On the influence of inner model theory on forcing and ultrafilters

Omer Ben-Neria

Hebrew University of Jerusalem

June 27, 2025

Berkeley Inner Model Theory Conference

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Two Theorems of Ralf (1/2)

Theorem (The existence of K without hand grenades)

the puzzle of constructing the core model for many strong cardinals. Specifically, we improve Jensen's notes [8] by establishing that K can be shown to exist in the theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

ZFC + "there is no sharp for an inner model with

a proper class of strong cardinals",

or

ZFC + "0" (zero hand grenade) does not exist",

Figure: From: The core model for almost linear iterations (APAL)

Two Theorems of Ralf (1/2)

Theorem (The existence of K without hand grenades)

the puzzle of constructing the core model for many strong cardinals. Specifically, we improve Jensen's notes [8] by establishing that K can be shown to exist in the theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

ZFC + "there is no sharp for an inner model with

a proper class of strong cardinals",

or LolliPoP ZFC + "0¹ (zero hand/granate) does not exist",

Figure: From: The core model for almost linear iterations (APAL)

Two Theorems of Ralf (2/2)

Theorem (Schindler)

The core model of Ult(V, U) of V by a measure U is an iterate of K.

The theorem and its restricted version by Mitchell have been a central part of the forcing theory related to structure of measures/extenders.

Typically, one starts from an extender model K = L[E], devise a special forcing extension V = K[G] (depending on the application in mind) and use Ralf's theorem and the iteration associated with $j_U \upharpoonright K$ to derive consequences for $U \in V$

Some applications

- Showing the consistency of a model where every well-founded pre-ordering (S, <_S) is isomorphic to the Mitchell order of normal measures on some measurable cardinal κ (BN)
- Determining the exact consistency strength of a model with a measurable cardinal and every ω-sequence of κ-complete measures are ≤_{RK} an extender (Hayut-Poveda)
- Characterizing, for various κ-distributive forcings Q, the consistency strength of Q being absorbed by a Tree Prikry forcing via κ-complete measures (Benhamou-Gitik-Hayut)
- Constructing a model of UA + 2^κ > κ⁺ for a measurable cardinal κ (BN-Kaplan)

Gitik and Kaplan found alternative methods for deriving similar conclusion for $j_U \upharpoonright V$ for **normal** measures $U \in V[G]$, without the core model assumptions.

- Assuming GCH_{≤κ} in the ground model V and ℙ_κ is an Easton support iteration of Prikry forcings (Gitik-Kaplan)
- Assuming GCH_{≤κ} in the ground model V and ℙ_κ is a non-stationary support iteration of Prikry forcings (Gitik-Kaplan)
- Assuming GCH_{≤κ} in the ground model V and ℙ_κ is a full-support iteration of Prikry forcings (Kaplan)

Questions:

- 1. Do these results extend to non-normal measures?
- 2. Can they extend to supercompact-type measures?

More applications of IMT to forcing theory

Theorem (BN-Kaplan)

It is consistent, relative to a 2-strong cardinal, that there is a model L[A, U] with a single measurable cardinal κ such that

- 1. There is a single normal measure U on κ
- 2. Every σ -complete measure is isomorphic to a finite power U^n of U
- 3. $2^{\kappa} = \kappa^{++}$.

Ralf theorem plays a critical role in the proof. In addition, the proof makes an important use of a fine-structure-based iteration theory, following work of Zeman.

Coding with stationary sets of low cofinality ordinals 1/3

Let P = ⟨P_α, Q_α | α ≤ κ⟩ be a poset that adds new subsets to κ and allows an ultrapower embedding j : V → M to extend to j* : V[G] → M[G*], from which we can derive V[G]-ultrafilters U* = {A ⊆ κ | γ ∈ j*(A)}.

- We would like to avoid having alternative generics to G^{*} for *j*(ℙ) over *M*, as this will result in alternatives to U^{*} that are not powers of U^{*}.
- One ingredient is using non-stationary supports (following Friedman–Magidor) to ensure uniqueness of G*.
- Another key ingredient is to incorporate self coding posets to each step Q_α, α ≤ κ.

Coding with stationary sets of low cofinality ordinals 2/3

- For α ≤ κ inaccessible, fix a sequence S^α = ⟨S^α_i | i < α⁺⟩ of pairwise disjoint nonreflecting stationary sets S^α_i ⊆ α⁺ (or α⁺⁺)
- A coding component of Q_α codes the generic information by adds club(s) disjoint from specific sets S^α_i.
- If S^α ⊆ cof(α) (consists of α-cofinality ordinals) then Q_α can be α-closed.
- ▶ The need to control non-normal measures led us to work with S_{α} consisting of small cofinality ordinals (e.g., $S^{\alpha} \subseteq cof(\omega_1)$).

The problem is that Q_α is α-distributive but no longer α-closed Safely iterating distributive posets over infinitely many cardinals requires large-cardinal strength.

Definition

A potential distributive iteration is a sequence $\vec{q} = \langle \dot{\mathbb{Q}}_n \mid n < \omega \rangle$ of names of posets, such that each \mathbb{Q}_n is (forced) to be \aleph_n -distributive.

Theorem (Adolf-BN-Schindler-Zeman)

If for every potential distributive iteration $\vec{\mathbb{Q}} \in V$ there is a cardinal preserving generic extension V[G] that contains generics to all finite initial iterations of $\vec{\mathbb{Q}}$ then Projective Determinacy (PD) holds.

Coding with stationary sets of low cofinality ordinals 3/3

- The concept that a suitable choice of a sequence *S* = ⟨S^α | α ≤ κ inaccessible⟩ of nonreflecting stationary sets could lead to a cardinal preserving Easton support iteration was discovered by Foreman-Magidor-Zeman in their work on Welch games.
- The choice of the sets S^α and the proof relies on fine structure assumption of the ground.
- In developing an analogous result for nonstationary supports. Eyal and I found the emerging iteration theory achieves new results that address some known problems.

