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1 Introduction

This talk is on the structure of small large cardinals, like Mahlo and indescribable cardinals,
above extremely large cardinals, large cardinals beyond the Axiom of Choice. The main
new result is joint work with Nai-Chung Hou, proved in ZF.1

Theorem 1.1 (Goldberg–Hou). Suppose κ is a totally indescribable cardinal and there is
a nontrivial elementary embedding from Vκ to itself. Then for all n < ω,

• If n is even, the Π1
n-indescribable ideal on κ is atomic.

• If n is odd, the Π1
n-indescribable ideal on κ is atomless.

Since the Π1
n-indescribable ideal is a Σ1

n+1-complete subset of Vκ+1, Theorem 1.1 leads
to the following corollary, under the same assumptions on κ as Theorem 1.1:

Corollary 1.2. For all odd numbers n, the pointclass Σ1
n(Vκ+1) has the separation property.

We follow Schlutzenberg in considering not Reinhardt cardinals but a first-order weak-
ening of them that seems to capture the salient features of a Reinhardt while avoiding some
technical complications. A cardinal λ is rank Berkeley if for all α < λ < β, there is an
elementary embedding from Vβ to Vβ whose critical point is between α and λ.

Exercise 1 (Schlutzenberg, Woodin). Prove that if j : V → V is an elementary embedding
with critical point κ, then λ = sup{κ, j(κ), j(j(κ)), . . . } is rank Berkeley.

Exercise 2. Show that if κ is Π1
1-indescribable, then Vκ satisfies that there is a rank Berkeley

cardinal if and only if Vκ satisfies that there is a Reinhardt cardinal.

In order to get by in ZF alone, the proof of Theorem 1.1 uses techniques from [2] for
simulating the Axiom of Choice using rank reflection. For the sake of simplicity and variety,
we will not prove Theorem 1.1 itself, but instead make use of a strong choice assumption
throughout these notes:

Background Theory. ZF + λ is a rank Berkeley cardinal + DCλ.

1A set S ⊆ κ is Π1
n-indescribable if for all X ⊆ Vκ and Π1

n-formulas φ, if Vκ ⊨ φ(X), then there is some
α ∈ S such that Vα ⊨ φ(X ∩ Vα). A cardinal is totally indescribable if it is Π1

n-indescribable for all n < ω.
Finally, the Π1

n-indescribable ideal consists of all subsets of κ that are not Π1
n-indescribable.
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So from now on, the symbol λ will denote a rank Berkeley cardinal such that DCλ holds.
By the Kunen inconsistency theorem, λ is the least rank Berkeley cardinal.

Using Woodin’s technique of forcing choice by iteratively collapsing supercompact car-
dinals, one can show that the existence of λ is consistent relative to the existence of a rank
Berkeley cardinal that is a limit of supercompact cardinals.

2 Woodin’s proof of the Kunen inconsistency

We begin by reviewing Woodin’s analysis of the γ-club filter in the context of choiceless
cardinals. The γ-club filter on δ is the filter generated by all sets C ⊆ δ such that for any
σ ⊆ C with ot(σ) = γ, sup(σ) ∈ C. This is the same as the club filter restricted to the set
Sδ
γ = {α < δ : cf(α) = γ}.2 The results in this section are due to Woodin.
For any function j, let

Fix(j) = {x ∈ dom(j) : j(x) = x}

Recall that under AC, Solovay showed that every stationary subset of a regular cardinal
δ can be split into δ stationary subsets. Above our rank Berkeley cardinal λ, this fails badly:

Theorem 2.1. If γ < δ are regular, then Sδ
γ cannot be split into λ stationary sets.

