcing extension:

- Hayut-Poveda (2022): analysis of all κ -complete ultrafilters on κ after a nonstationary support iteration of (tree) Prikry forcings over $L[\vec{U}]$.
- Benhamou-Goldberg (2024): analysis of all lifts of sums of normal measures after forcing a discrete Magidor iteration. Forcing the weak Ultrapower Axiom with the negation of the Ultrapower Axiom.
- Sen-Neria, K. (2024): forcing the violation of GCH on a measurable cardinal κ with a single normal measure U, where every σ-complete ultrafilter is equivalent to Uⁿ for some n < ω.</p>

Theorem (Friedman-Magidor)

Consistently from a measurable cardinal, there exists a forcing extension with exactly two normal measures.

To achieve this, an iterated forcing $\mathbb{P}_{\kappa+1} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa + 1 \rangle$ was performed over V = L[U] (where κ is the measurable). For each inaccessible $\alpha \leq \kappa$, the forcing \mathbb{Q}_{α} was a two step iteration:

- the first one adds a (Sacks) subset to α .
- the second one ensures that \mathbb{Q}_{α} is 'self coding': it codes information by ruining / preserving stationary sets from a pre-chosen list $\langle S_i^{\alpha} : i < \alpha^+ \rangle$ of pairwise disjoint stationary subsets of α^+ .

The goal of the above components of \mathbb{Q}_{α} is to limit the possibilities for generics H over M_U (in the above notations); we omit the details here, since we would like to focus on a different aspect of the forcing, that further restricts possible generics H.

- If in $\mathbb{P} = \mathbb{P}_{\kappa}$ the limits are taken with respect to the commonly used Easton support, we encounter the issue that, given $G * g \subseteq \mathbb{P}_{\kappa+1}$ generic over V = L[U], there are multiple $j_U(\mathbb{P})$ -generics $H \in V[G * g]$ over M_U , with $H \upharpoonright \kappa + 1 = G * g$. There is no significant restriction on $H \upharpoonright (\kappa, j_U(\kappa))$ when the Easton support iteration is used.
- The solution that Friedman and Magidor found was the use of a different support the **nonstationary support** (to the best of our knowledge, similar ideas appeared prior to their work in a work of Jensen).
- The nonstationary support has a fusion property that limits the generics $H \upharpoonright (\kappa + 1, j_U(\kappa))$, and also limits the ground model M of $Ult(V[G,g], W) \simeq M[H]$.

Nonstationary support iterations/products

Definition

We say that a set of ordinals A is **nonstationary in inaccessibles** if for every inaccessible cardinal λ , $A \cap \lambda$ is a nonstationary subset of λ .

Framework

Let κ be a Mahlo cardinal. Assume that $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa \rangle$ is a **nonstationary support** iterated forcing of length κ . That is, for every inaccessible $\alpha \leq \kappa$, \mathbb{P}_{α} is taken to be the **nonstationary-support a limit** of $\langle \mathbb{P}_{\beta} : \beta < \alpha \rangle$, in which the conditions $p \in \mathbb{P}_{\alpha}$ are those who satisfy that the set

$$\operatorname{supp}(p) = \alpha \setminus \{\beta < \alpha \colon p \restriction \beta \Vdash p(\beta) = \mathbb{1}_{\dot{\mathbb{Q}}_{\beta}}\}$$

is nonstationary in inaccessibles.

For every α which is not an inaccessible, \mathbb{P}_{α} is the inverse limit of its predecessors.

Framework - continued

We further assume that:

• for every inaccessible $\alpha < \kappa$, rank($\dot{\mathbb{Q}}_{\alpha}$) is below the next inaccessible after α , and

 $\Vdash_{\mathbb{P}_{\alpha}} "\dot{\mathbb{Q}}_{\alpha} \text{ is an } \alpha \text{-closed forcing notion."}$

• If α is not an inaccessible, $\Vdash_{\mathbb{P}_{\alpha}} "\dot{\mathbb{Q}}_{\alpha}$ is trivial".

