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Motivation

Measures in forcing extensions

Let P ∈ V be a forcing notion, G ⊆ P generic over V , and assume that κ
is a measurable cardinal in V [G ].
Let W ∈ V [G ] be a κ-complete ultrafilter on κ, and denote by
jW : V [G ] → M[H] its ultrapower embedding. jW is determined from:

1 the embedding jW ↾ V : V → M.

2 the jW (P)-generic (over M) set H = jW (G ).

Thus, in order to characterize measures in forcing extensions, we need to
analyze the two above components.
In the recent years, a large body of work was invested in developing
methods to limit, restrict and control each of the components; this
naturally leads to a simple measure structure in the generic extension.
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Classifying ultrafilters in forcing extensions - continued

For the analysis of jW ↾ V , we mention two useful tools:

Schindler’s theorem about iterates of the core model (2006):
assuming that V = K is the core model, jW ↾ V : V → M is an
iterate of it (along the main branch of an iteration tree).

Hamkins’ Gap-forcing theorem (1998): if δ < κ and P = P0 ∗ Ṗ1

where P0 is nontrivial, |P0| < δ and
⊩P0

′′Ṗ1 is (δ + 1)-strategically-closed” then, for every definable (in
V [G ], from a parameter) j : V [G ] → M[H] with crit(j) = κ,
j ↾ V : V → M is definable in V .

Once all the possible restrictions jW ↾ V : V → M for measures W ∈ V [G ]
are identified, the focus turns to classifying all possible generics
H ⊆ jW (P) with jW [G ] ⊆ H in V [G ].
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Examples - Normal measures in forcing extensions

A very partial list of examples for analysis of normal measures in forcing
extensions:

1 Friedman-Magidor (2008): starting from a measurable cardinal,
produced a model with exactly two normal measures (or any
0 ≤ τ ≤ κ++, where κ is the measurable cardinal, and, say, GCH
holds). Similar results, starting from stronger assumptions, were
obtained with the violation of GCH on a measurable cardinal.

2 Ben-Neria (2016): any well-founded order can be realized as the
Mitchell order on a measurable cardinal.

3 Apter-Cummings (2023): a model in which GCH is violated on a
strong cardinal, and the Mitchell order on it is linear.

4 Ben-Neria (2014), and later K. (2024): analysis of all normal
measures after performing the Magidor iteration of Prikry forcings.
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Examples - Non-normal measures in forcing extensions

Examples of analysis of non-normal measures in forcing extension:

1 Hayut-Poveda (2022): analysis of all κ-complete ultrafilters on κ after
a nonstationary support iteration of (tree) Prikry forcings over L[U⃗].

2 Benhamou-Goldberg (2024): analysis of all lifts of sums of normal
measures after forcing a discrete Magidor iteration. Forcing the weak
Ultrapower Axiom with the negation of the Ultrapower Axiom.

3 Ben-Neria, K. (2024): forcing the violation of GCH on a measurable
cardinal κ with a single normal measure U, where every σ-complete
ultrafilter is equivalent to Un for some n < ω.
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Main example - the Friedman-Magidor forcing

Theorem (Friedman-Magidor)

Consistently from a measurable cardinal, there exists a forcing extension
with exactly two normal measures.

To achieve this, an iterated forcing Pκ+1 = ⟨Pα, Q̇α : α < κ+ 1⟩ was
performed over V = L[U] (where κ is the measurable).
For each inaccessible α ≤ κ, the forcing Qα was a two step iteration:

the first one adds a (Sacks) subset to α.

the second one ensures that Qα is ’self coding’: it codes information
by ruining / preserving stationary sets from a pre-chosen list
⟨Sα

i : i < α+⟩ of pairwise disjoint stationary subsets of α+.

The goal of the above components of Qα is to limit the possibilities for
generics H over MU (in the above notations); we omit the details here,
since we would like to focus on a different aspect of the forcing, that
further restricts possible generics H.
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Friedman-Magidor - continued

If in P = Pκ the limits are taken with respect to the commonly used
Easton support, we encounter the issue that, given G ∗ g ⊆ Pκ+1

generic over V = L[U], there are multiple jU(P)-generics
H ∈ V [G ∗ g ] over MU , with H ↾ κ+ 1 = G ∗ g . There is no
significant restriction on H ↾ (κ, jU(κ)) when the Easton support
iteration is used.