Proof. Let j : Vδ+1 → Vδ+1 be elementary with crit(j) < λ and j(γ) = γ. Let κ = crit(j).
Assume towards a contradiction that ⟨Sα⟩α<κ are disjoint stationary subsets of Sδ

γ . Let
⟨Tα⟩α<j(κ) = j(⟨Sα⟩α<κ). Since j(γ) = γ, the set Fix(j) ∩ δ is a γ-club subset of δ. Since

Tκ is a stationary subset of Sδ
γ , Tκ intersects every γ-club subset of δ. Therefore there is an

ordinal ξ ∈ Tκ ∩ Fix(j). By elementarity, ξ ∈
⋃

α<κ Sα, and so there is some α < κ such
that ξ ∈ Sα. Then ξ ∈ Tj(α). Since κ = crit(j) ̸= j(α), this contradicts that the sets Tα are
disjoint.

The set A is an atom of F if A cannot be split into two F -positive sets, or equivalently
if F ↾ A is an ultrafilter.

Exercise 3. If δ > λ is regular, then for any regular γ < δ, Sδ
γ is the union of fewer than

λ atoms of the club filter on δ.

Hint. The argument is due to Ulam, but one must check that it goes through using just
DCλ. Build a binary branching tree of stationary sets with root node Sδ

γ , such that the
children of each node form a partition of the parent node into two stationary sets. Take
intersections at limits. Nodes are terminal if they are either atoms or nonstationary. The
leaves of this tree are the desired partition of Sδ

γ into atoms.

Corollary 2.2. The cardinal λ+ is measurable, and this is witnessed by the club filter
restricted to a stationary set.

2If F is a filter on X, a set A ⊆ X is F -positive, denoted A ∈ F+, if A intersects every set in F . In this
case, the restriction of F to A, denoted F ↾ A, is the filter on X generated by F ∪ {A}.
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3 Mahlo cardinals

Woodin’s argument does not answer the question: suppose κ > λ is a Mahlo cardinal. Does
the set of regular cardinals less than κ contain an atom of the club filter? A variant of his
proof does answer this question, however:

Proposition 3.1. If δ > λ is Mahlo, then the set of regular non-Mahlo cardinals below δ is
the union of fewer than λ atoms of the club filter.

Proof. Let S be the set of regular non-Mahlo cardinals below δ. To run Woodin’s argument,
it suffices to show that if j : Vδ+1 → Vδ+1 is elementary, then the set Fix(j) ∩ δ belongs the
the club filter restricted to S. Let C be the club of ordinals γ < δ such that j[γ] ⊆ γ. We
claim that C ∩ S ⊆ Fix(j) ∩ δ.

Suppose γ ∈ C ∩ S, and assume towards a contradiction that j(γ) > γ. We claim S ∩ γ
would be stationary in γ. Indeed, if E ⊆ γ is closed unbounded, then γ ∈ j(E) and of
course γ ∈ j(S ∩ γ) = S ∩ j(γ), so j(S ∩ γ) ∩ j(E) ̸= ∅; by elementarity S ∩ E ̸= ∅.

Recall that the trace of a set S ⊆ δ is the set Tr(S) = {α < δ : S ∩ α is stationary}.
(Our convention is that if cf(α) = ω, then every subset of α is nonstationary.) A set S is
thin if it is disjoint from its trace. If S is stationary, then S \Tr(S) is a thin stationary set.

Many of our theorems are motivated by the following Cabal result:

Theorem 3.2 (Kechris–Kleinberg–Moschovakis–Woodin [4]). If κ is a strong partition car-
dinal and S ⊆ κ is a thin stationary set, then S is an atom of the club filter.

The proof of Proposition 3.1 above shows:

Exercise 4. If δ > λ is regular and S is a thin ordinal definable stationary subset of δ.
Then S is the union of fewer than λ atoms of the club filter.

In fact, one only needs that [S]NS = {T ⊆ δ : T △ S ∈ NS} is ordinal definable. But
what about arbitrary stationary sets? We will show:

Theorem 3.3. The club filter on any regular δ > λ is atomic.

