Regularity, primeness, and partition results

S. Jackson Joint with William Chan and Nam Trang

Department of Mathematics University of North Texas

June 24, 2025 Third Berkeley Inner Model Conference

・ 同 ト ・ ヨ ト ・ ヨ ト

S. Jackson Joint with William Chan and Nam Trang Regularity, primeness, and partition results

We introduce the notions of regularity and primeness for sets in a choiceless context.

Definition (regularity)

Assume ZF. Let X, Y be sets. We say that X is Y-regular if for any $F: X \to Y$, there is a $y \in Y$ such that $F^{-1}(y)$ has size |X|, that is, we can inject X into $F^{-1}(y)$.

If X, Y are wellordered, this just says |Y| < cof(|X|).

向下 イヨト イヨト

Definition (primeness)

Assume ZF. We say X is prime if whenever we have an injection $F: X \to Y_0 \times Y_1$, then for $i \in \{0, 1\}$ we have an injection from X into Y_i .

We say X is strongly prime if whenever $F: X \to Y_0 \times Y_1$ is an injection then for some $i \in \{0, 1\}$ we have that for some $X' \subseteq X$ of size X (i.e., X injects into X'), we have that $\pi_i \circ F \upharpoonright X'$ is constant.

向下 イヨト イヨト

These notions are related to the ABCD conjecture:

Theorem (Chan, AD⁺)

Let α , β , γ , δ be cardinals $< \Theta$. Then α^{β} injects into γ^{δ} iff $\alpha \leq \gamma$ and $\beta \leq \delta$.

Chan-J-Trang then got another proof which passes through a result on $\infty\text{-}\mathsf{Borel}$ sets.

Let $\kappa < \Theta$. We put a topology τ on $\mathcal{P}(\kappa)$ by defining basic open sets about $A \subseteq \kappa$ to be sets of the form

$$N_{\sigma}(A) = \{B \subseteq \kappa \colon \forall \alpha \in \sigma \; (\alpha \in B \leftrightarrow \alpha \in B)\}$$

• • = • • = •

Theorem (CJT) Assume AD⁺. Let $\kappa < \Theta$. If $A \subseteq \mathcal{P}(\kappa)$ is τ -Borel the A is ∞ -Borel.

Some instances are provable from just AD:

Theorem (AD) Assume $\kappa \to (\kappa)^{<\kappa}$. Then $\kappa^{<\kappa}$ does not inject into On^{δ} for any $\delta < \kappa$.

A B N A B N

Theorem (AD) $(\omega_n)^{\omega}$ is prime, ordinal regular, and $\mathcal{P}(\omega_1)$ -regular.

Theorem (AD) $(\omega_{\omega})^{\omega}$ is prime, ordinal regular, and $\mathcal{P}(\alpha)$ -regular for all $\alpha < \omega_{\omega}$.

Theorem (Chan) Assume AD⁺. κ^{ω} is On-regular for all $\kappa < \Theta$.

• • = • • = •

Theorem (AD) $(\omega_n)^{<\omega_2}$, $(\omega_{\omega})^{<\omega_2}$ are prime and $\mathcal{P}(\omega_1)$ -regular.

We also have the following.

Theorem (AD)

Let κ be a regular limit Suslin cardinal. Then for almost all $f \in \kappa^{\kappa}$, $(\kappa^+)^{HOD_f}$ is constant.

Э

$(\omega_\omega)^\omega$ is On-regular

We first sketch the proof that $(\omega_{\omega})^{\omega}$ is On-regular.

Fix $\Phi: (\omega_{\omega})^{\omega} \to \kappa$.

First assume $cof(\kappa) < \delta_3^1$. We consider the case $cof(\kappa) = \omega_2$.

Fix $\rho: \omega_2 \to \kappa$ cofinal.

We define a type U. We use lex order on tuples

 $(\alpha, n, \alpha_{n-1}, \ldots, \alpha_0)$

with $\alpha_0 < \cdots < \alpha_{n-1} < \alpha$.

We let U' be as in U except we have the extra points (α, ω) , for $\alpha < \omega_1$ in the domain.

イロト 不得 トイラト イラト 二日

We consider $f: U \to \omega_1$ of the correct type. This induces functions $f_m: (\omega_1)^{m+1} \to \omega_1$ which represents $[f_m] < \omega_{m+2}$. We let $[f] \in (\omega_{\omega})^{\omega}$ be $[f] = ([f_m])_m$.