The fusion lemma

Assume that $\vec{D} = \langle D(\nu) : \nu < \kappa \rangle$ is a sequence of dense open subsets of \mathbb{P} and $p \in \mathbb{P}$. Then there exists $p^* \in \mathbb{P}$ extending p and a club $C \subseteq \kappa$ such that, for every $\nu \in C$,

$$\{q\in \mathbb{P}_{
u+1}\colon q^\frown p^*\setminus (
u+1)\in D(
u)\}$$

is a dense subset of $\mathbb{P}_{\nu+1}$.

Definition

Let \mathbb{P} be a nonstationary support iteration as above. A **fusion sequence** is a sequence of conditions $\langle p_i : i < \kappa \rangle$, joint with an increasing, continuous, cofinal in κ sequence of ordinals $\langle \nu_i : i < \kappa \rangle$ such that, for every $i \leq j < \kappa$,

• p_j extends p_i .

•
$$p_j \upharpoonright \nu_i + 1 = p_i \upharpoonright \nu_i + 1.$$

- $\nu_j \notin \operatorname{supp}(p_i)$.
- Note that fusion sequences have limits: we can define
 p^{*} = ⋃_{i<κ} p_i ↾ ν_i + 1. We obtained a legitimate condition since
 supp(p^{*}) is nonstationary in inaccessibles (specifically, in κ,
 {ν_i: i < κ} is a club in κ disjoint to the support of p^{*}).
- In order to prove the fusion lemma, successor elements in the fusion sequence need to "capture" dense sets: we want the set
 {q ∈ P_{νi+1}: q[¬]p_{i+1} ∈ D(ν_i)} to be a dense subset of P_{νi+1} for all
 i < κ.

Construction of Fusion sequences

Let $\vec{D} = \langle D(i) : i < \kappa \rangle$ be a sequence of dense open subsets of \mathbb{P}_{κ} . We construct a fusion sequence $\langle p_i : i < \kappa \rangle$, $\langle \nu_i : i < \kappa \rangle$ that "captures" \vec{D} . Simultaneously, we construct an inclusion-decreasing sequence of clubs in κ , $\langle C_i : i < \kappa \rangle$, each C_i disjoint from supp (p_i) .

- Start from any condition p₀ = p ∈ P_κ and ν₀ < κ. Let C₀ ⊆ κ be a club disjoint from supp(p₀).
- **3** Successor steps: given p_i, ν_i, C_i , pick any $\nu_{i+1} \in C_i \setminus \nu_i + 1$. Let p_{i+1} be such that:
 - $p_{i+1} \upharpoonright \nu_{i+1} = p_i \upharpoonright \nu_{i+1}$.
 - $\nu_{i+1} \notin \operatorname{supp}(p_{i+1})$.
 - the set $\{q \in \mathbb{P}_{\nu_{i+1}+1} : q \cap p_{i+1} \setminus \nu_{i+1} + 1 \in D(\nu_{i+1})\}$ is dense in $\mathbb{P}_{\nu_{i+1}+1}$ below $p_{i+1} \upharpoonright \nu_{i+1} + 1$.

Finally let $C_{i+1} \subseteq C_i$ be a club disjoint to supp (p_i) .

Construction of Fusion sequences

1 Limit steps: for a limit $i < \kappa$, let $\nu_i = \sup\{\nu_j : j < i\}$. Let p_i be such that:

•
$$p_i \upharpoonright \nu_i = \bigcup_{j < i} p_j \upharpoonright \nu_j + 1$$

•
$$\nu_i \notin \operatorname{supp}(p_i)$$
.

• $p_i \upharpoonright \nu_i + 1 \Vdash "p_i \setminus \nu_i + 1$ extends $p_j \setminus \nu_i + 1$ for all j < i."

