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We introduce the notions of regularity and primeness for sets in a
choiceless context.

Definition (regularity)

Assume ZF. Let X , Y be sets. We say that X is Y -regular if for
any F : X → Y , there is a y ∈ Y such that F−1(y) has size |X |,
that is, we can inject X into F−1(y).

If X , Y are wellordered, this just says |Y | < cof(|X |).
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Definition (primeness)

Assume ZF. We say X is prime if whenever we have an injection
F : X → Y0 × Y1, then for i ∈ {0, 1} we have an injection from X
into Yi .

We say X is strongly prime if whenever F : X → Y0 × Y1 is an
injection then for some i ∈ {0, 1} we have that for some X ′ ⊆ X of
size X (i.e., X injects into X ′), we have that πi ◦ F ↾ X ′ is
constant.
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These notions are related to the ABCD conjecture:

Theorem (Chan, AD+)

Let α, β, γ, δ be cardinals < Θ. Then αβ injects into γδ iff α ≤ γ
and β ≤ δ.

Chan-J-Trang then got another proof which passes through a
result on ∞-Borel sets.

Let κ < Θ. We put a topology τ on P(κ) by defining basic open
sets about A ⊆ κ to be sets of the form

Nσ(A) = {B ⊆ κ : ∀α ∈ σ (α ∈ B ↔ α ∈ B)}
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Theorem (CJT)

Assume AD+. Let κ < Θ. If A ⊆ P(κ) is τ -Borel the A is
∞-Borel.

Some instances are provable from just AD:

Theorem (AD)

Assume κ → (κ)<κ. Then κ<κ does not inject into Onδ for any
δ < κ.
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Theorem (AD)

(ωn)
ω is prime, ordinal regular, and P(ω1)-regular.

Theorem (AD)

(ωω)
ω is prime, ordinal regular, and P(α)-regular for all α < ωω.

Theorem (Chan)

Assume AD+. κω is On-regular for all κ < Θ.
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Theorem (AD)

(ωn)
<ω2 , (ωω)

<ω2 are prime and P(ω1)-regular.

We also have the following.

Theorem (AD)

Let κ be a regular limit Suslin cardinal. Then for almost all f ∈ κκ,
(κ+)HODf is constant.
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(ωω)
ω is On-regular

We first sketch the proof that (ωω)
ω is On-regular.

Fix Φ: (ωω)
ω → κ.

First assume cof(κ) < δ13. We consider the case cof(κ) = ω2.

Fix ρ : ω2 → κ cofinal.

We define a type U. We use lex order on tuples

(α, n, αn−1, . . . , α0)

with α0 < · · · < αn−1 < α.

We let U ′ be as in U except we have the extra points (α, ω), for
α < ω1 in the domain.
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We consider f : U → ω1 of the correct type. This induces functions
fm : (ω1)

m+1 → ω1 which represents [fm] < ωm+2. We let
[f ] ∈ (ωω)

ω be [f ] = ([fm])m.

Partition P: partition F : U ′ → ω1 of the correct type according to
whether Φ([f ]) < ρ([g ]) where g(α) = F (α, ω).

On the homogeneous side the stated property holds.

Fix C ⊆ ω1 homogeneous for P, and let h : ω1 → C̃ (closure points
of C ) be of the correct type.

We have a large set, those p ∈ (ωω)
ω represented by f of type U

for which Φ(p) < ρ([g ]) < κ (will give better argument below).
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Suppose now cof(κ) ≥ δ13.

Let (P, φ) be a prewellordering of length κ which is
< cof(κ)-Suslin bounded, so is Σ1

3-bounded.

By playing a Martin-type game, there is a strategy τ and a c.u.b.
C ⊆ ω1 such that for any x ∈ ωω which is a good code for a
function fx : U → C , τ(x) ∈ P and φ(τ(x)) > Ψ([fx ]).

The set of good codes coding functions from U into C is Π1
2. The

Σ1
3 boundedness of (P, φ) then gives a bound for Ψ on a large set.
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(ωω)
ω is P(ω2)-regular

We next sketch the proof that (ωω)
ω is P(ω2)-regular.

Fix Ψ: (ωω)
ω → P(ω2).

