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This talk is about the cofinality of the posets (U,⊇) and (U,⊇∗), where U is an
ultrafilter.

Definition 1

A ⊆∗-base (⊆-base) for an ultrafilter U is a a set B ⊆ U such that for every
X ∈ U there is Y ∈ B such that Y ⊆∗ X (Y ⊆ X ).

What is the cofinal structure? How to measure the cofinal complexity?

1 The order-isomorphism class of some base of U.

2 The Tukey-type of U.

In general, (1) is more precise than (2).
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The isomorphism class of a ⊆∗-generating set for U
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Kunen introduced the following natural generalization of p-points:

Definition 2 (Kunen)

We say that an ultrafilter U over κ ≥ ω is Pλ-point if (U,⊇∗) is λ-directed. A
simple Pλ-point is an ultrafilter generated by ⊇∗-decreasing sequence of length λ.

So U is a p-point if and only if U is Pκ+ -point.

Definition 3
Let D be a directed poset. We say that an ultrafilter U over κ ≥ ω is a simple
PD-point if there is a ⊆∗-base B ⊆ U, such that (B,⊇∗) ' D.

Fact 4

Assume U a normal ultrafilter (p-point suffices) over κ.

1 If U is a simple PD-point, then D is κ+-directed.

2 If 2κ = κ+, then U is simple Pκ+ -point.
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Theorem 5 (Kunen-most cited exercise)

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension
where there is an ultrafilter U on ω which is a simple Pλ-point.

To do that, Kunen iterated the Mathias forcing relative to an ultrafilter U:

Definition 6

Conditions of MU are pairs (a,A) ∈ [κ]<κ × U. The order is defined by
(a,A) ≤ (b,B) is b v a, a \ b ⊆ B and A ⊆ B.

Theorem 7 (Carlson-unpublished)

Relative to a supercomapct cardinal, it is consistent to have a measurable cardinal
κ, carrying a normal ultrafilter which is a simple Pλ-point.

⇒ o(κ) = κ++ is not enough to produce a Pκ++-point. (Gitik)

⇒ Pκ++ -point is equiconsistent with a simple Pκ++ -point.
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Theorem 8 (B.-Goldberg ’25 [5])

If there is a (simple) Pκ++-point ultrafilter over κ, then there is an inner model
where o(κ) = κ++ + 1 (i.e. there is an extender with κ++-many generators).

Proof. Suppose not, and let U be a simple Pκ++ -point. Then by Schindler and
Steel, jU � K = i : K → jU(K ) is an iteration of K by its extenders (assume the
iteration is normal) and let E0 be the first extender applied in that iteration. Then
jU � K = k ◦ jE0 , and

γ := sup{generators} ≤ (κ++)ME0 < (κ++)K

If a ∈ [γ]<ω, E0(a) ⊆ Ua, where Ua is the ultrafilter derived from jU and k(a). Let
fa : κ→ [κ]|a| witness Ua ≤RK U.
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⇒ Since E0(a) ∈ K , in V we have |E0(a)| < κ++. Since U is a Pκ++-point,
there is Ba ∈ U which is a ⊆∗-lower bound for f −1α [E0(a)].

⇒ Note that fa,Ba,P
K (κ) ∈ MU from which we can compute E0(a) ∈ MU .

Moreover, E0 � α ∈ MU for each α < γ. (indeed the critical point from jE0(α)

to jE0 is greater than α, and jE0(α) � P
K (κ) ∈ MU).

⇒ Using the Pκ++-pointness again, there is B ∈ U such that for every
a ∈ [γ]<ω, B ⊆∗ Ba. In MU , let U ′ be the filter on κ generated by B.

The contradiction is obtained by showing that E0 is definable inside MU . This is
true since E0 � α is the unique F ∈ MU such that MU |= ϕ(F , fκ,U

′, α), where
ϕ(F , fκ,U

′, α) is the statement that F is a K -extender of length α ≤ ((2κ)+)MF ,
and ∃〈ga | a ∈ [α]<ω〉 such that:

1 Fa ⊆ ga∗(U
′).

2 For each a ⊆ b, πa,b ◦ gb = ga modU ′.

3 gκ = fκ.