This is an immediate consequence of the following theorem, recalling that every station-
ary set S contains the thin stationary set S \ Tr(S).

Theorem 3.4. If δ > λ is a regular cardinal and S ⊆ δ is a thin stationary set, then S is
the union of at most λ atoms of the club filter.

The proof of Theorem 3.4 heavily uses the Ketonen order on filters and ultrafilters.

Definition 3.5. If U and W are countably complete ultrafilters on δ, then U <k W if for
W -almost all α, there is a countably complete ultrafilter Uα on α such that

A ∈ U ⇐⇒ {α : A ∩ α ∈ Uα} ∈ W

In other words, U = W - limα<δ Uα.

Theorem 3.6 (Goldberg [1, Chapter 3]). The Ketonen order on ultrafilters is well-founded.
The Ultrapower Axiom holds iff it is linear.
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Assuming choiceless cardinals, it is useful to consider a somewhat stronger order than
the Ketonen order. If A,B ⊆ P (δ), set A ≤e B if there is an elementary embedding
j : Vδ+1 → Vδ+1 with A = j−1[B].

Lemma 3.7. Suppose U ≤e W are countably complete ultrafilters on δ. Then U ≤k W .

Proof. Let j : Vδ+1 → Vδ+1 witness U ≤e W . If Fix(j) ∩ δ ∈ W , then U = W . Otherwise,
let Y = δ \ Fix(j). For ξ ∈ Y , let Uξ = {A ⊆ ξ : ξ ∈ j(A)}. Then U = W - limξ∈Y Uξ so
U <k W .

We use the following semilinearity property of the embedding order, which given Theo-
rem 3.6 is a weak version of the Ultrapower Axiom that is provable from choiceless cardinals:

Theorem 3.8. Suppose Z is an antichain in the embedding order on countably complete
ultrafilters on δ. Then |Z| ≤ λ.

An analog of this result is proved without any choice in [2].

Lemma 3.9. Suppose U and W are distinct countably complete ultrafilters extending the
club filter. If U ≤e W , then for all S ∈ U , Tr(S) ∈ W .

Proof. We follow the notation from the proof of Lemma 3.7. Since U ̸= W , we may assume
δ \ Fix(j) ∈ W .

Exercise 5. If ξ ∈ δ \ Fix(j) is a closure point of j, then Uξ extends the club filter.

If S ∈ U , then for W -almost all ξ, S ∩ ξ ∈ Uξ and Uξ extends the club filter, and hence
S ∩ ξ is stationary.

Corollary 3.10. If δ is regular and S ⊆ δ is thin, any two countably complete ultrafilters
extending the club filter restricted to S are incomparable in the embedding order.

In particular, the set such ultrafilters has size at most λ.
To conclude Theorem 3.4 from Corollary 3.10, we need a filter extension theorem:

Theorem 3.11. If F is a λ+-complete filter on an ordinal, then F extends to a λ+-complete
ultrafilter.

With this theorem in hand, it is straightforward to partition thin sets into atoms:

Proof of Theorem 3.4. Let F be the club filter restricted to S, and let Z be the set of λ+-
complete ultrafilters extending F . By Theorem 3.8 and Corollary 3.10, |Z| ≤ λ. Using
ACλ and λ+-completeness, choose sets ⟨AU : U ∈ Z⟩ such that for all U ∈ Z, AU ∈ U and
AU /∈ W for all W ∈ Z \ {U}. We may assume AU ⊆ S.

We claim S =
⋃

U∈Z AU modulo a nonstationary set. Otherwise, T = S \
⋃

U∈Z AU is
stationary. By Theorem 3.11, there is a λ+-complete ultrafilter U extending the club filter
restricted to T . But then U ∈ Z, so AU ∩ T is nonempty, contrary to the definition of
T = S \

⋃
U∈Z AU .

Exercise 6. Show, by a similar argument, that each set AU is an atom of the club filter.
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4 The Ketonen order

We now prove the basic results cited above that require the theory of the Ketonen order.