As before, let $C_i \subseteq \bigcap_{j < i} C_j$ be a club disjoint from supp (p_i) .

- Let $U \in V$ be a normal measure on κ .
- Assume that we managed to find g ∈ V[G] which is generic for j_U(ℙ)(κ) over M_U[G] (this sometimes requires an additional forcing over V[G]).
- The fusion lemma ensures that the set

$$j_U[G] \setminus \kappa + 1 = \{j_U(p) \setminus \kappa + 1 \colon p \in G\}$$

generates a generic for $j_U(\mathbb{P}) \setminus \kappa + 1$ over $M_U[G * g]$.

Proof

Given a $j_U(\mathbb{P}) \upharpoonright \kappa + 1$ -name for dense open set $\dot{E} \subseteq j_U(\mathbb{P}) \setminus \kappa + 1$, let

$$\vec{\dot{e}} = \langle \dot{e}(
u) \colon
u < \kappa
angle$$

be a sequence such that $\dot{E} = [\nu \mapsto \dot{e}(\nu)]_U$. We can assume that each $\dot{e}(\nu)$ is a $\mathbb{P}_{\nu+1}$ -name for a dense open subset of $\mathbb{P} \setminus \nu + 1$. The fusion lemma implies that for some condition $p \in G$ and a club $C \subseteq \kappa$, for every $\nu \in C$,

 $\Vdash_{\mathbb{P}_{\nu+1}} p \setminus \nu + 1 \in \dot{e}(\nu).$

Since U is normal, $C \in U$, and thus, over M_U ,

$$\Vdash_{j_U(\mathbb{P})\restriction \kappa+1} j_U(p) \setminus \kappa+1 \in \dot{E}$$

as desired.

An typical consequence of the fusion lemma is the following.

Lemma

Let $f: \kappa \to \text{Ord}$ be a function in V[G]. Then there exists a club $C \subseteq \kappa$ and a function $F: \kappa \to V$ such that $F \in V$ and for every inaccessible $\nu \in C$,

$$f(\nu) \in F(\nu)$$
 and $|F(\nu)| \leq |\mathbb{P}_{\nu+1}|$.

Example

Let V[G * g] be a generic extension for the Friedman-Magidor forcing over V = L[U]. Then for every normal measure $W \in V[G * g]$ on κ , $j_W \upharpoonright V = j_U$.

Proof sketch

The above Lemma, joint with properties of the forcing $\hat{\mathbb{Q}}_{\kappa}$ we omit here, imply that every $f: \kappa \to \kappa$ in V[G * g] is dominated by ground model function $g: \kappa \to \kappa$. Write $j_W \upharpoonright V$ as an iteration of V = L[U]. We argue that the length of the iteration is 1. Indeed, assume otherwise, write $j_W \upharpoonright L[U] = k \circ j_U$ for some $k: M_U \to M$ with $\operatorname{crit}(k) = j_U(\kappa)$. Let $f \in V[G * g]$ be a function $f: \kappa \to \kappa$ such that $j_U(\kappa) = [f]_W$. Let $g: \kappa \to \kappa$ in V be a function that dominates f. Then:

$$j_U(\kappa) = [f]_W < [g]_W = (k \circ j_U)(g)(\kappa) = k \left(j_U(g)(\kappa) \right) < j_U(\kappa)$$

which is a contradiction.

Applications

A model with exactly two normal measures, with the same ultrapower

Theorem (Ben-Neria, K.)

Let $\mathbb{P} = \prod_{\alpha < \kappa} \mathbb{Q}_{\alpha}$ be a nonstationary support product, such that, for every inaccessible $\alpha < \kappa$, $\mathbb{Q}_{\alpha} = \{\mathbb{1}_{\mathbb{Q}_{\alpha}}, 0, 1\}$ is an atomic forcing where 0, 1 are incompatible extensions of $\mathbb{1}_{\mathbb{Q}_{\alpha}}$. Let $G \subseteq \mathbb{P}$ be generic over V. Then in V[G], every normal measure $U \in V$ on κ lifts to exactly two normal measures on κ , which have the same ultrapower.