These condition ensure that jU � K = kF ◦ jF for some factor map kF such that
crit(kF ) ≥ (2κ)+MF ≥ α. Hence F = E0 � α.

Question
What is the consistency strength of a Pκ++-point?
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Definition 9
Let D be a directed poset. We say that an ultrafilter U over κ ≥ ω is a simple
PD-point if there is a ⊆∗-base B ⊆ U, such that (B,⊇∗) ' D.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

Theorem 10
Suppose that κ is a supercompact cardinal, then there is a forcing extension
where κ is supercompact and for every κ+-directed, well-founded poset D there is
a < κ-directed κ+-cc forcing in which there is a normal ultrafilter U which is a
simple PD-point.

Same result for κ is measurable and the club filter being a simple PD-point (i.e.
has a generating sequence isomorphic to D).
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Definition 11 (Tukey [8] ’40)

Let (P,≤P), (Q,≤Q) be two partially ordered (directed) sets. Define

(P,≤P) ≤T (Q,≤Q) iff ∃ a Tukey map f : P → Q.

Here, ’Tukey’ means ∀B ⊆ P unbounded, f [B] ⊆ Q is unbounded. Define

(P,≤P) ≡T (Q,≤Q) iff (P,≤P) ≤T (Q,≤Q) and (Q,≤Q) ≤T (P,≤P).

⇒ We focus on (U,⊇), (U,⊇∗), where U is an ultrafilter.

⇒ U ≤T V where U,V are ult. iff there is a monotone map f : V → U such
that Im(f ) is cofinal in U (i.e. ∀X ∈ U∃Y ∈ V f (Y ) ⊆ X ).

⇒ U ≤RK V implies U ≤T V .

An ultrafilter U on ω is called Tukey-top if for every ultrafilter W on ω, W ≤T U.

Theorem 12 ( Isbell [7] ’65)

There exists a Tukey-top ultrafilter on ω.
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The following regularity-like property was considered by Galvin and Kanamori in
the 70’s:

Definition 13 (Cohesive ultrafilters/ Galvin’s property)

Let F be a filter and µ ≤ λ be cardinals. We say that F is (µ, λ)-cohesive if:

∀〈Ai | i < λ〉 ∈ [F ]λ, ∃I ∈ [λ]µ,
⋂
i∈I

Ai ∈ F

⇒ U is a (µ, λ)-regular ultrafilter ⇒ U is not (µ, λ)-cohesive.

⇒ If µ′ ≤ µ ≤ λ ≤ λ′, then F is (µ, λ)-cohesive ⇒ F is (µ′, λ′)-cohesive.

Theorem 14 (B.-Dobrinen [3] ’23)

Let κ be a measurable cardinal and µ ≤ κ. TFAE for any ultrafilter U over κ:

1 U is not (µ, 2κ)-cohesive.

2 U is µ-Tukey-top i.e. U is Tukey above every µ-directed poset of cardinality
2κ.

In particular, if U is a κ-complete ultrafilter over κ which is not (κ, 2κ)-cohesive
implies that U is maximal in the Tukey order in the class of κ-complete ultrafilters.
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Theorem 15 (Galvin’s Theorem [1] ’72)

If κ<κ = κ, then a normal filter is (κ, κ+)-cohesive and in particular not maximal
in the Tukey order.

Theorem 16 (B.-Gitik 22’)

1 Suppose that κ<κ = κ. Then a product of p-points is (κ, κ+)-cohesive.

2 In L[U] every ultrafilter is (κ, κ+)-cohesive.
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Definition 17

Given W over X , (Wx)x∈X are over Y . Set∑
W

Wx =
{
A ⊆ X × Y | {x ∈ X | (A)x ∈Wx} ∈W

}
where (A)x = {y ∈ Y | 〈x , y〉 ∈ A}.