The solution that Friedman and Magidor found was the use of a
different support - the nonstationary support (to the best of our
knowledge, similar ideas appeared prior to their work in a work of
Jensen).

The nonstationary support has a fusion property that limits the
generics H ↾ (κ+ 1, jU(κ)), and also limits the ground model M of
Ult(V [G , g ],W ) ≃ M[H].
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Nonstationary support iterations/products
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Framework

Definition

We say that a set of ordinals A is nonstationary in inaccessibles if for
every inaccessible cardinal λ, A ∩ λ is a nonstationary subset of λ.

Framework

Let κ be a Mahlo cardinal. Assume that P = ⟨Pα, Q̇α : α < κ⟩ is a
nonstationary support iterated forcing of length κ. That is, for every
inaccessible α ≤ κ, Pα is taken to be the nonstationary-support a limit
of ⟨Pβ : β < α⟩, in which the conditions p ∈ Pα are those who satisfy that
the set

supp(p) = α \ {β < α : p ↾ β ⊩ p(β) = 1Q̇β
}

is nonstationary in inaccessibles.
For every α which is not an inaccessible, Pα is the inverse limit of its
predecessors.
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Framework

Framework - continued

We further assume that:

for every inaccessible α < κ, rank(Q̇α) is below the next inaccessible
after α, and

⊩Pα
′′Q̇α is an α-closed forcing notion.”

If α is not an inaccessible, ⊩Pα
′′Q̇α is trivial”.
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The fusion lemma

The fusion lemma

Assume that D⃗ = ⟨D(ν) : ν < κ⟩ is a sequence of dense open subsets of P
and p ∈ P. Then there exists p∗ ∈ P extending p and a club C ⊆ κ such
that, for every ν ∈ C ,

{q ∈ Pν+1 : q
⌢p∗ \ (ν + 1) ∈ D(ν)}

is a dense subset of Pν+1.
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Some ideas behind the proof: fusion sequences

Definition

Let P be a nonstationary support iteration as above. A fusion sequence is
a sequence of conditions ⟨pi : i < κ⟩, joint with an increasing, continuous,
cofinal in κ sequence of ordinals ⟨νi : i < κ⟩ such that, for every i ≤ j < κ,

pj extends pi .

pj ↾ νi + 1 = pi ↾ νi + 1.

νj /∈ supp(pi ).

Note that fusion sequences have limits: we can define
p∗ =

⋃
i<κ pi ↾ νi + 1. We obtained a legitimate condition since

supp(p∗) is nonstationary in inaccessibles (specifically, in κ,
{νi : i < κ} is a club in κ disjoint to the support of p∗).
In order to prove the fusion lemma, successor elements in the fusion
sequence need to ”capture” dense sets: we want the set
{q ∈ Pνi+1 : q

⌢pi+1 ∈ D(νi )} to be a dense subset of Pνi+1 for all
i < κ.

Clearly, a constant sequence of conditions is a fusion sequence; we would
like also to ”capture” a list of κ-many dense sets, so trivial sequences are
not of interest.

Eyal Kaplan (UC Berkeley) Applications of the fusion technique June 2025 13 / 33



Fusion sequences

Construction of Fusion sequences

Let D⃗ = ⟨D(i) : i < κ⟩ be a sequence of dense open subsets of Pκ. We
construct a fusion sequence ⟨pi : i < κ⟩, ⟨νi : i < κ⟩ that ”captures” D⃗.
Simultaneously, we construct an inclusion-decreasing sequence of clubs in
κ, ⟨Ci : i < κ⟩, each Ci disjoint from supp(pi ).

1 Start from any condition p0 = p ∈ Pκ and ν0 < κ. Let C0 ⊆ κ be a
club disjoint from supp(p0).

2 Successor steps: given pi , νi ,Ci , pick any νi+1 ∈ Ci \ νi + 1. Let
pi+1 be such that:

pi+1 ↾ νi+1 = pi ↾ νi+1.
νi+1 /∈ supp(pi+1).
the set {q ∈ Pνi+1+1 : q

⌢pi+1 \ νi+1 + 1 ∈ D(νi+1)} is dense in Pνi+1+1

below pi+1 ↾ νi+1 + 1.