Corollary

Forcing over V = L[U], the obtained generic extension is a model in which κ is the unique measurable cardinal, it carries exactly two normal measures, and both of them have the same ultrapower.

Proof.

Denote, for every inaccessible $\alpha < \kappa$, by $G(\alpha)$, the generic bit in $\{0, 1\}$ chosen by G at step α . The proof goes in two steps:

• Fix i < 2. The set-

$$U \cup \{\{\alpha < \kappa \colon G(\alpha) = i\}\}$$

generates a normal, κ -complete ultrafilter U_i^* in V[G]. Moreover, U_0^*, U_1^* have the same ultrapower.

② Let $W \in V[G]$ be a normal measure of κ , and let $U = W \cap V$. By Hamkins' Gap forcing theorem, $U \in V$. Let $i = j_W(G)(\kappa)$. Then $W = U_i^*$ since W contains the relevant generating set.

We just need to justify the first step.

Proof - continued

Let \dot{X} be a \mathbb{P} -name for a subset of κ . Apply fusion on the dense sets $\vec{D} = \langle D_{\nu} : \nu < \kappa \rangle$,

$$D_{\nu} = \{ p \in \mathbb{P} \colon p \parallel \check{\nu} \in \check{X} \}.$$

Find a condition $p \in G$ and a club $C \subseteq \kappa$ such that for every $\nu \in C$,

$$\{q \in \mathbb{P}_{\nu+1} \colon q^{\frown}p \setminus \nu+1 \parallel \check{
u} \in \dot{X}\}$$

is dense in $\mathbb{P}_{\nu+1}$. Since $C \in U$,

$$\{q\in j_U(\mathbb{P})\restriction\kappa+1\colon q^\frown j_U(p)\setminus\kappa+1\parallel\check\kappa\in j_U(\dot X)\}$$

is dense in $j_U(\mathbb{P}) \upharpoonright \kappa + 1$. In particular, by extending *p* inside *G*,

$$j_U(p) \cup \{(\kappa, i)\} \parallel \check{\kappa} \in j_U(\dot{X}).$$

Proof - continued

lf, say,

$$j_U(p) \cup \{(\kappa, i)\} \Vdash \check{\kappa} \in j_U(\dot{X})$$

then, in V[G],

$$\{\nu < \kappa \colon \boldsymbol{p} \cup \{(\nu, i)\} \Vdash \check{\nu} \in \dot{X}\} \cap \{\nu < \kappa \colon \boldsymbol{G}(\nu) = i\} \subseteq X$$

and the former set belongs to U. It follows that-

$$U_i^* = \{ (\dot{X})_G \colon \exists p \in G, \ j_U(p) \cup \{ (\kappa, i) \} \Vdash \check{\kappa} \in j_U(\dot{X}) \}$$

is an ultrafilter in V[G] generated by $U \cup \{\{\nu < \kappa : G(\nu) = i\}$. Using a similar argument, it's not hard to verify that U_i^* is a normal measure on κ . Finally, the above analysis shows that $Ult(V[G], U_i^*)$ has the form

$$M_U[(\cup j_U[G]) \cup \{(\kappa, i)\}]$$

so U_0^*, U_1^* have the same ultrapower.

Theorem

Let \mathbb{P} be the same forcing as above. Let $G \subseteq \mathbb{P}$ be generic over V = L[U]. V[G] satisfies the weak Ultrapower Axiom: given $U, W \in V[G]$ σ -complete ultrafilters, there are $U^* \in M_W \simeq \text{Ult}(V[G], W)$ and $W^* \in M_U \simeq \text{Ult}(V[G], U)$ such that $\text{Ult}(M_W, U^*) \simeq \text{Ult}(M_U, W^*)$. Furthermore, in our V[G] one of U^*, W^* can be taken to be trivial.