We need to consider certain types of pairs of functions
f , g ∈ (ωω)

ω.

We will have a canonical ω-sequence of such types.
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For k < ω we define types Uk :

We use lex order on tuples

(α, n, αn−1, . . . , α0, i)

with α0 < · · · < αn and where i = 0 if n ≤ k, and i ∈ {0, 1} if
n ≥ k .

An f : Uk → ω1 of the correct type induces functions f 0, f 1 of type
U.
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Note that f 0m = f 1m for m ≤ k . For m ≥ k , f 0, f 1 have the same
m − 1st invariant, but [f 0m] < [f 1m].

Consider also U ′
k defined as Uk except we add (α, ω) for α < ω1 to

the domain.

A function f : U ′
k → ω1 induces f0, f1 ∈ (ωω)

ω and a g : ω1 → ω1.

Consider the partition Pk : we partition F : U ′
k → ω1 according to

whether ∃δ < [g ] with Ψ(f0) ↾ δ ̸= Ψ(f1) ↾ δ.
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On the homogeneous side the stated property holds.

Fix a c.u.b. C ⊆ ω1 homogeneous for all of these partitions.

We define a “master function” φ from a certain order-type to ω1.

Let <T be lex ordering of tuples of the form

(α, n, αn−1, . . . , α0, β0, . . . , βn−1)

where α0 < · · · < αn < α, 1 ≤ n < ω, β0, . . . , βn < α
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From φ we define Φ: (ωω)
ω → (ωω)

ω.

Let p ∈ (ωω)
ω be increasing and assume p(n) ∈ (ωn+1, ωn+2). We

call these the good sequences.

Let fk : ωk+1 → ω1 represent p(k).

Then Φ(p) = p′ where p′(k) = [gk ] is represented by:

gk(α0, . . . , αk) = φ(αk , k , αk−1, . . . , α0, f0(α0), f1(α0, α1),

. . . , fk−1(α0, . . . , αk−1))
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We have:

▶ Each p′(n) = [gn] ∈ (ωn+1, ωn+2) where gn is of type n + 1.

▶ p′(n) has smaller first invariant than p′(n + 1).

▶ There is a bound on the first invariants of the Φ(p)(n).

Suppose p, q are good sequences in (ωω)
ω. Let k be least so that

p(k) ̸= q(k), and say p(k) < q(k).

▶ Φ(p)(j) = Φ(q)(j) for j < k .

▶ For j ≥ k , ϕ(p)(j) < Φ(q)(j) and Φ(p)(j), Φ(q)(j) have the
same jth invariant (next to largest invariant).

So, p′, q′ are almost everywhere ordered as in type Uk .
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Let A = Φ(G), where G is the set of good sequences.

So, A has size (ωω)
ω.

Fix g : ω1 → C of the correct type with g > supn p
′(n)(1) for any

p′ ∈ A, which we can do by above properties of Φ.

If p′ ̸= q′ ∈ A then supn p
′(n)(1) = sup q′(n)(1) is fixed. Also, for

some k ∈ ω, p′, q′ are represented by F : Uk → C of the correct
type by sliding argument.

Furthermore there is an F ′ : U ′
k → C of type U ′

k such that
f ′(α, ω) = g ′(α) where [g ′] = [g ].
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Let δ = [g ].

This shows that for p′, q′ ∈ A, Ψ(p′) ↾ δ ̸= Ψ(q′) ↾ δ.

This gives a map Ψ′ from a large set A ⊆ (ωω)
ω to P(δ) ≈ P(ω1).

By the result for P(ω1), there is a large set B ⊆ A for which Ψ′ is
constant. From the definition of δ, Ψ is constant on B.
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(ωω)
ω is prime

Fix Ψ: (ωω)
ω → X0 × X1 an injection. Let Ψ0 = π0 ◦Ψ,

Ψ1 = π1 ◦Ψ (πi is the projection map).

For k < ω consider partition Pk :
Partition F of type Uk , inducing f0, fi representing good p0,
p1 ∈ (ωω)

ω by

Pk(F ) =


0 if Ψ0(p0) ̸= Ψ0(p1),Ψ1(p0) = Ψ1(p1)

1 if Ψ1(p0) ̸= Ψ1(p1),Ψ0(p0) = Ψ0(p1)

2 if Ψi (p0) ̸= Ψi (p1) for i = 0, 1
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Fix C ⊆ ω1 homogeneous for all of the Pk .