Finally let Ci+1 ⊆ Ci be a club disjoint to supp(pi ).
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Construction of Fusion sequences

1 Limit steps: for a limit i < κ, let νi = sup{νj : j < i}. Let pi be
such that:

pi ↾ νi =
⋃

j<i pj ↾ νj + 1.
νi /∈ supp(pi ).
pi ↾ νi + 1 ⊩ ”pi \ νi + 1 extends pj \ νi + 1 for all j < i .”

As before, let Ci ⊆
⋂

j<i Cj be a club disjoint from supp(pi ).
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Generating a generic set over an ultrapower

Let U ∈ V be a normal measure on κ.

Assume that we managed to find g ∈ V [G ] which is generic for
jU(P)(κ) over MU [G ] (this sometimes requires an additional forcing
over V [G ]).

The fusion lemma ensures that the set

jU [G ] \ κ+ 1 = {jU(p) \ κ+ 1: p ∈ G}

generates a generic for jU(P) \ κ+ 1 over MU [G ∗ g ].
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Generating a generic set over an ultrapower

Proof

Given a jU(P) ↾ κ+ 1-name for dense open set Ė ⊆ jU(P) \ κ+ 1, let

⃗̇e = ⟨ė(ν) : ν < κ⟩

be a sequence such that Ė = [ν 7→ ė(ν)]U . We can assume that each ė(ν)
is a Pν+1-name for a dense open subset of P \ ν + 1.
The fusion lemma implies that for some condition p ∈ G and a club
C ⊆ κ, for every ν ∈ C ,

⊩Pν+1 p \ ν + 1 ∈ ė(ν).

Since U is normal, C ∈ U, and thus, over MU ,

⊩jU(P)↾κ+1 jU(p) \ κ+ 1 ∈ Ė

as desired.
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Evaluating functions by old ones

An typical consequence of the fusion lemma is the following.

Lemma

Let f : κ → Ord be a function in V [G ]. Then there exists a club C ⊆ κ
and a function F : κ → V such that F ∈ V and for every inaccessible
ν ∈ C ,

f (ν) ∈ F (ν) and |F (ν)| ≤ |Pν+1|.

Example

Let V [G ∗ g ] be a generic extension for the Friedman-Magidor forcing over
V = L[U]. Then for every normal measure W ∈ V [G ∗ g ] on κ,
jW ↾ V = jU .
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Proof sketch

The above Lemma, joint with properties of the forcing Q̇κ we omit here,
imply that every f : κ → κ in V [G ∗ g ] is dominated by ground model
function g : κ → κ.
Write jW ↾ V as an iteration of V = L[U]. We argue that the length of
the iteration is 1. Indeed, assume otherwise, write jW ↾ L[U] = k ◦ jU for
some k : MU → M with crit(k) = jU(κ).
Let f ∈ V [G ∗ g ] be a function f : κ → κ such that jU(κ) = [f ]W . Let
g : κ → κ in V be a function that dominates f .
Then:

jU(κ) = [f ]W < [g ]W = (k ◦ jU)(g)(κ) = k (jU(g)(κ)) < jU(κ)

which is a contradiction.
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Applications
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A model with exactly two normal measures, with the same
ultrapower

Theorem (Ben-Neria, K.)

Let P =
∏

α<κQα be a nonstationary support product, such that, for
every inaccessible α < κ, Qα = {1Qα , 0, 1} is an atomic forcing where 0, 1
are incompatible extensions of 1Qα . Let G ⊆ P be generic over V . Then
in V [G ], every normal measure U ∈ V on κ lifts to exactly two normal
measures on κ, which have the same ultrapower.

Corollary

Forcing over V = L[U], the obtained generic extension is a model in which
κ is the unique measurable cardinal, it carries exactly two normal
measures, and both of them have the same ultrapower.
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Proof.

Denote, for every inaccessible α < κ, by G (α), the generic bit in {0, 1}
chosen by G at step α. The proof goes in two steps:

1 Fix i < 2. The set–

U ∪ {{α < κ : G (α) = i}}

generates a normal, κ-complete ultrafilter U∗
i in V [G ]. Moreover,

U∗
0 ,U

∗
1 have the same ultrapower.