Partition *P*: partition *F*: $U' \to \omega_1$ of the correct type according to whether $\Phi([f]) < \rho([g])$ where $g(\alpha) = F(\alpha, \omega)$.

On the homogeneous side the stated property holds.

Fix $C \subseteq \omega_1$ homogeneous for P, and let $h: \omega_1 \to \tilde{C}$ (closure points of C) be of the correct type.

We have a large set, those $p \in (\omega_{\omega})^{\omega}$ represented by f of type U for which $\Phi(p) < \rho([g]) < \kappa$ (will give better argument below).

Suppose now $cof(\kappa) \geq \delta_3^1$.

Let (P, φ) be a prewellordering of length κ which is $< cof(\kappa)$ -Suslin bounded, so is Σ_3^1 -bounded.

By playing a Martin-type game, there is a strategy τ and a c.u.b. $C \subseteq \omega_1$ such that for any $x \in \omega^{\omega}$ which is a good code for a function $f_x \colon U \to C, \ \tau(x) \in P$ and $\varphi(\tau(x)) > \Psi([f_x])$.

The set of good codes coding functions from U into C is Π_2^1 . The Σ_3^1 boundedness of (P, φ) then gives a bound for Ψ on a large set.

• (1) • (

We next sketch the proof that $(\omega_{\omega})^{\omega}$ is $\mathcal{P}(\omega_2)$ -regular.

Fix $\Psi \colon (\omega_{\omega})^{\omega} \to \mathcal{P}(\omega_2).$

We need to consider certain types of pairs of functions $f,g\in(\omega_\omega)^\omega.$

We will have a canonical ω -sequence of such types.

(日本)(日本)(日本)

For $k < \omega$ we define types U_k :

We use lex order on tuples

$$(\alpha, n, \alpha_{n-1}, \ldots, \alpha_0, i)$$

with $\alpha_0 < \cdots < \alpha_n$ and where i = 0 if $n \le k$, and $i \in \{0, 1\}$ if $n \ge k$.

An $f: U_k \to \omega_1$ of the correct type induces functions f^0, f^1 of type U.

Note that $f_m^0 = f_m^1$ for $m \le k$. For $m \ge k$, f^0 , f^1 have the same m-1st invariant, but $[f_m^0] < [f_m^1]$.

Consider also U'_k defined as U_k except we add (α, ω) for $\alpha < \omega_1$ to the domain.

A function $f: U'_k \to \omega_1$ induces $f_0, f_1 \in (\omega_\omega)^\omega$ and a $g: \omega_1 \to \omega_1$.

Consider the partition \mathcal{P}_k : we partition $F \colon U'_k \to \omega_1$ according to whether $\exists \delta < [g]$ with $\Psi(f_0) \upharpoonright \delta \neq \Psi(f_1) \upharpoonright \delta$.

(1月) (3日) (3日) 日

On the homogeneous side the stated property holds.

Fix a c.u.b. $C \subseteq \omega_1$ homogeneous for all of these partitions.

We define a "master function" φ from a certain order-type to ω_1 .

Let $<_{\mathcal{T}}$ be lex ordering of tuples of the form

$$(\alpha, n, \alpha_{n-1}, \ldots, \alpha_0, \beta_0, \ldots, \beta_{n-1})$$

where $\alpha_0 < \cdots < \alpha_n < \alpha$, $1 \le n < \omega$, $\beta_0, \ldots, \beta_n < \alpha$

From φ we define $\Phi \colon (\omega_{\omega})^{\omega} \to (\omega_{\omega})^{\omega}$.

Let $p \in (\omega_{\omega})^{\omega}$ be increasing and assume $p(n) \in (\omega_{n+1}, \omega_{n+2})$. We call these the good sequences.

Let $f_k : \omega_{k+1} \to \omega_1$ represent p(k).

Then $\Phi(p) = p'$ where $p'(k) = [g_k]$ is represented by:

$$g_k(\alpha_0,\ldots,\alpha_k) = \varphi(\alpha_k, k, \alpha_{k-1},\ldots,\alpha_0, f_0(\alpha_0), f_1(\alpha_0,\alpha_1), \ldots, f_{k-1}(\alpha_0,\ldots,\alpha_{k-1}))$$

We have:

- ► Each $p'(n) = [g_n] \in (\omega_{n+1}, \omega_{n+2})$ where g_n is of type n + 1.
- p'(n) has smaller first invariant than p'(n+1).
- There is a bound on the first invariants of the $\Phi(p)(n)$.

