Cofinalities of ultrafilters

Tom Benhamou

Department of Mathematics, Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2346680

June 23, 2025

・ロト ・日下・ ・ ヨト・

Definition 1

A \subseteq *-base (\subseteq -base) for an ultrafilter U is a a set $B \subseteq U$ such that for every $X \in U$ there is $Y \in B$ such that $Y \subseteq$ * X ($Y \subseteq X$).

What is the cofinal structure? How to measure the cofinal complexity?

Definition 1

A \subseteq *-base (\subseteq -base) for an ultrafilter U is a a set $B \subseteq U$ such that for every $X \in U$ there is $Y \in B$ such that $Y \subseteq$ * X ($Y \subseteq X$).

What is the cofinal structure? How to measure the cofinal complexity?

• The order-isomorphism class of some base of U.

Definition 1

A \subseteq *-base (\subseteq -base) for an ultrafilter U is a a set $B \subseteq U$ such that for every $X \in U$ there is $Y \in B$ such that $Y \subseteq$ * X ($Y \subseteq X$).

What is the cofinal structure? How to measure the cofinal complexity?

- The order-isomorphism class of some base of U.
- **2** The Tukey-type of U.

Definition 1

A \subseteq *-base (\subseteq -base) for an ultrafilter U is a a set $B \subseteq U$ such that for every $X \in U$ there is $Y \in B$ such that $Y \subseteq$ * X ($Y \subseteq X$).

What is the cofinal structure? How to measure the cofinal complexity?

- The order-isomorphism class of some base of U.
- **2** The Tukey-type of U.

In general, (1) is more precise than (2).

The isomorphism class of a \subseteq^* -generating set for U

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

E ► E ∽ Q (~ June 23, 2025 4/25

・ロト ・四ト ・ヨト ・ヨト

Definition 2 (Kunen)

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \geq \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed.

・ロト ・回ト ・ヨト・

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a *p*-point if and only if U is P_{κ^+} -point.

Definition 3

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 3

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 3

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq *-base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

Fact 4

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 3

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq *-base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

Fact 4

Assume U a normal ultrafilter (p-point suffices) over κ .

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 3

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq *-base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

Fact 4

Assume U a normal ultrafilter (p-point suffices) over κ .

• If U is a simple $P_{\mathbb{D}}$ -point, then \mathbb{D} is κ^+ -directed.

Definition 2 (Kunen)

We say that an ultrafilter U over $\kappa \ge \omega$ is P_{λ} -point if (U, \supseteq^*) is λ -directed. A simple P_{λ} -point is an ultrafilter generated by \supseteq^* -decreasing sequence of length λ .

So U is a p-point if and only if U is P_{κ^+} -point.

Definition 3

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq *-base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

Fact 4

Assume U a normal ultrafilter (p-point suffices) over κ .

• If U is a simple
$$P_{\mathbb{D}}$$
-point, then \mathbb{D} is κ^+ -directed.

2 If $2^{\kappa} = \kappa^+$, then U is simple P_{κ^+} -point.

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

্≣ ▶ ≣ ∽ি ৭. ে June 23, 2025 5/25

・ロト ・四ト ・ヨト ・ヨト

Benhamou, T. Rutgers

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*:

Definition 6

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$.

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

Theorem 7 (Carlson-unpublished)

Relative to a supercomapct cardinal, it is consistent to have a measurable cardinal κ , carrying a normal ultrafilter which is a simple P_{λ} -point.

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

Theorem 7 (Carlson-unpublished)

Relative to a supercomapct cardinal, it is consistent to have a measurable cardinal κ , carrying a normal ultrafilter which is a simple P_{λ} -point.

 $\Rightarrow o(\kappa) = \kappa^{++}$ is not enough to produce a $P_{\kappa^{++}}$ -point. (Gitik)

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the Mathias forcing relative to an ultrafilter U:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

Theorem 7 (Carlson-unpublished)

Relative to a supercomapct cardinal, it is consistent to have a measurable cardinal κ , carrying a normal ultrafilter which is a simple P_{λ} -point.

 $\Rightarrow o(\kappa) = \kappa^{++}$ is not enough to produce a $P_{\kappa^{++}}$ -point. (Gitik)

 \Rightarrow $P_{\kappa^{++}}$ -point is equiconsistent with a simple $P_{\kappa^{++}}$ -point.

Let λ be a cardinal of uncountable cofinality. Then there is a ccc forcing extension where there is an ultrafilter U on ω which is a simple P_{λ} -point.

To do that, Kunen iterated the Mathias forcing relative to an ultrafilter U:

Definition 6

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

Theorem 7 (Carlson-unpublished)

Relative to a supercomapct cardinal, it is consistent to have a measurable cardinal κ , carrying a normal ultrafilter which is a simple P_{λ} -point.

 $\Rightarrow o(\kappa) = \kappa^{++}$ is not enough to produce a $P_{\kappa^{++}}$ -point. (Gitik)

 \Rightarrow $P_{\kappa^{++}}$ -point is equiconsistent with a simple $P_{\kappa^{++}}$ -point.

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

▲ ■ ▶ ■ ∽ Q ○
June 23, 2025 6/25

・ロト ・四ト ・ヨト ・ヨト

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

イロト イ団ト イヨト イヨト

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof.

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof. Suppose not, and let U be a simple $P_{\kappa^{++}}$ -point.

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof. Suppose not, and let U be a simple $P_{\kappa^{++}}$ -point. Then by Schindler and Steel, $j_U \upharpoonright K = i : K \to j_U(K)$ is an iteration of K by its extenders (assume the iteration is normal) and let E_0 be the first extender applied in that iteration.