Define φ : <T→ C and Φ: (ωω)
ω → (ωω)

ω as before. Let
A = Φ(G).

Case 1 For all k , Pk is homogeneous for 2.

In this case, both Ψ0 and Ψ1 are injections when restricted to A.

Case 2 For some k , Pk is homogeneous for 0 or 1 side.

Let k0 be least such, and wlog say Pk0 is homogeneous for the 0
side.

Claim
For all k ≥ k0, Pk is homogeneous for the 0 side.
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Proof of claim:
Fix k > k0. Let f , g into C be ordered as in Uk . Say f induces the
fn, and g the gn where fn, gn are of type n + 1.

Let h into C be such that

1. fn = gn = hn for n < k0

2. fn = gn < hn for k0 ≤ n < k.

3. fn < gn < hn for n ≥ k

4. f , h and g , h are of type Uk0 .

So, Ψ1(f ) = Ψ1(h) = Ψ1(g), and so Pk(f , g) = 0.
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Let B ⊆ A have full size and such that for all p ∈ B,
p(0), . . . , p(k0) are fixed.

Then for p ̸= q ∈ B, Ψ1(p) = Ψ1(q), and so Ψ0(p) ̸= Ψ0(q).

This shows that (ωω)
ω is prime.
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An application to HOD

Theorem (AD)

Let κ be a regular limit Suslin cardinal (so κ has the strong
partition property). Then ∃θ < κ+ such that for almost all f ∈ κκ

we have (κ+)HODf = θ.

We first show:

Theorem (AD)

Let κ be a regular limit Suslin cardinal, and Φ: κκ → κ+. Then
∃θ < κ+ ∀∗f ∈ κκ Φ(f ) < θ.
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Let µω be the ω-cofinal normal measure on κ. We have
[α → α+]µω = κ+.

There is a tree T on ω × κ such that for any block function g ,
that is, g(α) < α+ for cof(α) = ω, there is a z ∈ ωω with Tz

wellfounded and g(α) < |Tz ↾ α| for µω almost all α.

Play the game GΦ:

I

II

x(0) x(1) x(2) · · ·

y(0) y(1) y(2) · · ·
z(0) z(1) z(2) · · ·

where I plays out x ∈ ωω, and II plays out y , z ∈ ωω.
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Say α < κ is good if fx(α), fy (α) are defined and Tz ↾ α is
wellfounded. Otherwise say α is bad.

If there is a least bad α, the II wins iff Tz ↾ α is wellfounded and
fx(α) is undefined.

If all α are good, then fx , fy are defined and Tz is wellfounded.
Then II wins iff [α → Tz ↾ α]µω > Φ(fx ,y ).

Here fx ,y is the usual joint function:

fx ,y (α) = sup
n

max{fx(ω · α+ n), fy (ω · α+ n)}.
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A boundedness argument shows I cannot have a winning strategy.

Fix a winning strategy τ for II .

For α < κ with cof(α) = ω, let Aα = {x : ∀α′ < α fx(α
′) < α}.

Aα ∈ ∆α
1 .

By boundedness g(α) = sup{Tz ↾ α : x ∈ Aα, τ(x)1 = z} is less
than κ.

The usual argument give a c.u.b. C ⊆ κ fof that for all f : κ → C
of the correct type we have Φ(f ) < [g ]µω .
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To prove the first theorem, start with a δ < κ+ so that
∀∗f ∈ κκ Φ(f ) < δ.

Let αf = (κ+)HODf .

Fix a bijection π : δ → κ. Let βf = π(αf ) < κ.

Partition P: partition f of the correct type according to whether
for all γ < κ we have α(f ) = α(fγ) where fγ(η) = f (γ + η).

By wellfoundedness, on the homogeneous side this holds, so α(f ),
and β(f ), is E0-invariant.
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So, on the homogeneous side we must have β(f ) < min(f ).

This gives that β(f ), and hence α(f ), is constant on some Cκ.

Question
Does the first theorem hold for κ = ω1?
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