Proof of Theorem 3.8. Let θ > δ be a limit ordinal greater than the supremum of the
Ketonen ranks of elements of Z. Let j : Vθ → Vθ be an elementary embedding with
crit(j) < λ. Recall that the iterates of j are the embeddings j0 = j, j1 = j(j), j2 = j(j1)
and so on, and κn = crit(jn). For all ξ < θ, there is some n < ω such that jn(ξ) = ξ.
By Lemma 3.7, for all countably complete ultrafilters U on δ, there is some n such that
jn(U) = U .

Let Zn = Z∩Fix(jn). We claim |Zn| < κn. Otherwise there is some W ∈ jn(Zn)\jn[Zn].
We have that W and jn(W ) are distinct ultrafilters in jn(jn(Zn)). (They are distinct
since W /∈ ran(jn). And W ∈ jn(jn(Zn)) since jn(Zn) ⊆ Fix(jn+1), so W = jn+1(W ) ∈
jn+1(jn(Zn)) = jn(jn(Zn)).) Since W ≤e jn(W ), this contradicts that jn(jn(Zn)) is an
antichain in the embedding order.

The proof of Theorem 3.11 uses the filter generated by fixed points of elementary em-
beddings and an induction on the Ketonen order on filters.

Definition 4.1. If E and F are countably complete filters on an ordinal δ, then E <k F if
there are countably complete filters Eα on each nonzero α < δ such that E ⊆ F - limα<δ Eα.

The Ketonen order on filters is again well-founded, and this is the key to the proof of
the filter extension theorem.

Proof of Theorem 3.11. Assume towards a contradiction that the theorem is false, and let
F be a counterexample of minimal Ketonen rank. So F is a λ+-complete filter on an ordinal
δ and F does not extend to a λ+-complete ultrafilter.

Let θ be a sufficiently large ordinal, and let G be the λ+-complete filter generated by
sets of the form Fix(j) ∩ δ where j : Vθ → Vθ is an elementary embedding with F ∈ ran(j).
Then Woodin’s proof of the Kunen inconsistency theorem shows that δ can be partitioned
into fewer than λ atoms of G.

To obtain a contradiction, we will show that F and G are compatible filters. Granting
this, let H be the filter generated by F ∪ G, and note that H is λ+-complete. Therefore
there must be an H-positive atom A of G. It follows that G ↾ A is a λ+-complete ultrafilter
extending F , contrary to our choice of F .

To show that F and G are compatible, suppose for α < λ that jα : Vθ → Vθ is an
elementary embedding with F ∈ ran(jα). We must show that

⋂
α<λ Fix(jα) ∩ δ is F -

positive. Suppose not, so that Y =
⋃

α<λ δ \Fix(jα) belongs to F . Let Fα = j−1
α [F ] and let

E =
⋂

α<λ Fα. The assumption that Y ∈ F implies E <k F by the following construction.
For each ξ < δ, let Dα

ξ be the ultrafilter on ξ + 1 derived from jα using ξ. Then by the

proof of Lemma 3.7, Fα = F - limξ<δ D
α
ξ . Let Dξ =

⋂
α<λ D

α
ξ . Then since F is λ+-complete,

E = F - limξ<δ Dξ. If ξ ∈ Y , then ξ ∈ D+
ξ , and so for such ξ, let Eξ = Dξ ↾ ξ, viewed as a

filter on ξ. Then E ⊆ F - limξ<δ Eξ, which proves E <k F .
By the minimality of F , E extends to a λ+-complete ultrafilter W . Then for some

α < λ, Fα ⊆ W : otherwise choose Aα ∈ Fα \ W and note that by the λ+-completeness
of W ,

⋃
α<λ Aα ∈ E \ W , contrary to the fact that E ⊆ W . But jα(Fα) = F , so by

elementarity and our choice of F , Fα does not extend to a λ+-complete ultrafilter.
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An analog of this result is proved without any choice in [2], but this is much more
difficult.