2 Let W ∈ V [G ] be a normal measure of κ, and let U = W ∩ V . By
Hamkins’ Gap forcing theorem, U ∈ V . Let i = jW (G )(κ). Then
W = U∗

i since W contains the relevant generating set.

We just need to justify the first step.
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Proof - continued

Let Ẋ be a P-name for a subset of κ. Apply fusion on the dense sets
D⃗ = ⟨Dν : ν < κ⟩,

Dν = {p ∈ P : p ∥ ν̌ ∈ Ẋ}.

Find a condition p ∈ G and a club C ⊆ κ such that for every ν ∈ C ,

{q ∈ Pν+1 : q
⌢p \ ν + 1 ∥ ν̌ ∈ Ẋ}

is dense in Pν+1.
Since C ∈ U,

{q ∈ jU(P) ↾ κ+ 1: q⌢jU(p) \ κ+ 1 ∥ κ̌ ∈ jU(Ẋ )}

is dense in jU(P) ↾ κ+ 1.
In particular, by extending p inside G ,

jU(p) ∪ {(κ, i)} ∥ κ̌ ∈ jU(Ẋ ).
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Proof - continued

If, say,
jU(p) ∪ {(κ, i)} ⊩ κ̌ ∈ jU(Ẋ )

then, in V [G ],

{ν < κ : p ∪ {(ν, i)} ⊩ ν̌ ∈ Ẋ} ∩ {ν < κ : G (ν) = i} ⊆ X

and the former set belongs to U.
It follows that–

U∗
i = {(Ẋ )G : ∃p ∈ G , jU(p) ∪ {(κ, i)} ⊩ κ̌ ∈ jU(Ẋ )}

is an ultrafilter in V [G ] generated by U ∪ {{ν < κ : G (ν) = i}. Using a
similar argument, it’s not hard to verify that U∗

i is a normal measure on κ.
Finally, the above analysis shows that Ult(V [G ],U∗

i ) has the form

MU [(∪jU [G ]) ∪ {(κ, i)}]

so U∗
0 ,U

∗
1 have the same ultrapower.
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Non-normal measures and weak UA

Theorem

Let P be the same forcing as above. Let G ⊆ P be generic over V = L[U].
V [G ] satisfies the weak Ultrapower Axiom: given U,W ∈ V [G ]
σ-complete ultrafilters, there are U∗ ∈ MW ≃ Ult(V [G ],W ) and
W ∗ ∈ MU ≃ Ult(V [G ],U) such that Ult(MW ,U∗) ≃ Ult(MU ,W

∗).
Furthermore, in our V [G ] one of U∗,W ∗ can be taken to be trivial.

Sketch

For every σ-complete ultrafilter W ∈ V [G ],

Ult(V [G ],W ) ≃ MUn [(∪jUn [G ]) ∪ fW ]

for a function fW : {κ, jU(κ), . . . , jUn−1(κ)} → 2. In particular, the model
Ult(V [G ],W ) depends only on n, and all the relevant generic extensions of
MUn give rise to the same extension. Now one can easily ”weakly
compare” two σ-complete ultrafilters of V [G ] by internal ultrapowers.
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Nonstationary support iterations of Prikry-type forcings

Prikry-type forcings

A forcing notion Q is a Prikry-type forcing notion if there exists a
suborder ≤∗

Q⊆≤Q such that, for every statement σ in the forcing language
and a condition q ∈ Q, there exists a ≤∗

Q extension q∗ of q that decides σ.

The sub-order ≤∗
Q is called the direct extension order.

We remark that every forcing notion Q can be seen as a Prikry-type
forcing, by simply setting ≤∗

Q=≤Q. However, interesting Prikry-type
forcings are those in which ≤∗

Q satisfies additional properties, for instance
being κ-closed (in which case, we will say that ⟨Q,≤Q,≤∗

Q⟩ is a κ-closed
Prikry-type forcing).
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Iterations of Prikry-type forcings

Iterations of Prikry forcings were introduced and originally applied by
Magidor in his famous work about Identity crisis.

Gitik generalized the technique to iterations of Prikry-type forcings
(with the full support (Magidor iteration) and Easton support (Gitik
iteration)).

Ben-Neria and Unger were the first to define and use the
nonstationary support iteration of Prikry-type forcings.