Sketch

For every σ -complete ultrafilter $W \in V[G]$,

 $\mathsf{Ult}(V[G],W) \simeq M_{U^n}[(\cup j_{U^n}[G]) \cup f_W]$

for a function $f_W: \{\kappa, j_U(\kappa), \ldots, j_{U^{n-1}}(\kappa)\} \to 2$. In particular, the model Ult(V[G], W) depends only on n, and all the relevant generic extensions of M_{U^n} give rise to the same extension. Now one can easily "weakly compare" two σ -complete ultrafilters of V[G] by internal ultrapowers.

Prikry-type forcings

A forcing notion \mathbb{Q} is a **Prikry-type** forcing notion if there exists a suborder $\leq_{\mathbb{Q}}^* \subseteq \leq_{\mathbb{Q}}$ such that, for every statement σ in the forcing language and a condition $q \in \mathbb{Q}$, there exists a $\leq_{\mathbb{Q}}^*$ extension q^* of q that decides σ .

The sub-order $\leq_{\mathbb{Q}}^{*}$ is called the direct extension order. We remark that every forcing notion \mathbb{Q} can be seen as a Prikry-type forcing, by simply setting $\leq_{\mathbb{Q}}^{*} = \leq_{\mathbb{Q}}$. However, interesting Prikry-type forcings are those in which $\leq_{\mathbb{Q}}^{*}$ satisfies additional properties, for instance being κ -closed (in which case, we will say that $\langle \mathbb{Q}, \leq_{\mathbb{Q}}, \leq_{\mathbb{Q}}^{*} \rangle$ is a κ -closed Prikry-type forcing).

- Iterations of Prikry forcings were introduced and originally applied by Magidor in his famous work about Identity crisis.
- Gitik generalized the technique to iterations of Prikry-type forcings (with the full support (Magidor iteration) and Easton support (Gitik iteration)).
- Ben-Neria and Unger were the first to define and use the nonstationary support iteration of Prikry-type forcings.
- The nonstationary support iteration P = ⟨P_α, Q_α: α < κ⟩ of Prikry-type forcings is defined similarly to the standard nonstationary support, with an additional requirement that, when extending a condition p ∈ P_α (for α ≤ κ), only finitely many coordinates inside supp(p) can be non-directly extended.

Formal definition of the nonstationary support iteration of Prikry-type forcings

More formally, let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa \rangle$ be a nonstationary support iteration of Prikry type forcings $\langle \dot{\mathbb{Q}}_{\alpha}, \dot{\leq}_{\dot{\mathbb{Q}}_{\alpha}}, \dot{\leq}_{\dot{\mathbb{Q}}_{\alpha}}^* \rangle$. For $\mathbf{p} \in \mathcal{Q} \subset \mathbb{P}$ for some $\alpha \leq \kappa$, we say that a extends \mathbf{p} if:

For $p, q \in \mathbb{P}_{\alpha}$ for some $\alpha \leq \kappa$, we say that q extends p if:

- $supp(p) \subseteq supp(q)$.
- for all $\beta \in \text{supp}(p)$, $q \upharpoonright \beta \Vdash "q(\beta)$ extends $p(\beta)$."
- there exists a finite $b \subseteq \alpha$, such that, for every $\beta \in \text{supp}(p) \setminus b$, $q \upharpoonright \beta \Vdash "q(\beta)$ extends $p(\beta)$ in the sense of $\leq_{\hat{\mathbb{D}}_{\beta}}^{*}$.

If $b = \emptyset$, we say that q is a **direct extension** of p. This defines a direct extension order $\leq_{\mathbb{P}_{\alpha}}^{*}$ on each \mathbb{P}_{α} , which turns $\langle \mathbb{P}_{\alpha}, \leq_{\mathbb{P}_{\alpha}}, \leq_{\mathbb{P}_{\alpha}}^{*} \rangle$ to a Prikry-type forcing notion.