< ロ > < 同 > < 回 > < 回 >

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof. Suppose not, and let U be a simple $P_{\kappa^{++}}$ -point. Then by Schindler and Steel, $j_U \upharpoonright K = i : K \to j_U(K)$ is an iteration of K by its extenders (assume the iteration is normal) and let E_0 be the first extender applied in that iteration. Then $j_U \upharpoonright K = k \circ j_{E_0}$, and

< ロ > < 同 > < 回 > < 回 >

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof. Suppose not, and let U be a simple $P_{\kappa^{++}}$ -point. Then by Schindler and Steel, $j_U \upharpoonright K = i : K \to j_U(K)$ is an iteration of K by its extenders (assume the iteration is normal) and let E_0 be the first extender applied in that iteration. Then $j_U \upharpoonright K = k \circ j_{E_0}$, and

$$\gamma := \sup\{\mathsf{generators}\} \le (\kappa^{++})^{M_{E_0}} < (\kappa^{++})^K$$
Theorem 8 (B.-Goldberg '25 [5])

If there is a (simple) $P_{\kappa^{++}}$ -point ultrafilter over κ , then there is an inner model where $o(\kappa) = \kappa^{++} + 1$ (i.e. there is an extender with κ^{++} -many generators).

Proof. Suppose not, and let U be a simple $P_{\kappa^{++}}$ -point. Then by Schindler and Steel, $j_U \upharpoonright K = i : K \to j_U(K)$ is an iteration of K by its extenders (assume the iteration is normal) and let E_0 be the first extender applied in that iteration. Then $j_U \upharpoonright K = k \circ j_{E_0}$, and

$$\gamma := \sup\{\text{generators}\} \le (\kappa^{++})^{M_{E_0}} < (\kappa^{++})^K$$

If $a \in [\gamma]^{<\omega}$, $E_0(a) \subseteq U_a$, where U_a is the ultrafilter derived from j_U and k(a). Let $f_a : \kappa \to [\kappa]^{|a|}$ witness $U_a \leq_{RK} U$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

■ > ■
> Q
> June 23, 2025 7/25

・ロト ・四ト ・ヨト ・ヨト

 \Rightarrow Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$.

< □ > < □ > < □ > < □ > < □ >

⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a ⊆*-lower bound for $f_\alpha^{-1}[E_0(a)]$.

⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a ⊆*-lower bound for $f_{\alpha}^{-1}[E_0(a)]$.

 \Rightarrow Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$.

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a ⊆*-lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a ⊆*-lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$.

・ロト ・ 同ト ・ ヨト ・ ヨト

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a ⊆*-lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

・ロト ・ 同ト ・ ヨト ・ ヨト

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

The contradiction is obtained by showing that E_0 is definable inside M_U .

< ロ > < 同 > < 回 > < 回 >

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

•
$$F_a \subseteq g_{a*}(U').$$

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

•
$$F_a \subseteq g_{a*}(U')$$

2 For each
$$a \subseteq b$$
, $\pi_{a,b} \circ g_b = g_a \mod U'$.

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

•
$$F_a \subseteq g_{a*}(U')$$

So For each
$$a \subseteq b$$
, $\pi_{a,b} \circ g_b = g_a \mod U'$.

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

•
$$F_a \subseteq g_{a*}(U')$$

Sore each
$$a \subseteq b$$
, $\pi_{a,b} \circ g_b = g_a \mod U'$.

These condition ensure that $j_U \upharpoonright K = k_F \circ j_F$ for some factor map k_F such that $crit(k_F) \ge (2^{\kappa})^{+M_F} \ge \alpha$. Hence $F = E_0 \upharpoonright \alpha$. \Box

ヘロト 人間 ト 人目 ト 人目 トー

- ⇒ Since $E_0(a) \in K$, in V we have $|E_0(a)| < \kappa^{++}$. Since U is a $P_{\kappa^{++}}$ -point, there is $B_a \in U$ which is a \subseteq^* -lower bound for $f_\alpha^{-1}[E_0(a)]$.
- ⇒ Note that $f_a, B_a, P^K(\kappa) \in M_U$ from which we can compute $E_0(a) \in M_U$. Moreover, $E_0 \upharpoonright \alpha \in M_U$ for each $\alpha < \gamma$. (indeed the critical point from $j_{E_0(\alpha)}$ to j_{E_0} is greater than α , and $j_{E_0(\alpha)} \upharpoonright P^K(\kappa) \in M_U$).
- ⇒ Using the $P_{\kappa^{++}}$ -pointness again, there is $B \in U$ such that for every $a \in [\gamma]^{<\omega}$, $B \subseteq^* B_a$. In M_U , let U' be the filter on κ generated by B.

•
$$F_a \subseteq g_{a*}(U')$$

So For each
$$a \subseteq b$$
, $\pi_{a,b} \circ g_b = g_a \mod U'$.

These condition ensure that $j_U \upharpoonright K = k_F \circ j_F$ for some factor map k_F such that $crit(k_F) \ge (2^{\kappa})^{+M_F} \ge \alpha$. Hence $F = E_0 \upharpoonright \alpha$. \Box

Question

What is the consistency strength of a $P_{\kappa^{++}}$ -point?

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

(∃) ≥ (?) < (?)
June 23, 2025 8/25

・ロト ・四ト ・ヨト ・ヨト

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

イロト イヨト イヨト イヨ

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-

・ロト ・日下・ ・ ヨト・

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

・ロト ・日下・ ・ ヨト・

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

Theorem 10

イロト イヨト イヨト イヨ

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

Theorem 10

Suppose that κ is a supercompact cardinal,

・ロト ・日下・ ・ ヨト・

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

Theorem 10

Suppose that κ is a supercompact cardinal, then there is a forcing extension where κ is supercompact and for every κ^+ -directed, well-founded poset \mathbb{D} there is a $< \kappa$ -directed κ^+ -cc forcing in which there is a normal ultrafilter U which is a simple $P_{\mathbb{D}}$ -point.

イロト 不得 トイヨト イヨト

Let \mathbb{D} be a directed poset. We say that an ultrafilter U over $\kappa \geq \omega$ is a simple $P_{\mathbb{D}}$ -point if there is a \subseteq^* -base $\mathcal{B} \subseteq U$, such that $(\mathcal{B}, \supseteq^*) \simeq \mathbb{D}$.