Theorem 18 (B. [2] ’23)

1 If U is an iterated sum of p-points, then U is (κ, κ+)-cohesive.

2 If there is no inner model with a superstrong cardinal, then in the
Mitchell-Steel’s L[E] every ultrafilter is (κ, κ+)-cohesive.

An iterated sum of p-points is a κ-comp. ult. over [κ]n+1 of the form∑
U

∑
Uα1

∑
Uα1,α2

· · ·
∑

Uα1,...,αn−1

Uα1,...,αn

where every Uα1,...,αk
is a p-point over δα1,...,αk

≤ κ.
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Question

Do κ-complete non-(κ, 2κ)-cohesive/κ-Tukey-top ultrafilters exist?

⇒ Cons. no, L[U].

⇒ Cons. yes, forcing from a measurable cardinal (B.-Gitik [4] ’22)

⇒ Supercompact cardinals always yes (B. [2] ’23).

Question
Can they exist in the canonical inner models?
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Theorem 19 (B.-Goldberg [6] ’23)

Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following
are equivalent for every κ-complete ultrafilter U over κ:

1 U is (κ, κ+)-cohesive.

2 U is (RK -equivalent to) an iterated sum of p-points over κ.

Theorem 20 (Gitik ’23)

Consistently, there is a κ-complete (κ, κ+)-cohesive ultrafilter which is not an
iterated sum of p-points.
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Theorem 21 (B.-Goldberg [6] ’23)

In L[E], the following are equivalent for every κ-complete ultrafilter U over κ:

1 U is (κ, κ+)-cohesive.

2 U is (RK -equivalent to) an iterated sum of p-points over κ.

Theorem 22 (Gitik ’23)

Consistently, there is a κ-complete (κ, κ+)-cohesive ultrafilter which is not an
iterated sum of p-points.
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Diamond-like principles

Definition 23

Let U be a σ-complete ultrafilter over κ. We say that ♦−thin(U) holds iff there is
A ∈ MU and λ < jU(κ) such that:

1 {jU(S) ∩ λ | S ∈ P(κ)} ⊆ A.

2 For every f : κ→ κ, jU(f )(|A|MU ) < λ.

If A = [α 7→ Aα]U and λ = [fλ]U , then the first bullet says that 〈Aα | α < κ〉 is a
guessing sequence modulo U, for subsets of S ⊆ κ where the guessing appears
and S ∩ fλ(α). The second condition says, in Kanamori/Puritz’s language of
”skies and constellations”, that |A|MU should be in a lower ”sky” than λ.

1 Suppose U ≤RK W . ♦−thin(U)⇒ ♦−thin(W ).

2 Suppose that U is an ultrafilter on λ ≤ κ and 〈Wξ | ξ < λ〉 is a sequence of
ultrafilters over κ such that for every ξ, ♦−thin(Wξ), then ♦−thin(

∑
U Wξ).

Theorem 24

If U is (κ, κ+)-cohesive then ♦−thin(U) fails.
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Definition 25

An ultrafilter U is α-sound if the map jα : P(κ)→ MU defined by
jα(S) = jU(S) ∩ α is in MU . In particular {jU(S) ∩ α | S ∈ P(κ)} ∈ U. U is
called Dodd-sound if it is [id ]U -sound.

Proposition 1

Assume U is λ-sound and for all f : κ→ κ, jU(f )(κ) < λ, then ♦−thin(U) holds.

Fact 26
For a κ-complete ultrafilter U over κ, U is a p-point if and only if there is a
function f : κ→ κ such that jU(f )(κ) ≥ [id ]U .

Corollary 27

If U is a Dodd-sound ultrafilter which is not p-point, then ♦−thin(U) holds (and in
particular U is not (κ, κ+)-cohesive).
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Definition 28
An ultrafilter U is irreducible if it is RF -minimal among non-principal ultrafilters.
Equivalently, there is no ultrapower embedding which factors jU using an internal
ultrapower.

