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Games of fixed countable length

The Gale–Stewart game Gω·θ(A) on N of length ω · θ with payoff set A is defined as
follows: two players take turns choosing natural numbers.

I n0 n2 · · ·
II n1 n3 · · ·

I wins the game if and only if ⟨nξ | ξ < ω · θ⟩ ∈ A.

We say that a game (or its payoff set) is determined if one of the players has a winning
strategy in the game.

Main Theorem (Aguilera–G. and et al.)

For any α < ω1, the following are equivalent:

1 For all x ∈ R coding α, M♯
α(x) exists and is ω1-iterable.

2 Gω·(1+α)(A) are determined for all <ω2-Π1
1 sets A ⊆ Nω·(1+α) ≃ R1+α.
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Difference hierarchy

For a countable ordinal α, A ⊆ R is α-Γ if there is a sequence ⟨Aβ | β < α⟩ with each
Aβ ∈ Γ such that for all x ∈ R,

x ∈ A ⇐⇒ the least β such that x /∈ Aβ ∨ β = α is odd.

We write <α-Γ for
⋃

β<α β-Γ.

Theorem (Martin)

Π1
1 determinacy implies <ω2-Π1

1 determinacy (for games on N of length ω).

A small digression: Recently Aguilera obtained the optimal determinacy transfer theorem.

Theorem (Aguilera)

Let Γ = LU(Σ0
2, <ω2-Π1

1,Π
1
1) and let ∆ = {A ⊆ R | A,R \ A ∈ Γ}. Then Π1

1-determinacy
implies ∆-determinacy, but not Γ-determinacy (for games on N of length ω).

Here, W ∈ Γ if there are An ∈ Σ0
2 that are pairwise disjoint, Bn ∈ <ω2-Π1

1 (that are not
necessarily pairwise disjoint), and C ∈ Π1

1 such that

W =

(⋃
n<ω

An ∩ Bn

)
∪

(
C \

⋃
n<ω

An

)
.
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Who are the “et al.”?

Main Theorem (Aguilera–G. and et al.)

For any α < ω1, the following are equivalent:

1 For all x ∈ R coding α, M♯
α(x) exists and is ω1-iterable.

2 Gω·(1+α)(A) are determined for all <ω2-Π1
1 sets A ⊆ Nω·(1+α) ≃ R1+α.

The forward direction (Mice ⇒ Determinacy):

α = 0: Martin.

0 < α < ω: Neeman and Woodin, building on Martin–Steel’s work.

α = ω: Woodin. (I think)

α > ω: Neeman.

The reverse direction (Determinacy ⇒ Mice):

α = 0: Harrington.

0 < α < ω: Neeman and Woodin.

α = ω: Martin–Steel and Woodin.

α is additively indecomposable (i.e. α = ωβ for some β): Trang and Woodin.

α is additively decomposable: Aguilera–G., building on Aguilera–Müller’s work.
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Additively decomposable cases

Regarding the additively decomposable cases, the following were already known:

Theorem (Aguilera–Müller, “Consistency strength of long projective games”)

The following schemata are equiconsistent:

1 ZFC + {There are ωα + n Woodin cardinals | n < ω}.
2 ZFC + {Gω1+α(A) are determined for all Π1

n sets A ⊆ Rα | n < ω}.

Theorem (Aguilera–Müller, “Projective games on the reals”)

The following are equivalent:

1 Gω2(A) are determined for all projective sets A ⊆ Rω.

2 For all n < ω, M♯
n(R) exists, satisfies AD, and is countably ω1-iterable (i.e. any

countable elementary hull is ω1-iterable).

Aguilera and Müller proved more than the above statements, but still their proof did not
give the level-by-level equivalence.
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Games of length < ω3

In the proof of the main theorem, what we have actually shown the equivalence of three
items.

Theorem

For any α < ω2, the following are equivalent:

1 For all x ∈ R, M♯
α(x) exists and is ω1-iterable.

2 Gω·(1+α)(A) are determined for all A ⊆ R1+α that are <ω2-Π1
1.

3 M♯
−ω+α(R) exists, satisfies AD, and is countably ω1-iterable.

The proof is by induction on α.

(1) ⇒ (2) is due to Neeman.

To show (2) ⇒ (3), we use the existence of M♯
−ω+α(x) for all x ∈ R, so the

inductive proof would break down if α ≥ ω2, in which case −ω + α = α.

Before explaining the proof of (2) ⇒ (3), I’d like to talk about another related result.
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Characterization of ⅁(n+1)(<ω2-Π1
1)

For A ⊆ R× R and x ∈ R, Ax := {y ∈ R | ⟨x , y⟩ ∈ A} and

⅁A = {x ∈ R | I wins the game Gω(Ax)}

For any pointclass Γ, ⅁Γ is the pointclass of all ⅁A such that A ∈ Γ.
We also write ⅁(n) for ⅁ · · ·⅁ (n times).