The following is joint with Cummings, Goldberg, Hayut, and Poveda-Thanks AIM!

Theorem 10

Suppose that κ is a supercompact cardinal, then there is a forcing extension where κ is supercompact and for every κ^+ -directed, well-founded poset \mathbb{D} there is a $< \kappa$ -directed κ^+ -cc forcing in which there is a normal ultrafilter U which is a simple $P_{\mathbb{D}}$ -point.

Same result for κ is measurable and **the club filter** being a simple $P_{\mathbb{D}}$ -point (i.e. has a generating sequence isomorphic to \mathbb{D}).

< □ > < □ > < □ > < □ > < □ >

The Tukey order

メロト スピト メヨト メヨト

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

Benhamou, T. Rutgers

<ロ> (日) (日) (日) (日) (日)

Let $(P,\leq_P), (Q,\leq_Q)$ be two partially ordered (directed) sets. Define

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f: P \to Q$.

< □ > < □ > < □ > < □ > < □ >

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f: P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded.

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f : P \to Q$. Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

 \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f : P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- ⇒ $U \leq_T V$ where U, V are ult. iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f : P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- ⇒ $U \leq_T V$ where U, V are ult. iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).
- $\Rightarrow U \leq_{RK} V$ implies $U \leq_T V$.

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f: P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- ⇒ $U \leq_T V$ where U, V are ult. iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).
- $\Rightarrow U \leq_{RK} V \text{ implies } U \leq_T V.$

An ultrafilter U on ω is called *Tukey-top* if for every ultrafilter W on ω , $W \leq_T U$.

イロン イロン イヨン イヨン

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f : P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- ⇒ $U \leq_T V$ where U, V are ult. iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).
- $\Rightarrow U \leq_{RK} V \text{ implies } U \leq_T V.$

An ultrafilter U on ω is called *Tukey-top* if for every ultrafilter W on ω , $W \leq_T U$.

Theorem 12 (Isbell [7] '65)

・ロト ・回 ト ・ヨト ・ヨト

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f: P \to Q$.

Here, 'Tukey' means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- ⇒ $U \leq_T V$ where U, V are ult. iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).
- $\Rightarrow U \leq_{RK} V \text{ implies } U \leq_T V.$

An ultrafilter U on ω is called *Tukey-top* if for every ultrafilter W on ω , $W \leq_T U$.

Theorem 12 (Isbell [7] '65)

There exists a Tukey-top ultrafilter on ω .

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト
Definition 13 (Cohesive ultrafilters/ Galvin's property)

・ロト ・回ト ・ヨト

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

イロト イヨト イヨト

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda},$$

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

 $\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu},$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 \Rightarrow U is a (μ, λ) -regular ultrafilter \Rightarrow U is not (μ, λ) -cohesive.

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 $\begin{array}{l} \Rightarrow \ U \text{ is a } (\mu,\lambda)\text{-regular ultrafilter} \Rightarrow U \text{ is not } (\mu,\lambda)\text{-cohesive.} \\ \Rightarrow \ \text{If } \mu' \leq \mu \leq \lambda \leq \lambda', \text{ then } \mathcal{F} \text{ is } (\mu,\lambda)\text{-cohesive} \Rightarrow \mathcal{F} \text{ is } (\mu',\lambda')\text{-cohesive.} \end{array}$

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

⇒ U is a (μ, λ) -regular ultrafilter ⇒ U is not (μ, λ) -cohesive. ⇒ If $\mu' \le \mu \le \lambda \le \lambda'$, then \mathcal{F} is (μ, λ) -cohesive ⇒ \mathcal{F} is (μ', λ') -cohesive.

Theorem 14 (B.-Dobrinen [3] '23)

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 \Rightarrow U is a (μ, λ) -regular ultrafilter \Rightarrow U is not (μ, λ) -cohesive.

 $\Rightarrow \text{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \text{, then } \mathcal{F} \text{ is } (\mu, \lambda) \text{-cohesive} \Rightarrow \mathcal{F} \text{ is } (\mu', \lambda') \text{-cohesive}.$

Theorem 14 (B.-Dobrinen [3] '23)

Let κ be a measurable cardinal and $\mu \leq \kappa$. TFAE for any ultrafilter U over κ :

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 \Rightarrow U is a (μ, λ) -regular ultrafilter \Rightarrow U is not (μ, λ) -cohesive.

 $\Rightarrow \text{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \text{, then } \mathcal{F} \text{ is } (\mu, \lambda) \text{-cohesive} \Rightarrow \mathcal{F} \text{ is } (\mu', \lambda') \text{-cohesive}.$

Theorem 14 (B.-Dobrinen [3] '23)

Let κ be a measurable cardinal and $\mu \leq \kappa$. TFAE for any ultrafilter U over κ : • U is not $(\mu, 2^{\kappa})$ -cohesive.

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 \Rightarrow U is a (μ, λ) -regular ultrafilter \Rightarrow U is not (μ, λ) -cohesive.

 $\Rightarrow \text{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \text{, then } \mathcal{F} \text{ is } (\mu, \lambda) \text{-cohesive} \Rightarrow \mathcal{F} \text{ is } (\mu', \lambda') \text{-cohesive}.$

Theorem 14 (B.-Dobrinen [3] '23)

Let κ be a measurable cardinal and $\mu \leq \kappa$. TFAE for any ultrafilter U over κ :

- U is not $(\mu, 2^{\kappa})$ -cohesive.
- U is μ-Tukey-top i.e. U is Tukey above every μ-directed poset of cardinality 2^κ.

< □ > < □ > < □ > < □ > < □ >

Definition 13 (Cohesive ultrafilters/ Galvin's property)

Let \mathcal{F} be a filter and $\mu \leq \lambda$ be cardinals. We say that \mathcal{F} is (μ, λ) -cohesive if:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda}, \ \exists I \in [\lambda]^{\mu}, \ \bigcap_{i \in I} A_i \in \mathcal{F}$$

 \Rightarrow U is a (μ, λ) -regular ultrafilter \Rightarrow U is not (μ, λ) -cohesive.