Theorem 29 (Goldberg (UA))

For every σ-complete ultrafilter U, every ascending sequence of ultrafilters
D0 <RF D1 <RF D2... ≤RF U is finite.

Theorem 30
Assume UA and that every irreducible is Dodd-sound. If W is a κ-complete
ultrafilter over κ, then the following are equivalent:

1 W is an iterated sum of p-points ultrafilters over κ.

2 W is (κ, κ+)-cohesive.

3 ¬♦−thin(W ).
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Proof (Almost...)

⇒ From previous results, (1)⇒ (2)⇒ (3). We shall prove that (3)⇒ (1) and
let W be an ultrafilter which is not an n-fold sum of κ-complete p-points.

⇒ There is U ≤RF W which is RF -maximal and is an n-fold sum of κ-complete
p-points (If there is an non-p-point irreducible below W , we are done).

⇒ Let 〈Wξ | ξ < κ〉 be a sequence of ultrafilters over κ such that W =
∑

U Wξ.
Let Dξ ≤RF Wξ be irreducible ultrafilter over δξ which is ρξ-complete
(ρξ ≤ δξ ≤ κ). It suffices to prove that ♦−thin(

∑
U Dξ) holds.

By our choice, jU : V → MU can be factored as an iterated ultrapower, let us
assume that

V = M0
j0,1−→ M1

j1,2−→ ...
jn−1,n−→ Mn = MU

and jW = jMn

D∗ ◦ j0,n, where in Mk , jk,k+1 is the ultrapower by a κk -complete
p-point Uk over κk = j0,k(κ). Namely, that U =

∑
U0

U1.
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⇒ Let κ ≤ ρ∗ = [ξ 7→ ρξ]U ≤ [ξ 7→ δξ]U = δ∗ ≤ κn and D∗ = [ξ 7→ Dξ]U . Then
D∗ is a ρ∗-complete MU -ultrafilter over δ∗. Fix m ≤ n be such that
κm−1 < δ∗ ≤ κm, so we can rearrange the iteration:

M0
j0,m−→ Mm

jMm
D∗−→ MMm

D∗

jMm
D∗ (jm,n)−→ MW

so that jW = jMm

D∗ (jm,n) ◦ jMm

D∗ ◦ j0,m−1.
⇒ In the complete proof, we need to consider several cases for the possible

position of ρ∗ and δ∗, with respect to κm−1 and κm. Let us cover two of
them:

(1) κm−1 < ρ∗ ≤ δ∗ < κm. In this case, the two-step iteration jMm

D∗ ◦ jm−1,m is the
ultrapower by a κm−1-complete p-point on κm−1, contradicting the
assumption about W :

Mm−1

κ̄ = κm−1 κm−1
ρ∗
δ∗

κm κm

Mm

κm−1
ρ∗
δ∗

κm

MMm

D∗

α
j(f )(κ̄)

jD∗(j(f ))(κ̄)
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(2) Assume that ρ∗ = δ∗ = κm. Working in Mm, D∗ is a κm-complete ultrafilter
over κm and by the maximality of U, D∗ cannot be a p-point. Since D∗ is
irreducible, it is Dodd-sound, and therefore MU |= ♦−thin(D∗). Hence
♦−thin(

∑
U D∗). As wanted.

(3) We omit the cases ρ∗ ≤ κm−1 < δ∗ ≤ κm−1 and κm−1 < ρ∗ < δ∗ = κm.

Conjecture 1

If U is a normal ultrafilter on Pκ(λ) then U is not (κ+, λ+)-cohesive

Theorem 31 (B.-Weltsch 25+)

If U is a normal ultrafilter on Pκ(κ+) then U is (κ, 2κ
+

)-cohesive.
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Thank you for your attention!
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