Theorem

Let n ∈ ω and assume Π1
n+1-determinacy (of games on N of length ω).

⅁(n+1)(<ω2-Π1
1) =

⋃
m∈ω

Γn,m,

where A ∈ Γn,m if and only if there is a formula ϕ(v0, . . . , vm) such that

∀x ∈ R (x ∈ A ⇐⇒ Mn(x) |= ϕ[x , γ0, . . . , γm−1]),

where γ0, . . . , γm−1 are Silver indiscernibles for Mn(x).

Martin showed the theorem for n = 0 and Neeman showed the ⊆ direction for n > 0.
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Theorem

Let n ∈ ω and assume Π1
n+1-determinacy (of games on N of length ω).

⅁(n+1)(<ω2-Π1
1) =

⋃
m∈ω

Γn,m,

where A ∈ Γn,m if and only if there is a formula ϕ(v0, . . . , vm) such that

∀x ∈ R (x ∈ A ⇐⇒ Mn(x) |= ϕ[x , γ0, . . . , γm−1]),

where γ0, . . . , γm−1 are Silver indiscernibles for Mn(x).

Martin showed the theorem for n = 0 and Neeman showed the ⊆ direction for n > 0.
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Martin’s game argument

Theorem (Martin)

Assume that x♯ exists for all x ∈ R. Then for all x ∈ R and all formulas
ϕ(u, v0, . . . , vm−1), there is a game Gx,ϕ on N of length ω with payoff in <ω2-Π1

1(x) such
that

1 if I has a winning strategy in Gx,ϕ, then

L(x) |= ϕ[x , γ0, . . . , γm−1]

2 if II has a winning strategy in Gx,ϕ, then

L(x) ̸|= ϕ[x , γ0, . . . , γm−1]

Moreover, the definition of Gx,ϕ is uniform in x and ϕ.

By <ω2-Π1
1 determinacy, the lemma implies

⋃
m<ω Γ1,m ⊆ ⅁(<ω2-Π1

1).
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Long versions of Martin’s game

We generalize Martin’s argument:

Theorem

Let n < ω and assume that M♯
n(x) exists for all x ∈ R. Then for all x ∈ R and all

formulas ϕ(u, v0, . . . , vm−1), there is a game G n
x,ϕ on N of length ω · (n+1) with payoff in

<ω2-Π1
1(x) such that

1 if I has a winning strategy in G n
x,ϕ, then

Mn(x) |= ϕ[x , γ0, . . . , γm−1]

2 if II has a winning strategy in G n
x,ϕ, then

Mn(x) ̸|= ϕ[x , γ0, . . . , γm−1]

Moreover, the definition of G n
x,ϕ is uniform in x and ϕ.

By ⅁(n)(<ω2-Π1
1) determinacy (which follows from Π1

n+1 determinacy by
Neeman–Woodin’s determinacy transfer theorem), the lemma implies⋃

m<ω Γn,m ⊆ ⅁(n+1)(<ω2-Π1
1).
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Models played in the game G 2
x ,ϕ

Lξm+1(M
2)

M2

M1
I M1 M1

II

MI MI |δI MII |δII MII

{yι|ι<ω·(m+1)}▽{xι|ι<ω·(m+1)}

T1
⌢b1

▷

▽

◁

U1
⌢c1

T0
⌢b0

▷

T0
⌢b0 U0

⌢c0

◁

U0
⌢c0
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Long games on the reals

Theorem

Let n < ω. Suppose that there is a club C ⊆ Pω1(R) such that for all A ∈ C ,

M♯
n(A) exists and is ω1-iterable,

R ∩Mn(A) = A.

Then for all x ∈ R and all formulas ϕ, there is a game G n,R
x,ϕ on R of length ω with payoff

in ⅁(n)(<ω2-Π1
1) such that

1 if Player I has a winning strategy in G n,R
x,ϕ , then

∀∗A ∈ C
(
Mn(A) |= ϕ[x ,A, γ0, . . . , γm−1]

)
,

2 if Player II has a winning strategy in G n,R
x,ϕ , then

∀∗A ∈ C
(
Mn(A) ̸|= ϕ[x ,A, γ0, . . . , γm−1]

)
,

where γ0, . . . , γm−1 are Silver indiscernibles of Mn(A). Furthermore, the definition of G n,R
x,ϕ

is uniform in x and ϕ.
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Comments on the proof of (2) ⇒ (3)

Now we combine the previous result with the following theorem:

Theorem (Aguilera–Müller)

Let α = ω + n. Assume that Gω·(1+α)(A) are determined for all < ω2-Π1
1 sets A ⊆ R1+α.