 $\Rightarrow \text{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \text{, then } \mathcal{F} \text{ is } (\mu, \lambda) \text{-cohesive} \Rightarrow \mathcal{F} \text{ is } (\mu', \lambda') \text{-cohesive}.$

Theorem 14 (B.-Dobrinen [3] '23)

Let κ be a measurable cardinal and $\mu \leq \kappa$. TFAE for any ultrafilter U over κ :

- U is not $(\mu, 2^{\kappa})$ -cohesive.
- **2** *U* is μ -Tukey-top i.e. *U* is Tukey above every μ -directed poset of cardinality 2^{κ} .

In particular, if U is a κ -complete ultrafilter over κ which is not $(\kappa, 2^{\kappa})$ -cohesive implies that U is maximal in the Tukey order in the class of κ -complete ultrafilters.

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

If $\kappa^{<\kappa} = \kappa$, then a normal filter is (κ, κ^+) -cohesive and in particular not maximal in the Tukey order.

If $\kappa^{<\kappa} = \kappa$, then a normal filter is (κ, κ^+) -cohesive and in particular not maximal in the Tukey order.

Theorem 16 (B.-Gitik 22')

< □ > < □ > < □ > < □ > < □ >

If $\kappa^{<\kappa} = \kappa$, then a normal filter is (κ, κ^+) -cohesive and in particular not maximal in the Tukey order.

Theorem 16 (B.-Gitik 22')

() Suppose that $\kappa^{<\kappa} = \kappa$. Then a product of p-points is (κ, κ^+) -cohesive.

If $\kappa^{<\kappa} = \kappa$, then a normal filter is (κ, κ^+) -cohesive and in particular not maximal in the Tukey order.

Theorem 16 (B.-Gitik 22')

() Suppose that $\kappa^{<\kappa} = \kappa$. Then a product of p-points is (κ, κ^+) -cohesive.

2 In L[U] every ultrafilter is (κ, κ^+) -cohesive.

< ロ > < 同 > < 回 > < 回 >

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \big\{ A \subseteq X \times Y \mid \{ x \in X \mid (A)_x \in W_x \} \in W \big\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \big\{ A \subseteq X \times Y \mid \{ x \in X \mid (A)_x \in W_x \} \in W \big\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \big\{ A \subseteq X \times Y \mid \{ x \in X \mid (A)_x \in W_x \} \in W \big\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

• If U is an iterated sum of p-points, then U is (κ, κ^+) -cohesive.

イロン イ団 とく ヨン イヨン

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \big\{ A \subseteq X \times Y \mid \{ x \in X \mid (A)_x \in W_x \} \in W \big\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

• If U is an iterated sum of p-points, then U is (κ, κ^+) -cohesive.

 If there is no inner model with a superstrong cardinal, then in the Mitchell-Steel's L[E] every ultrafilter is (κ, κ⁺)-cohesive.

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \left\{ A \subseteq X imes Y \mid \{x \in X \mid (A)_x \in W_x\} \in W
ight\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

• If U is an iterated sum of p-points, then U is (κ, κ^+) -cohesive.

 If there is no inner model with a superstrong cardinal, then in the Mitchell-Steel's L[E] every ultrafilter is (κ, κ⁺)-cohesive.

An iterated sum of *p*-points is a κ -comp. ult. over $[\kappa]^{n+1}$ of the form

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \big\{ A \subseteq X \times Y \mid \{ x \in X \mid (A)_x \in W_x \} \in W \big\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

• If U is an iterated sum of p-points, then U is (κ, κ^+) -cohesive.

 If there is no inner model with a superstrong cardinal, then in the Mitchell-Steel's L[E] every ultrafilter is (κ, κ⁺)-cohesive.

An iterated sum of *p*-points is a κ -comp. ult. over $[\kappa]^{n+1}$ of the form

$$\sum_{U}\sum_{U_{\alpha_1}}\sum_{U_{\alpha_1,\alpha_2}}\cdots\sum_{U_{\alpha_1,\ldots,\alpha_{n-1}}}U_{\alpha_1,\ldots,\alpha_n}$$

Given W over X, $(W_x)_{x \in X}$ are over Y. Set

$$\sum_{W} W_x = \left\{ A \subseteq X imes Y \mid \{x \in X \mid (A)_x \in W_x\} \in W
ight\}$$

where $(A)_x = \{y \in Y \mid \langle x, y \rangle \in A\}.$

Theorem 18 (B. [2] '23)

• If U is an iterated sum of p-points, then U is (κ, κ^+) -cohesive.

 If there is no inner model with a superstrong cardinal, then in the Mitchell-Steel's L[E] every ultrafilter is (κ, κ⁺)-cohesive.

An iterated sum of *p*-points is a κ -comp. ult. over $[\kappa]^{n+1}$ of the form

$$\sum_{U}\sum_{U_{\alpha_1}}\sum_{U_{\alpha_1,\alpha_2}}\cdots\sum_{U_{\alpha_1,\ldots,\alpha_{n-1}}}U_{\alpha_1,\ldots,\alpha_n}$$

where every $U_{\alpha_1,...,\alpha_k}$ is a *p*-point over $\delta_{\alpha_1,...,\alpha_k} \leq \kappa$.

イロン イロン イヨン イヨン

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

Do κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive/ κ -Tukey-top ultrafilters exist?

Do κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive/ κ -Tukey-top ultrafilters exist?

 \Rightarrow Cons. no, L[U].

< □ > < □ > < □ > < □ > < □ >

Do κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive/ κ -Tukey-top ultrafilters exist?

- \Rightarrow Cons. no, L[U].
- \Rightarrow Cons. yes, forcing from a measurable cardinal (B.-Gitik [4] '22)

< □ > < □ > < □ > < □ > < □ >

Do κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive/ κ -Tukey-top ultrafilters exist?