The nonstationary support iteration P = ⟨Pα, Q̇α : α < κ⟩ of
Prikry-type forcings is defined similarly to the standard nonstationary
support, with an additional requirement that, when extending a
condition p ∈ Pα (for α ≤ κ), only finitely many coordinates inside
supp(p) can be non-directly extended.
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Formal definition of the nonstationary support iteration of
Prikry-type forcings

More formally, let P = ⟨Pα, Q̇α : α < κ⟩ be a nonstationary support
iteration of Prikry type forcings ⟨Q̇α, ≤̇Q̇α

, ≤̇∗
Q̇α

⟩.
For p, q ∈ Pα for some α ≤ κ, we say that q extends p if:

supp(p) ⊆ supp(q).

for all β ∈ supp(p), q ↾ β ⊩ ”q(β) extends p(β).”

there exists a finite b ⊆ α, such that, for every β ∈ supp(p) \ b,
q ↾ β ⊩ ”q(β) extends p(β) in the sense of ≤∗

Q̇β
”.

If b = ∅, we say that q is a direct extension of p. This defines a direct
extension order ≤∗

Pα
on each Pα, which turns ⟨Pα,≤Pα ,≤∗

Pα
⟩ to a

Prikry-type forcing notion.
We maintain the assumption that for all α < κ, ⟨Q̇α, ≤̇Q̇α

, ≤̇∗
Q̇α

⟩ is an
α-closed Prikry-type forcing, whose rank is strictly below the next
inaccessible above α.
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Hamkins’ Cover and approximation properties

Definition

Let δ be a regular uncountable cardinal, and let N ⊆ V be a transitive
inner model containing the ordinals.

1 N has the δ-cover property if for every A ∈ V , A ⊆ N such that
|A| < δ, there exists B ∈ N with |B|N < δ such that A ⊆ B.

2 N has the δ-approximation property if for every A ∈ V , A ⊆ N, the
following are equivalent:

1 A ∈ N.
2 A is δ-approximated in N: that is, for every X ∈ N with |X |N < δ,

A ∩ X ∈ N.

Weak Universality lemma

In the above notations, assume that N ⊆ V has the δ-approximation
property. Let W ∈ N be a δ-complete ultrafilter whose underlying set is
some X ∈ N. Then W ∩ N ∈ N.
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The cover and approximation properties

Theorem (Gitik, K.)

Assume GCH. Let κ be an Mahlo cardinal, and let P = ⟨Pα, Q̇α : α < κ⟩
be an iteration of Prikry-type forcings (with either Full, Nonstationary or
Easton support taken). Assume that Q̇α is forced to be trivial, unless
α < κ is inaccessible, and then–

⊩Pα ⟨Ṗα,≤∗
Q̇α

⟩ is α− closed and directed, and Q̇α ∈ Vκ.

Let G ⊆ P be generic over V . Then:

1 The the extension V ⊆ V [G ] has the κ-cover and the
κ-approximation properties. Consequently:

2 For every κ-complete ultrafilter W ∈ V [G ] whose underlying set is a
set X ∈ V , W ∩ V ∈ V .
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Characterization of normal measures after iterating
Prikry-type forcings

Corollary

Let P = Pκ be a nonstationary support iteration of Prikry-type forcings,
satisfying the above properties. Assume, in addition, that ∆ ⊆ κ is a
stationary set of inaccessibles, and, for every α < κ it is forced by Pα that:

if α /∈ ∆, Q̇α is trivial,

if α ∈ ∆, Q̇α singularizes α.

Then every normal measure U ∈ V on κ which does not concentrate on ∆
generates a normal measure U∗ ∈ V [G ] on κ. furthermore, for every
normal measure W ∈ V [G ] on κ, U = W ∩ V ∈ V , ∆ /∈ U and W = U∗.
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An identity crisis with a unique normal measure

Corollary (Gitik, K.)

Let κ be a supercompact, assume GCH and assume that Mitchell order is
linear on κ. Assume also that there are no measurables above κ.
Let Pκ be a nonstationary support iteration of Prikry forcings; that is, for
all α < κ measurable in V , Q̇α is the Prikry forcing with a Pα-name for a
normal measure Ẇα on κ in V Pα . Then κ is strongly compact in V [G ], it
is the only measurable cardinal, and it carries a unique normal measure.
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Thank you for your attention!
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