Recall that if S and T are stationary sets, then S < T if T ⊆ Tr(S). This is Jech’s
reflection order, a well-founded partial order of stationary sets.

Exercise 7. Use the well-foundedness of the Ketonen order on filters to establish the well-
foundedness of the reflection order.

Exercise 8. Show that if δ is regular, then any antichain in the reflection order on atoms
of the club filter has cardinality at most λ.

This should be compared with the following theorem of Steel:

Theorem 4.2 (Steel [3]). If κ is a strong partition cardinal, then the thin subsets of κ are
prewellordered by the reflection order.

Exercise 9. Suppose δ is a regular cardinal above λ. Show that for every ξ < o(δ), there
is a maximum stationary set with rank ξ in the reflection order.

5 Indescribable cardinals

The first large cardinal hypothesis beyond the Mahlo hierarchy is weak compactness, or
equivalently Π1

1-indescribability. There is a well-known analogy between the club filter and
the Π1

1-reflection filter, so it makes sense to try to extend our results on stationary sets to
Π1

1-indescribable sets. But our main theorem is that the structure is completely different.

Theorem 5.1 (Goldberg–Hou). The Π1
n-indescribable ideal on any Π1

n-indescribable cardi-
nal above λ is atomic if n is even and atomless if n is odd.

Recall that κ is Π1
n-indescribable if for all X ⊆ Vκ and all Π1

n-formulas φ, if Vκ ⊨ φ(X),
then there is some α < κ such that Vα ⊨ φ(X ∩ Vα).

The Π1
n-indescribable filter Fn(κ) is the filter generated by sets of the form

Rφ,X = {α < κ : Vα+1 ⊨ φ(X ∩ Vα)}

where φ is Π1
n and Vκ+1 ⊨ φ(X). We denote the family of Fn(κ)-positive sets by F+

n (κ),
the dual ideal by F ∗

n(κ), and for S ∈ F+
n (κ), we let Fn(S) = Fn(κ) ↾ S, etc. So F+

n (κ) is
the family of Π1

n-indescribable sets, and F ∗
n(κ) is the Π1

n-indescribable ideal.
Let E(Vα) denote the set of elementary embeddings from Vα to itself and En(Vα) denote

the set of Σ1
n-elementary embeddings from Vα to itself, so j ∈ En(Vα) if j extends to a

Σn-elementary embedding from Vα+1 to itself. When α is a limit ordinal, we will often
confuse an embedding j ∈ E(Vα) with its canonical extension to Vα+1, defined by j+(A) =⋃

x∈Vα
j(A ∩ x).

It is not hard to show that if κ is an inaccessible cardinal, then E(Vκ) = E0(Vκ). Our
theorem rests on the following periodicity result, due to Martin, that can be seen as an
extension of this basic fact:

Theorem 5.2 (Martin). Suppose κ is an inaccessible cardinal and n is odd. Then En(Vκ) =
En+1(Vκ). In particular, En+1(Vκ) is a Π1

n+1 subset of Vκ+1.
3

3Martin proved this theorem in ZFC without the assumption that κ is inaccessible.

6



Our first lemma, which is well-known, generalizes the fact that if κ is Π1
1-indescribable,

then the club filter on κ is Σ1
1-complete.

Lemma 5.3. Suppose n < ω and κ is Π1
n-indescribable. Then for every Σ1

n+1 formula φ
and X ⊆ Vκ,

• If Vκ ⊨ φ(X), then {α < κ : Vα ⊨ φ(X ∩ Vα)} ∈ Fn(κ).

• If κ is Π1
n+1-indescribable, the converse implication holds.

Lemma 5.4. If κ is Π1
n-indescribable, j ∈ E(Vκ), and {α < κ : j ↾ Vα ∈ En(Vα)} ∈ F+

n (κ),
then j ∈ En(Vκ).