- \Rightarrow Cons. no, L[U].
- \Rightarrow Cons. yes, forcing from a measurable cardinal (B.-Gitik [4] '22)
- \Rightarrow Supercompact cardinals always yes (B. [2] '23).

Do κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive/ κ -Tukey-top ultrafilters exist?

- \Rightarrow Cons. no, L[U].
- \Rightarrow Cons. yes, forcing from a measurable cardinal (B.-Gitik [4] '22)
- \Rightarrow Supercompact cardinals always yes (B. [2] '23).

Question

Can they exist in the canonical inner models?

イロト イ団ト イヨト イヨ

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

Theorem 19 (B.-Goldberg [6] '23)

Theorem 19 (B.-Goldberg [6] '23)

Assume UA and every irreducible ultrafilter is Dodd-sound.
Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following are equivalent for every κ -complete ultrafilter U over κ :

Image: A math the second se

Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following are equivalent for every κ -complete ultrafilter U over κ :

• U is (κ, κ^+) -cohesive.

<ロト < 回 > < 回 > < 回 > < 回 >

Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following are equivalent for every κ -complete ultrafilter U over κ :

- U is (κ, κ^+) -cohesive.
- **2** U is (RK-equivalent to) an iterated sum of p-points over κ .

Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following are equivalent for every κ -complete ultrafilter U over κ :

- U is (κ, κ^+) -cohesive.
- **2** U is (RK-equivalent to) an iterated sum of p-points over κ .

Theorem 20 (Gitik '23)

Assume UA and every irreducible ultrafilter is Dodd-sound. Then the following are equivalent for every κ -complete ultrafilter U over κ :

- U is (κ, κ^+) -cohesive.
- **2** U is (RK-equivalent to) an iterated sum of p-points over κ .

Theorem 20 (Gitik '23)

Consistently, there is a κ -complete (κ, κ^+) -cohesive ultrafilter which is not an iterated sum of p-points.

In $L[\mathbb{E}]$, the following are equivalent for every κ -complete ultrafilter U over κ :

- U is (κ, κ^+) -cohesive.
- **2** U is (RK-equivalent to) an iterated sum of p-points over κ .

Theorem 22 (Gitik '23)

Consistently, there is a κ -complete (κ, κ^+)-cohesive ultrafilter which is not an iterated sum of p-points.

Benhamou, T. Rutgers

< □ > < □ > < □ > < □ > < □ >

Definition 23

Inner Model Theory Conference , Berkeley June 2025

Definition 23

Let U be a σ -complete ultrafilter over κ .

・ロト ・日下・ ・ ヨト・

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

 $\{ j_U(S) \cap \lambda \mid S \in P(\kappa) \} \subseteq A.$

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

2 For every $f : \kappa \to \kappa$, $j_U(f)(|A|^{M_U}) < \lambda$.

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

- For every $f: \kappa \to \kappa$, $j_U(f)(|A|^{M_U}) < \lambda$.

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$,

<ロ> <問> <問> < 回> < 回< < 回

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

- For every $f: \kappa \to \kappa$, $j_U(f)(|A|^{M_U}) < \lambda$.

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} | \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$.

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$. The second condition says, in Kanamori/Puritz's language of "skies and constellations", that $|A|^{M_U}$ should be in a lower "sky" than λ .

< ロ > < 同 > < 回 > < 回 >

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$. The second condition says, in Kanamori/Puritz's language of "skies and constellations", that $|A|^{M_U}$ should be in a lower "sky" than λ .

• Suppose $U \leq_{RK} W$. $\Diamond_{thin}^{-}(U) \Rightarrow \Diamond_{thin}^{-}(W)$.

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

- For every $f: \kappa \to \kappa, j_U(f)(|A|^{M_U}) < \lambda$.

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$. The second condition says, in Kanamori/Puritz's language of "skies and constellations", that $|A|^{M_U}$ should be in a lower "sky" than λ .

- Suppose $U \leq_{RK} W$. $\Diamond_{\text{thin}}^{-}(U) \Rightarrow \Diamond_{\text{thin}}^{-}(W)$.
- Suppose that U is an ultrafilter on λ ≤ κ and ⟨W_ξ | ξ < λ⟩ is a sequence of ultrafilters over κ such that for every ξ, δ⁻_{thin}(W_ξ), then δ⁻_{thin}(Σ_U W_ξ).

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

- For every $f: \kappa \to \kappa, j_U(f)(|A|^{M_U}) < \lambda$.

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$. The second condition says, in Kanamori/Puritz's language of "skies and constellations", that $|A|^{M_U}$ should be in a lower "sky" than λ .

- Suppose $U \leq_{RK} W$. $\Diamond_{\text{thin}}^{-}(U) \Rightarrow \Diamond_{\text{thin}}^{-}(W)$.
- Suppose that U is an ultrafilter on λ ≤ κ and ⟨W_ξ | ξ < λ⟩ is a sequence of ultrafilters over κ such that for every ξ, δ⁻_{thin}(W_ξ), then δ⁻_{thin}(∑_U W_ξ).

Theorem 24

Definition 23

Let U be a σ -complete ultrafilter over κ . We say that $\Diamond_{\text{thin}}^{-}(U)$ holds iff there is $A \in M_U$ and $\lambda < j_U(\kappa)$ such that:

- For every $f: \kappa \to \kappa, j_U(f)(|A|^{M_U}) < \lambda$.

If $A = [\alpha \mapsto A_{\alpha}]_U$ and $\lambda = [f_{\lambda}]_U$, then the first bullet says that $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a guessing sequence modulo U, for subsets of $S \subseteq \kappa$ where the guessing appears and $S \cap f_{\lambda}(\alpha)$. The second condition says, in Kanamori/Puritz's language of "skies and constellations", that $|A|^{M_U}$ should be in a lower "sky" than λ .