Suppose p, q are good sequences in $(\omega_{\omega})^{\omega}$. Let k be least so that $p(k) \neq q(k)$, and say p(k) < q(k).

- $\Phi(p)(j) = \Phi(q)(j)$ for j < k.
- For j ≥ k, φ(p)(j) < Φ(q)(j) and Φ(p)(j), Φ(q)(j) have the same jth invariant (next to largest invariant).</p>

So, p', q' are almost everywhere ordered as in type U_k .

Let $A = \Phi(\mathcal{G})$, where \mathcal{G} is the set of good sequences.

So, A has size $(\omega_{\omega})^{\omega}$.

Fix $g: \omega_1 \to C$ of the correct type with $g > \sup_n p'(n)(1)$ for any $p' \in A$, which we can do by above properties of Φ .

If $p' \neq q' \in A$ then $\sup_n p'(n)(1) = \sup q'(n)(1)$ is fixed. Also, for some $k \in \omega$, p', q' are represented by $F : U_k \to C$ of the correct type by sliding argument.

Furthermore there is an $F': U'_k \to C$ of type U'_k such that $f'(\alpha, \omega) = g'(\alpha)$ where [g'] = [g].

Let $\delta = [g]$.

This shows that for $p', q' \in A$, $\Psi(p') \upharpoonright \delta \neq \Psi(q') \upharpoonright \delta$.

This gives a map Ψ' from a large set $A \subseteq (\omega_{\omega})^{\omega}$ to $\mathcal{P}(\delta) \approx \mathcal{P}(\omega_1)$.

By the result for $\mathcal{P}(\omega_1)$, there is a large set $B \subseteq A$ for which Ψ' is constant. From the definition of δ , Ψ is constant on B.

Fix $\Psi: (\omega_{\omega})^{\omega} \to X_0 \times X_1$ an injection. Let $\Psi_0 = \pi_0 \circ \Psi$, $\Psi_1 = \pi_1 \circ \Psi$ (π_i is the projection map).

For $k < \omega$ consider partition \mathcal{P}_k : Partition F of type U_k , inducing f_0 , f_i representing good p_0 , $p_1 \in (\omega_{\omega})^{\omega}$ by

$$\mathcal{P}_{k}(F) = \begin{cases} 0 & \text{if } \Psi_{0}(p_{0}) \neq \Psi_{0}(p_{1}), \Psi_{1}(p_{0}) = \Psi_{1}(p_{1}) \\ 1 & \text{if } \Psi_{1}(p_{0}) \neq \Psi_{1}(p_{1}), \Psi_{0}(p_{0}) = \Psi_{0}(p_{1}) \\ 2 & \text{if } \Psi_{i}(p_{0}) \neq \Psi_{i}(p_{1}) \text{ for } i = 0, 1 \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Fix $C \subseteq \omega_1$ homogeneous for all of the \mathcal{P}_k .

Define $\varphi : \langle \tau \rightarrow C \text{ and } \Phi : (\omega_{\omega})^{\omega} \rightarrow (\omega_{\omega})^{\omega}$ as before. Let $A = \Phi(\mathcal{G})$.

Case 1 For all k, \mathcal{P}_k is homogeneous for 2.

In this case, both Ψ_0 and Ψ_1 are injections when restricted to A.

Case 2 For some k, \mathcal{P}_k is homogeneous for 0 or 1 side.

Let k_0 be least such, and wlog say \mathcal{P}_{k_0} is homogeneous for the 0 side.

Claim

For all $k \ge k_0$, \mathcal{P}_k is homogeneous for the 0 side.

- 周本 - 日本 - 日本 - 日

Proof of claim:

Fix $k > k_0$. Let f, g into C be ordered as in U_k . Say f induces the f_n , and g the g_n where f_n , g_n are of type n + 1.

Let h into C be such that

1.
$$f_n = g_n = h_n$$
 for $n < k_0$

2.
$$f_n = g_n < h_n$$
 for $k_0 \le n < k$.

3.
$$f_n < g_n < h_n$$
 for $n \ge k$

4.
$$f, h$$
 and g, h are of type U_{k_0} .