Given a singular cardinal κ , PCF theory gives examples of cardinal preserving "short" iterations $\mathbb{P} = \langle \mathbb{Q}_{\kappa_i} \mid i < \rho \rangle$ along cofinal sequence $\langle \kappa_i \rangle_{i < \rho} \subseteq \kappa$, consisting of $|\mathbb{Q}_{\kappa_i}| \leq \kappa_i^+$, and such that \mathbb{P} changes the structure at κ^+ .

Question: Can these constructions have analogs below an inaccessible cardinal?

Theorem (BN-Kaplan)

There is an iterated forcing $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ of a Mahlo length κ of posets \mathbb{Q}_{α} of size $|\mathbb{Q}_{\alpha}| \leq \alpha^{+}$, which preserves cardinals and destroys the stationarity of some $S_{\kappa} \subseteq \kappa^{+} \cap cof(\omega_{1})$.

Theorem (BN-Kaplan)

There is an iterated forcing $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ of a Mahlo length κ of posets \mathbb{Q}_{α} of size $|\mathbb{Q}_{\alpha}| \leq \alpha^{+}$, which preserves cardinals and adds a branch to a κ^{+} -Suslin tree T.

Structures-based support 1/3

We consider a family $W \subseteq \mathcal{P}(H_{\kappa^+})$ consisting of admissible structures $X \subseteq H_{\kappa^+}$ such that each X has an ordinal definable Skolem function $h^X : \kappa \to X$.

Definition

For
$$X \in W$$
, let

 $I(X, h^X) = \{ \alpha < \kappa \mid \alpha \in h^X[\alpha] \text{ and } h^X \text{ is definable from } p \in [\alpha]^{<\omega} \}.$

For each $\alpha \in I(X, h^X)$, define the localization of X at α is

$$\bar{X}^{\alpha} = tc(h^{X}[\alpha]).$$

If W is cofinal in H_{κ^+} then the collection $\{I(X, h^X) \mid X \in W\}$ generates a κ -complete ideal, \mathcal{I}_W contained in the nonstationary ideal on κ .

Structures-based support 2/3

Definition (Suitable sequence \vec{W})

 $\overline{W} = \langle W_{\alpha} \mid \alpha \leq \kappa \text{ inaccessible} \rangle$ is suitable if for every $\beta < \alpha$ and $X \in W_{\alpha}$, if $\beta \in I(X, h^X)$ then $\overline{X}^{\beta} \in W_{\beta}$.

Definition (\vec{W} -support iteration)

A \vec{W} -support iteration $\mathbb{P}_{\kappa} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ is supported in sets $\sigma \subseteq \kappa$ satisfy that for all regular $\alpha \leq \kappa$, $\sigma \cap \alpha \in \mathcal{I}_{W_{\alpha}}$.

For many standard choices of posets \mathbb{Q}_{α} , their \vec{W} -support iteration is equivalent to a nonstationary support iteration.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Structures-based support 3/3

The \vec{W} -support formulation is helpful in forming cardinal preserving iterations of various distributive posets. The following two results are key.

Proposition

Suppose that $X \in W$ and $Z \subseteq \kappa$ is such that $X \models "Z$ is nowhere stationary". Then $Z \subseteq I(X, h^X)$.

Proposition

Suppose that $\vec{X} = \langle X_i \mid i < \eta \rangle$, $\eta < \kappa$, is an internally approachable sequence of structure $X_i \in W_{\kappa}$, then for every sufficiently large $\alpha \in I(X_0, h^{X_0})$, $\vec{X}^{\alpha} = \langle \bar{X}_i^{\alpha} \mid i < \eta \rangle \subseteq W_{\alpha}$ is also internally approachable.

Example with Fine Structure

Example

In a fine structural extender model L[E], given a sequence $\langle S^{\alpha} \mid \alpha < \kappa \rangle$ of stationary sets, let $W_{\alpha} = \{N_{\eta} \mid \text{ a collapsing structure of some } \eta \in \alpha^{+} \setminus S_{\alpha}\}.$

Choosing the sets $\langle S^{\alpha} \mid \alpha < \kappa \rangle$ to be definable from similar fine structural properties will result in comparability of the sets $\langle W_{\alpha} \mid \alpha < \kappa \rangle$. For example, set for $\alpha < \kappa$

$$S^{\alpha} = \{\eta < \alpha^{+} \mid n^{N_{\eta}} = 3, p_{n^{N_{\eta}}}^{N_{\eta}} = \emptyset, otp(c_{\eta}) = \omega_{1}\}.$$

With these assumptions we force with a \tilde{W} -supported iteration $\mathbb{P}_{\kappa} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ such that \mathbb{Q}_{α} is nontrivial only when α is regular, and then $\mathbb{Q}_{\alpha} = \mathbb{Q}(S_{\alpha})$ consists of closed bounded subsets $d \subseteq \alpha^{+} \setminus S^{\alpha}$. Assuming κ is Mahlo, the properties of the \vec{W} -based iteration shows that caridnals are not collapsed in a generic extension but S^{κ} is no longer stationary.

Question

Can we find examples with good families of structures $\vec{W} = \langle W_{\alpha} \mid \alpha < \kappa \rangle$ outside of fine structural inner models? More specifically,

Question

Can this iteration theory be applied to ground model V where $2^{\kappa} = \kappa^{++}$ and result in an iteration \mathbb{P}_{κ} that preserve cardinals and destroys a stationary subset of κ^{++} ?

Question

Can these constructions be applied in models with κ supercompact?

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●