- Suppose $U \leq_{RK} W$. $\Diamond_{\text{thin}}^{-}(U) \Rightarrow \Diamond_{\text{thin}}^{-}(W)$.
- Suppose that U is an ultrafilter on λ ≤ κ and ⟨W_ξ | ξ < λ⟩ is a sequence of ultrafilters over κ such that for every ξ, δ⁻_{thin}(W_ξ), then δ⁻_{thin}(∑_U W_ξ).

Theorem 24

If U is (κ, κ^+) -cohesive then $\Diamond_{thin}^-(U)$ fails.

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

イロト 不良 とくほとくほう

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U .

< □ > < □ > < □ > < □ > < □ >

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

< □ > < □ > < □ > < □ > < □ >

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

Assume U is λ -sound and for all $f : \kappa \to \kappa$, $j_U(f)(\kappa) < \lambda$, then $\Diamond_{thin}^-(U)$ holds.

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

Assume U is λ -sound and for all $f : \kappa \to \kappa$, $j_U(f)(\kappa) < \lambda$, then $\Diamond_{thin}^-(U)$ holds.

Fact 26

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

Assume U is λ -sound and for all $f : \kappa \to \kappa$, $j_U(f)(\kappa) < \lambda$, then $\Diamond_{thin}^-(U)$ holds.

Fact 26

For a κ -complete ultrafilter U over κ , U is a p-point if and only if there is a function $f : \kappa \to \kappa$ such that $j_U(f)(\kappa) \ge [id]_U$.

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

Assume U is λ -sound and for all $f : \kappa \to \kappa$, $j_U(f)(\kappa) < \lambda$, then $\Diamond_{thin}^-(U)$ holds.

Fact 26

For a κ -complete ultrafilter U over κ , U is a p-point if and only if there is a function $f : \kappa \to \kappa$ such that $j_U(f)(\kappa) \ge [id]_U$.

Corollary 27

An ultrafilter U is α -sound if the map $j^{\alpha} : P(\kappa) \to M_U$ defined by $j^{\alpha}(S) = j_U(S) \cap \alpha$ is in M_U . In particular $\{j_U(S) \cap \alpha \mid S \in P(\kappa)\} \in U$. U is called Dodd-sound if it is $[id]_U$ -sound.

Proposition 1

Assume U is λ -sound and for all $f : \kappa \to \kappa$, $j_U(f)(\kappa) < \lambda$, then $\Diamond_{thin}^-(U)$ holds.

Fact 26

For a κ -complete ultrafilter U over κ , U is a p-point if and only if there is a function $f : \kappa \to \kappa$ such that $j_U(f)(\kappa) \ge [id]_U$.

Corollary 27

If U is a Dodd-sound ultrafilter which is not p-point, then $\Diamond_{thin}^{-}(U)$ holds (and in particular U is not (κ, κ^{+}) -cohesive).

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

イロト 不良 とくほとくほう

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

・ロト ・日下・ ・ ヨト・

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

・ロト ・日下・ ・ ヨト・

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

イロト イヨト イヨト イヨ

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

Theorem 30

<ロ> <問> <問> < 回> < 回< < 回

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

Theorem 30

Assume UA and that every irreducible is Dodd-sound.

イロト イヨト イヨト イヨ

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

Theorem 30

Assume UA and that every irreducible is Dodd-sound. If W is a κ -complete ultrafilter over κ , then the following are equivalent:

<ロ> <問> <問> < 回> < 回< < 回
Definition 28

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

Theorem 30

Assume UA and that every irreducible is Dodd-sound. If W is a κ -complete ultrafilter over κ , then the following are equivalent:

- **(**) *W* is an iterated sum of p-points ultrafilters over κ .
- **2** W is (κ, κ^+) -cohesive.

Definition 28

An ultrafilter U is *irreducible* if it is *RF*-minimal among non-principal ultrafilters. Equivalently, there is no ultrapower embedding which factors j_U using an internal ultrapower.

Theorem 29 (Goldberg (UA))

For every σ -complete ultrafilter U, every ascending sequence of ultrafilters $D_0 <_{RF} D_1 <_{RF} D_2 ... \leq_{RF} U$ is finite.

Theorem 30

Assume UA and that every irreducible is Dodd-sound. If W is a κ -complete ultrafilter over κ , then the following are equivalent:

- **(**) *W* is an iterated sum of p-points ultrafilters over κ .
- **2** W is (κ, κ^+) -cohesive.

$$\neg \diamondsuit_{thin}^{-}(W).$$

Benhamou, T. Rutgers

⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let W be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.

< □ > < □ > < □ > < □ > < □ >

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let *W* be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let *W* be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).
- ⇒ Let $\langle W_{\xi} | \xi < \kappa \rangle$ be a sequence of ultrafilters over κ such that $W = \sum_{U} W_{\xi}$. Let $D_{\xi} \leq_{RF} W_{\xi}$ be irreducible ultrafilter over δ_{ξ} which is ρ_{ξ} -complete $(\rho_{\xi} \leq \delta_{\xi} \leq \kappa)$.

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let W be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).
- ⇒ Let $\langle W_{\xi} | \xi < \kappa \rangle$ be a sequence of ultrafilters over κ such that $W = \sum_{U} W_{\xi}$. Let $D_{\xi} \leq_{RF} W_{\xi}$ be irreducible ultrafilter over δ_{ξ} which is ρ_{ξ} -complete $(\rho_{\xi} \leq \delta_{\xi} \leq \kappa)$. It suffices to prove that $\Diamond_{\text{thin}}^{-}(\sum_{U} D_{\xi})$ holds.