Proof. The statement that j ∈ En(Vκ) is Π
1
n+1, so the lemma follows from Lemma 5.3.

Theorem 5.5 (Goldberg–Hou). Suppose n is odd and κ is Π1
n-reflecting. Then Fn(κ) is

atomless.

Proof. We may assume κ > λ, since otherwise the fact that Fn(κ) is atomless is an easy
consequence of DCλ.

Suppose A ∈ F+
n (κ). We will show that for any nontrivial j ∈ E(Vκ) with A ∈ ran(j),

Fix(j) ∩ κ /∈ Fn(A). Suppose towards a contradiction that γ is the least critical point of
some j ∈ E(Vκ) with A ∈ ran(j) and Fix(j)∩κ ∈ Fn(A). Note that the statement that there
is no smaller such ordinal is Π1

n+1 in the parameter A. Let i ∈ E(Vκ) witness the defining
property of γ, and note that by Lemma 5.4, i is Σ1

n-elementary. So by Theorem 5.2, i is
Σ1

n+1-elementary. Thus by elementarity and the minimality of γ, there is no k ∈ E(Vκ) with
critical point less than i(γ) such that i(A) ∈ ran(k) and Fix(k)∩κ ∈ Fn(i(A)). But i is such
an embedding, since Fn(A) ⊆ Fn(i(A)). To see this inclusion, note that since A ∈ ran(i),
i(A) = i(i)(A), and moreover by the elementarity of i, Fix(i(i)) ∩ κ ∈ Fn(i(A)); finally
Fix(i(i)) ∩ i(A) ⊆ A, so A ∈ Fn(i(A)).

Now suppose that A ∈ F+
n (κ), θ > κ is a sufficiently large ordinal, and j : Vθ → Vθ is

an elementary embedding with critical point less than κ such that A ∈ ran(j) and j(ξ) = ξ
where ξ is the Ketonen rank of Fn(A). Let Ā = j−1(A), and note that Fn(Ā) has Ketonen
rank ξ. In particular, Fn(Ā) ̸<k Fn(A), so by the proof of Lemma 3.7, Fix(j) ∩ κ ∈ F+

n (A).
Since Fix(j) ∩ κ /∈ Fn(A), it follows that A is not an atom of Fn(κ).

The analysis of Fn(κ) when n is even generalizes that of the closed unbounded filter
from the previous section, which one might think of as the case n = 0. We therefore need
to extend the Mahlo operation to higher orders of indescribability. For any S ⊆ κ,

Trn(S) = {α < κ : S ∩ α ∈ F+
n (α)}

A set S ∈ F+
n (κ) is n-thin if S ∩ Trn(S) is Fn(κ)-null.

Lemma 5.6. If S ∈ F+
n (κ), then S contains an n-thin set.

Proof. Otherwise Fn(S) <k Fn(S), which is impossible.

Lemma 5.7. Suppose n is even and F and G extend Fn(κ). If F ≤e G, either F ⊆ G or
for all S ∈ F , for a G-positive set of α < δ, S ∩ α ∈ F+

n (α).
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Proof. This is just like Lemma 3.9, with the following adjustment. We use the fact that for
j ∈ En(Vκ), {α < κ : j ↾ Vα ∈ En(Vα)} belongs to Fn(κ). This is because n is even, so the
statement that j ∈ En(Vκ) is Π1

n. As a consequence, for Fn(κ)-almost all α, if j(α) > α,
then the ultrafilter on α derived from j using α extends Fn(α).

Theorem 5.8 (Goldberg–Hou). Suppos n is even and κ > λ is Π1
n-reflecting. Then any

n-thin stationary set S ⊆ κ is the union of at most λ atoms of Fn(κ).

Proof. This is just like Theorem 3.4.