Then there is a club C ⊆ Pω1(R) such that for all A ∈ C ,

M♯
n(A) exists and is ω1-iterable,

R ∩Mn(A) = A, and

Mn(A) |= ZF + AD.

Aguilera–Müller used weaker determinacy assumption to show this, but the above
statement is enough to get the following corollary.

Corollary

Assume that Gω·(ω+n)(A) are determined for all < ω2-Π1
1 sets A ⊆ Rω+n.

Then M♯
n(R) exists, satisfies AD, and is countably ω1-iterable.

One could generalize this result for games of length ω · (m · ω + n).
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More about M♯
n(R)

Aguilera–Müller showed the equivalence of projective deteterminacy of games on R of
length ω and the existence of M♯

n(R) for all n < ω. The following theorem is its
refinement.

Theorem

For each n < ω, the following are equivalent:

1 All games on R of length ω with payoff in ⅁(n)(<ω2-Π1
1) are determined.

2 M♯
n(R) exists and is countably ω1-iterable.

Also, we extend Martin–Steel’s result:

Theorem

Suppose that M♯
n(R) exists and is countably ω1-iterable. Then

℘(R) ∩Mn(R) = ⅁R⅁(n)(<ω2-Π1
1).

The case n = 0 is due to Martin–Steel.
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Very brief remark on the proof of (3) ⇒ (1)

Lemma

Let α < ω2. Suppose that M♯
−ω+α(R) exists, satisfies AD, and is countably ω1-iterable.

Then for all x ∈ R, M♯
α(x) exists and is ω1-iterable.

The standard argument shows that there are suitable countable premice P with ω
many Woodin cardinals that is iterable in a weak sense.

One can find P such that Mn(P) has ω + n many Woodin cardinals and is
ω1-iterable.

This argument is deeply related to the HOD analysis in Mn(R) (without assuming the
existence of M♯

ω+n). Indeed, we use some idea in Sargsyan–Müller’s work on HOD in
Mn[x , g ].
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Games of length < ω3

To deal with determinacy of games of length ω3, we need to use

(L(R, µ),∈, µ) := (L(R)[F ],∈,F ∩ L(R)[F ]),

where F is the club filter on ℘ω1(R). This is called the Solovay model (of determiancy).

Theorem (Neeman & Trang–Woodin)

The following are equivalent:

1 For all reals x , M♯

ω2(x) exists and is ω1-iterable.

2 Gω3(A) are determined for all <ω2-Π1
1 sets A ⊆ Rω2

.

3 L(R, µ) |=“AD + ω1 is R-supercompact” and (R, µ)♯ exists.

Based on this result, we can show:

Theorem

For any ω2 ≤ α < ω3, the following are equivalent:

1 For all reals x , M♯
α(x) exists and is ω1-iterable.

2 Gω·α(A) are determined for all A ⊆ Rα that are <ω2-Π1
1 in the codes.

3 M♯

−ω2+α
(R, µ) exists, is countably ω1-iterable, and satisfies “AD + ω1 is

R-supercompact.”
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Games of length ≥ ω3

To deal with even longer games, we use generalized Solovay models of the form

(L(R, µ<α),∈, µ<α) := (L(R)[F<α],∈,F<α ∩ L(R)[F<α]),

where F<α = ⟨Fβ | β < α⟩ is a sequence of the club filters Fβ on ℘ω1(R)
ωβ

. (Here, the
club filter Fβ is defined by a certain game on R of length ω1+β .)

Using these models, Trang–Woodin obtained the same type of equivalence theorem for
games of length ω1+α for any α < ω1. Building on their work, we could show the
following.

Theorem

For any α = ωβ + γ < ω1, where γ < ωβ , the following are equivalent:

1 For all x ∈ R coding α, M♯
α(x) exists and is ω1-iterable.

2 Gω·(1+α)(A) are determined for all <ω2-Π1
1 sets A ⊆ Nω·(1+α) ≃ R1+α.

3 M♯
γ(R, µ<β) exists, is countably ω1-iterable, and satisfies

“AD + ∀β < α (µβ is an ulrafilter on ℘ω1(R)
ωβ

).”
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Remaining question

Conjecture

For all 1 ≤ α < ω1, the following are equivalent:

1 Gω·α(A) are determined for all Π1
1 sets A ⊆ Rα.

2 Gω·α(A) are determined for all <ω2-Π1
1 sets A ⊆ Rα.

The conjecture is true for α < ω and additively indecomposable ordinals α.

Thank you for your attention!
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