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let W be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).
- $\Rightarrow \text{ Let } \langle W_{\xi} \mid \xi < \kappa \rangle \text{ be a sequence of ultrafilters over } \kappa \text{ such that } W = \sum_{U} W_{\xi}. \\ \text{ Let } D_{\xi} \leq_{RF} W_{\xi} \text{ be irreducible ultrafilter over } \delta_{\xi} \text{ which is } \rho_{\xi}\text{-complete} \\ (\rho_{\xi} \leq \delta_{\xi} \leq \kappa). \text{ It suffices to prove that } \Diamond^{-}_{\text{thin}}(\sum_{U} D_{\xi}) \text{ holds.}$

By our choice, $j_U: V \to M_U$ can be factored as an iterated ultrapower, let us assume that

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let W be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).
- $\Rightarrow \text{ Let } \langle W_{\xi} \mid \xi < \kappa \rangle \text{ be a sequence of ultrafilters over } \kappa \text{ such that } W = \sum_{U} W_{\xi}. \\ \text{ Let } D_{\xi} \leq_{RF} W_{\xi} \text{ be irreducible ultrafilter over } \delta_{\xi} \text{ which is } \rho_{\xi}\text{-complete} \\ (\rho_{\xi} \leq \delta_{\xi} \leq \kappa). \text{ It suffices to prove that } \Diamond^{-}_{\text{thin}}(\sum_{U} D_{\xi}) \text{ holds.}$

By our choice, $j_U: V \to M_U$ can be factored as an iterated ultrapower, let us assume that

$$V = M_0 \xrightarrow{j_{0,1}} M_1 \xrightarrow{j_{1,2}} \dots \xrightarrow{j_{n-1,n}} M_n = M_U$$

and $j_W = j_{D^*}^{M_n} \circ j_{0,n}$,

- ⇒ From previous results, $(1) \Rightarrow (2) \Rightarrow (3)$. We shall prove that $(3) \Rightarrow (1)$ and let *W* be an ultrafilter which is not an *n*-fold sum of κ -complete *p*-points.
- ⇒ There is $U \leq_{RF} W$ which is *RF*-maximal and is an *n*-fold sum of κ -complete *p*-points (If there is an non-p-point irreducible below *W*, we are done).
- ⇒ Let $\langle W_{\xi} | \xi < \kappa \rangle$ be a sequence of ultrafilters over κ such that $W = \sum_{U} W_{\xi}$. Let $D_{\xi} \leq_{RF} W_{\xi}$ be irreducible ultrafilter over δ_{ξ} which is ρ_{ξ} -complete $(\rho_{\xi} \leq \delta_{\xi} \leq \kappa)$. It suffices to prove that $\Diamond_{\mathsf{thin}}^{-}(\sum_{U} D_{\xi})$ holds.

By our choice, $j_U: V \to M_U$ can be factored as an iterated ultrapower, let us assume that

$$V = M_0 \xrightarrow{j_{0,1}} M_1 \xrightarrow{j_{1,2}} \dots \xrightarrow{j_{n-1,n}} M_n = M_U$$

and $j_W = j_{D^*}^{M_n} \circ j_{0,n}$, where in M_k , $j_{k,k+1}$ is the ultrapower by a κ_k -complete *p*-point U_k over $\kappa_k = j_{0,k}(\kappa)$. Namely, that $U = \sum_{U_0} U_1$.

・ロト ・回 ト ・ヨト ・ヨト

Benhamou, T. Rutgers

Inner Model Theory Conference , Berkeley June 2025

・ロト ・四ト ・ヨト ・ヨト

⇒ Let $\kappa \leq \rho^* = [\xi \mapsto \rho_{\xi}]_U \leq [\xi \mapsto \delta_{\xi}]_U = \delta^* \leq \kappa_n$ and $D^* = [\xi \mapsto D_{\xi}]_U$. Then D^* is a ρ^* -complete M_U -ultrafilter over δ^* .

< □ > < □ > < □ > < □ > < □ >

$$M_0 \xrightarrow{j_{0,m}} M_m \xrightarrow{j_{D^*}^{M_m}} M_{D^*}^{M_m} \xrightarrow{j_{D^*}^{M_m}(j_{m,n})} M_W$$

so that $j_W = j_{D^*}^{M_m}(j_{m,n}) \circ j_{D^*}^{M_m} \circ j_{0,m-1}$.

$$M_0 \stackrel{j_{0,m}}{\longrightarrow} M_m \stackrel{j_{D^*}^{M_m}}{\longrightarrow} M_{D^*}^{M_m} \stackrel{j_{D^*}^{M_m}(j_{m,n})}{\longrightarrow} M_W$$

so that $j_W = j_{D^*}^{M_m}(j_{m,n}) \circ j_{D^*}^{M_m} \circ j_{0,m-1}$.

⇒ In the complete proof, we need to consider several cases for the possible position of ρ^* and δ^* , with respect to κ_{m-1} and κ_m . Let us cover two of them:

< ロ > < (回 > < 回 > < 回 > < 回

$$M_0 \stackrel{j_{0,m}}{\longrightarrow} M_m \stackrel{j_{D^*}^{M_m}}{\longrightarrow} M_{D^*}^{M_m} \stackrel{j_{D^*}^{M_m}(j_{m,n})}{\longrightarrow} M_W$$

- ⇒ In the complete proof, we need to consider several cases for the possible position of ρ^* and δ^* , with respect to κ_{m-1} and κ_m . Let us cover two of them:
- (1) $\kappa_{m-1} < \rho^* \le \delta^* < \kappa_m$. In this case, the two-step iteration $j_{D^*}^{M_m} \circ j_{m-1,m}$ is the ultrapower by a κ_{m-1} -complete *p*-point on κ_{m-1} , contradicting the assumption about *W*:

$$M_0 \stackrel{j_{0,m}}{\longrightarrow} M_m \stackrel{j_{D^*}^{M_m}}{\longrightarrow} M_{D^*}^{M_m} \stackrel{j_{D^*}^{M_m}(j_{m,n})}{\longrightarrow} M_W$$

- ⇒ In the complete proof, we need to consider several cases for the possible position of ρ^* and δ^* , with respect to κ_{m-1} and κ_m . Let us cover two of them:
- (1) $\kappa_{m-1} < \rho^* \le \delta^* < \kappa_m$. In this case, the two-step iteration $j_{D^*}^{M_m} \circ j_{m-1,m}$ is the ultrapower by a κ_{m-1} -complete *p*-point on κ_{m-1} , contradicting the assumption about *W*:

$$M_0 \stackrel{j_{0,m}}{\longrightarrow} M_m \stackrel{j_{D^*}^{M_m}}{\longrightarrow} M_{D^*}^{M_m} \stackrel{j_{D^*}^{M_m}(j_{m,n})}{\longrightarrow} M_W$$