The idea behind the following theorem comes from joint work with Tom Benhamou on
the structure of filters in L.

Theorem 5.9 (Goldberg–Hou). If n is odd and κ > λ is Π1
n-indescribable, then any pair

of disjoint Σ1
n subsets of Vκ+1 can be separated by a ∆1

n subset of Vκ+1.

Proof. Let Y0 and Y1 be disjoint Σ1
n subsets of Vκ+1. For i = 0, 1, fix ai ⊆ Vκ and a

Σ1
n-formula φi such that

Yi = {y ⊆ Vκ : Vκ ⊨ φi(y, ai)}

For α < κ, let
Y α
i = {y ⊆ Vα : Vα ⊨ φi(y, ai ∩ Vα)}

Then S = {α < κ : Aα
0 ∩Aα

1 = ∅} belongs to Fn, and in particular, S ∈ F+
n−1.

Let A ⊆ S be an atom of Fn−1, and for i = 0, 1, let Zi be the set of y ⊆ Vκ such that
{α < κ : y∩Vα ∈ Y α

i } ∈ Fn−1(A). Clearly Zi is Σ
1
n and Yi ⊆ Zi for i = 0, 1. Since Fn−1(A)

is an ultrafilter, Z0 ∪ Z1 = Vκ+1.

The reflection order on Π1
n-indescribable subsets of κ is defined by S <n T if T ⊆ Trn(S)

modulo F ∗
n(κ). As in Exercise 8, we have:

Exercise 10. Suppose n is even, κ is Π1
n-indescribable, and Z is an antichain of atoms of

Fn(κ) in the reflection order. Then |Z| ≤ λ.

Proposition 5.10. Assume κ is Π1
n+1-indescribable and for any n-thin sets S0, S1 ⊆ κ,

either S0 <n S1, S1 <n S0, or S0 =n S1. Then Π1
n(Vκ+1) and Σ1

n+1(Vκ+1) have the
prewellordering property.

Proof. It is not hard to check that the relation <n is a Π1
n-prewellorder of the set T of thin

subsets of κ. Moreover, T is Π1
n-complete.

Thus by strengthening the conclusions of Theorem 5.8 and Exercise 10 in a natural way,
in analogy with the results from strong partition cardinals (Theorem 3.2 and Theorem 4.2),
we would obtain that, if κ is totally indescribable, then for all n < ω, the pointclasses
Π1

2n+1(Vκ+1) and Σ1
2n+2(Vκ+1) have the prewellordering property.

Unfortunately, this strengthening is not provable from choiceless large cardinals:

Exercise 11. It is consistent that for all regular δ > λ, Sδ
ω is not an atom of the club filter.

Actually for more complicated sets, it is open:

Question 5.11. Could the hypotheses of Proposition 5.10 follow from choiceless large
cardinals for n > 1?
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Even for n = 0, the following is open:

Question 5.12. Suppose S is a thin stationary set of ordinals of cofinality greater than λ.
Is S an atom of the club filter?4

It seems more likely that this is independent.

Question 5.13. What is the structure of indescribable ideals in Nairian models?

The n-club filter Cn(κ) on an ordinal κ is defined by recursion as follows. First, C−1(κ)
is the tail filter on κ. For n < ω, Cn(κ) is the filter generated by sets C ∈ C+

n−1(κ) such that

for all α < κ, if C ∩ α ∈ C+
n−1(α), then α ∈ C. A cardinal κ is ω-stationary if Cn(κ) is a

proper filter for all n < ω.
Note that if κ is Π1

n-reflecting, then Cn(κ) = Fn(κ). Our results perhaps suggest the
following conjecture:

Conjecture 5.14. Assume AD and V = L(R). Then for a stationary set of ω-stationary
cardinals κ < Θ, the n-club filter on κ is atomic if n is even and atomless if n is odd.

The natural place to look is at admissible Suslin cardinals with strong reflection prop-
erties.
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