So,
$$\Psi_1(f) = \Psi_1(h) = \Psi_1(g)$$
, and so $\mathcal{P}_k(f,g) = 0$.

• • = • • = •

Let $B \subseteq A$ have full size and such that for all $p \in B$, $p(0), \ldots, p(k_0)$ are fixed.

Then for $p \neq q \in B$, $\Psi_1(p) = \Psi_1(q)$, and so $\Psi_0(p) \neq \Psi_0(q)$.

This shows that $(\omega_{\omega})^{\omega}$ is prime.

(4月) (1日) (日) 日

Theorem (AD)

Let κ be a regular limit Suslin cardinal (so κ has the strong partition property). Then $\exists \theta < \kappa^+$ such that for almost all $f \in \kappa^{\kappa}$ we have $(\kappa^+)^{HOD_f} = \theta$.

We first show:

Theorem (AD)

Let κ be a regular limit Suslin cardinal, and $\Phi: \kappa^{\kappa} \to \kappa^{+}$. Then $\exists \theta < \kappa^{+} \ \forall^{*}f \in \kappa^{\kappa} \ \Phi(f) < \theta$.

向下 イヨト イヨト

Let μ_{ω} be the ω -cofinal normal measure on κ . We have $[\alpha \to \alpha^+]_{\mu_{\omega}} = \kappa^+$.

There is a tree T on $\omega \times \kappa$ such that for any block function g, that is, $g(\alpha) < \alpha^+$ for $cof(\alpha) = \omega$, there is a $z \in \omega^{\omega}$ with T_z wellfounded and $g(\alpha) < |T_z \upharpoonright \alpha|$ for μ_{ω} almost all α .

Play the game G_{Φ} :

where I plays out $x \in \omega^{\omega}$, and II plays out $y, z \in \omega^{\omega}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Say $\alpha < \kappa$ is good if $f_x(\alpha)$, $f_y(\alpha)$ are defined and $T_z \upharpoonright \alpha$ is wellfounded. Otherwise say α is bad.

If there is a least bad α , the *II* wins iff $T_z \upharpoonright \alpha$ is wellfounded and $f_x(\alpha)$ is undefined.

If all α are good, then f_x, f_y are defined and T_z is wellfounded. Then *II* wins iff $[\alpha \to T_z \upharpoonright \alpha]_{\mu_{\omega}} > \Phi(f_{x,y})$.

Here $f_{x,y}$ is the usual joint function:

$$f_{x,y}(\alpha) = \sup_{n} \max\{f_x(\omega \cdot \alpha + n), f_y(\omega \cdot \alpha + n)\}.$$

A boundedness argument shows I cannot have a winning strategy.

Fix a winning strategy τ for *II*.

For $\alpha < \kappa$ with $cof(\alpha) = \omega$, let $A_{\alpha} = \{x \colon \forall \alpha' < \alpha \ f_x(\alpha') < \alpha\}$. $A_{\alpha} \in \mathbf{\Delta}_1^{\alpha}$.

By boundedness $g(\alpha) = \sup\{T_z \mid \alpha \colon x \in A_\alpha, \tau(x)_1 = z\}$ is less than κ .

The usual argument give a c.u.b. $C \subseteq \kappa$ for that for all $f : \kappa \to C$ of the correct type we have $\Phi(f) < [g]_{\mu_{\omega}}$.

• (1) • (

To prove the first theorem, start with a $\delta < \kappa^+$ so that $\forall^* f \in \kappa^{\kappa} \Phi(f) < \delta$.

Let $\alpha_f = (\kappa^+)^{\mathsf{HOD}_f}$.

Fix a bijection $\pi: \delta \to \kappa$. Let $\beta_f = \pi(\alpha_f) < \kappa$.

Partition \mathcal{P} : partition f of the correct type according to whether for all $\gamma < \kappa$ we have $\alpha(f) = \alpha(f_{\gamma})$ where $f_{\gamma}(\eta) = f(\gamma + \eta)$.

By wellfoundedness, on the homogeneous side this holds, so $\alpha(f)$, and $\beta(f)$, is E_0 -invariant.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

So, on the homogeneous side we must have $\beta(f) < \min(f)$.

This gives that $\beta(f)$, and hence $\alpha(f)$, is constant on some C^{κ} .

Question Does the first theorem hold for $\kappa = \omega_1$?

• (1) • (

Э