- ⇒ In the complete proof, we need to consider several cases for the possible position of ρ^* and δ^* , with respect to κ_{m-1} and κ_m . Let us cover two of them:
- (1) $\kappa_{m-1} < \rho^* \le \delta^* < \kappa_m$. In this case, the two-step iteration $j_{D^*}^{M_m} \circ j_{m-1,m}$ is the ultrapower by a κ_{m-1} -complete *p*-point on κ_{m-1} , contradicting the assumption about *W*:

$$M_0 \stackrel{j_{0,m}}{\longrightarrow} M_m \stackrel{j_{D^*}^{M_m}}{\longrightarrow} M_{D^*}^{M_m} \stackrel{j_{D^*}^{M_m}(j_{m,n})}{\longrightarrow} M_W$$

- ⇒ In the complete proof, we need to consider several cases for the possible position of ρ^* and δ^* , with respect to κ_{m-1} and κ_m . Let us cover two of them:
- (1) $\kappa_{m-1} < \rho^* \le \delta^* < \kappa_m$. In this case, the two-step iteration $j_{D^*}^{M_m} \circ j_{m-1,m}$ is the ultrapower by a κ_{m-1} -complete *p*-point on κ_{m-1} , contradicting the assumption about *W*:

Benhamou, T. Rutgers

・ロト ・四ト ・ヨト ・ヨト

(2) Assume that $\rho^* = \delta^* = \kappa_m$. Working in M_m , D^* is a κ_m -complete ultrafilter over κ_m and by the maximality of U, D^* cannot be a *p*-point.

イロト イヨト イヨト

(2) Assume that ρ^{*} = δ^{*} = κ_m. Working in M_m, D^{*} is a κ_m-complete ultrafilter over κ_m and by the maximality of U, D^{*} cannot be a p-point. Since D^{*} is irreducible, it is Dodd-sound, and therefore M_U ⊨ ◊⁻_{thin}(D^{*}). Hence ◊⁻_{thin}(∑_U D^{*}). As wanted.

• • • • • • • • • • • • •

- (2) Assume that ρ^{*} = δ^{*} = κ_m. Working in M_m, D^{*} is a κ_m-complete ultrafilter over κ_m and by the maximality of U, D^{*} cannot be a p-point. Since D^{*} is irreducible, it is Dodd-sound, and therefore M_U ⊨ ◊⁻_{thin}(D^{*}). Hence ◊⁻_{thin}(∑_U D^{*}). As wanted.
- (3) We omit the cases $\rho^* \leq \kappa_{m-1} < \delta^* \leq \kappa_{m-1}$ and $\kappa_{m-1} < \rho^* < \delta^* = \kappa_m$.

(日)

- (2) Assume that ρ^{*} = δ^{*} = κ_m. Working in M_m, D^{*} is a κ_m-complete ultrafilter over κ_m and by the maximality of U, D^{*} cannot be a p-point. Since D^{*} is irreducible, it is Dodd-sound, and therefore M_U ⊨ ◊⁻_{thin}(D^{*}). Hence ◊⁻_{thin}(∑_U D^{*}). As wanted.
- (3) We omit the cases $\rho^* \leq \kappa_{m-1} < \delta^* \leq \kappa_{m-1}$ and $\kappa_{m-1} < \rho^* < \delta^* = \kappa_m$.

Conjecture 1

If U is a normal ultrafilter on $P_{\kappa}(\lambda)$ then U is not (κ^+, λ^+) -cohesive

- (2) Assume that ρ^{*} = δ^{*} = κ_m. Working in M_m, D^{*} is a κ_m-complete ultrafilter over κ_m and by the maximality of U, D^{*} cannot be a p-point. Since D^{*} is irreducible, it is Dodd-sound, and therefore M_U ⊨ ◊⁻_{thin}(D^{*}). Hence ◊⁻_{thin}(∑_U D^{*}). As wanted.
- (3) We omit the cases $\rho^* \leq \kappa_{m-1} < \delta^* \leq \kappa_{m-1}$ and $\kappa_{m-1} < \rho^* < \delta^* = \kappa_m$.

Conjecture 1

If U is a normal ultrafilter on $P_{\kappa}(\lambda)$ then U is not (κ^+, λ^+) -cohesive

Theorem 31 (B.-Weltsch 25+)

If U is a normal ultrafilter on $P_{\kappa}(\kappa^+)$ then U is $(\kappa, 2^{\kappa^+})$ -cohesive.

Thank you for your attention!

イロン イロン イヨン イヨン

References I

- James E. Baumgartner, Andres Hajnal, and A. Mate, Weak saturation properties of ideals, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 137–158. Colloq. Math. Soc. János Bolyai, Vol. 10. MR 0369081 (51 #5317)
- Tom Benhamou, *Saturation properties in canonical inner models*, J. of Math. Logic (2023), to appear.
- Tom Benhamou and Natasha Dobrinen, *Cofinal types of ultrafilters over measurable cardinals*, J. Symb. Log. (2023), to appear.
- Tom Benhamou and Moti Gitik, *On Cohen and Prikry forcing notions*, The Journal of Symbolic Logic (2023), 1–47.
- Tom Benhamou and Gabe Goldberg, *Measures that violate the GCH*, submitted (2024), arXiv:2503.20094.
- Tom Benhamou and Gabriel Goldberg, *The galvin property under the ultrapower axiom*, Canadian Journal of Mathematics (2024), 1–32.

John R. Isbell, *The category of cofinal types. II*, Transactions of the American Mathematical Society **116** (1965), 394–416.

John W. Tukey, *Convergence and uniformity in topology. (am-2)*, Princeton University Press, 1940.