We maintain the assumption that for all $\alpha < \kappa$, $\langle \dot{\mathbb{Q}}_{\alpha}, \dot{\leq}_{\dot{\mathbb{Q}}_{\alpha}}, \dot{\leq}_{\dot{\mathbb{Q}}_{\alpha}}^{*} \rangle$ is an α -closed Prikry-type forcing, whose rank is strictly below the next inaccessible above α .

Definition

Let δ be a regular uncountable cardinal, and let $N \subseteq V$ be a transitive inner model containing the ordinals.

- N has the δ -cover property if for every $A \in V$, $A \subseteq N$ such that $|A| < \delta$, there exists $B \in N$ with $|B|^N < \delta$ such that $A \subseteq B$.
- Observe A ∈ V, A ⊆ N, the following are equivalent:
 - $A \in N.$
 - ② A is δ -approximated in N: that is, for every X ∈ N with $|X|^N < \delta$, A ∩ X ∈ N.

Weak Universality lemma

In the above notations, assume that $N \subseteq V$ has the δ -approximation property. Let $W \in N$ be a δ -complete ultrafilter whose underlying set is some $X \in N$. Then $W \cap N \in N$.

Theorem (Gitik, K.)

Assume GCH. Let κ be an Mahlo cardinal, and let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa \rangle$ be an iteration of Prikry-type forcings (with either Full, Nonstationary or Easton support taken). Assume that $\dot{\mathbb{Q}}_{\alpha}$ is forced to be trivial, unless $\alpha < \kappa$ is inaccessible, and then–

$$\Vdash_{\mathbb{P}_{\alpha}} \langle \dot{\mathbb{P}}_{\alpha}, \leq^*_{\dot{\mathbb{Q}}_{\alpha}} \rangle \text{ is } \alpha - \text{closed and directed, and } \dot{\mathbb{Q}}_{\alpha} \in V_{\kappa}.$$

Let $G \subseteq \mathbb{P}$ be generic over V. Then:

The the extension V ⊆ V[G] has the κ-cover and the κ-approximation properties. Consequently:

Provide a set X ∈ V, W ∩ V ∈ V.
For every κ-complete ultrafilter W ∈ V[G] whose underlying set is a set X ∈ V, W ∩ V ∈ V.

Characterization of normal measures after iterating Prikry-type forcings

Corollary

Let $\mathbb{P} = \mathbb{P}_{\kappa}$ be a nonstationary support iteration of Prikry-type forcings, satisfying the above properties. Assume, in addition, that $\Delta \subseteq \kappa$ is a stationary set of inaccessibles, and, for every $\alpha < \kappa$ it is forced by \mathbb{P}_{α} that:

- if $\alpha \notin \Delta$, $\dot{\mathbb{Q}}_{\alpha}$ is trivial,
- if $\alpha \in \Delta$, $\hat{\mathbb{Q}}_{\alpha}$ singularizes α .

Then every normal measure $U \in V$ on κ which does not concentrate on Δ generates a normal measure $U^* \in V[G]$ on κ . furthermore, for every normal measure $W \in V[G]$ on κ , $U = W \cap V \in V$, $\Delta \notin U$ and $W = U^*$.

Corollary (Gitik, K.)

Let κ be a supercompact, assume GCH and assume that Mitchell order is linear on κ . Assume also that there are no measurables above κ . Let \mathbb{P}_{κ} be a nonstationary support iteration of Prikry forcings; that is, for all $\alpha < \kappa$ measurable in V, $\dot{\mathbb{Q}}_{\alpha}$ is the Prikry forcing with a \mathbb{P}_{α} -name for a normal measure \dot{W}_{α} on κ in $V^{\mathbb{P}_{\alpha}}$. Then κ is strongly compact in V[G], it is the only measurable cardinal, and it carries a unique normal measure. Thank you for your attention!