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Abstract

The subject of this tutorial is Woodin’s HOD conjecture, one of the most prominent
open problems in pure set theory. We begin with a proof of his HOD dichotomy theorem
along with an improvement of the speaker’s reducing the large cardinal hypothesis from
an extendible to a strongly compact cardinal. Following this, we mostly discuss the
implications of the failure of the HOD conjecture, especially ω-strongly measurable
cardinals and a condition under which such a cardinal is locally supercompact in HOD.

1 Introduction

2 The HOD dichotomy theorem

For any ordinal δ and any regular cardinal γ < δ, Sδ
γ = {α < δ : cf(α) = γ}. If

cf(δ) > γ, then Sδ
γ is stationary in δ.

If δ is an ordinal of uncountable cofinality, we the club filter on δ by Cδ. An ordinal
definable set S ⊆ δ is said to be an OD-atom of the club filter if S cannot be partitioned
into two disjoint ordinal definable stationary subsets of δ; in other words (Cδ ↾ S)∩HOD
is a HOD-ultrafilter.

A regular cardinal δ is ω-strongly measurable in HOD if there is a partition of Sδ
ω

into fewer than δ OD-atoms of the club filter.

Exercise 1. If δ is ω-strongly measurable in HOD, then there is an ordinal definable
partition of Sδ

ω into OD-atoms of the club filter.

The following lemma is proved in [5]. (Note however that Woodin takes 2 as the
definition of an ω-strongly measurable cardinal.)

Lemma 2.1 (Woodin). The following are equivalent:

1. δ is ω-strongly measurable in HOD.

2. For some λ such that (2λ)HOD < δ, there is no ordinal definable partition of δ
into λ disjoint stationary sets.

An inner model M has the κ-cover property at an ordinal λ if Pκ(λ)∩M is cofinal in
(Pκ(λ),⊆); M has the κ-cover property if it has the κ-cover property at every ordinal.

Theorem 2.2. If κ is strongly compact, exactly one of the following holds:

(1) HOD has the κ-cover property.
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(2) All sufficiently large regular cardinals are ω-strongly measurable in HOD.

Proof. Note that if δ > κ is ω-strongly measurable in HOD, then HOD does not have
the κ-cover property at δ. To see this, fix S ⊆ Sδ

ω such that (Cδ ↾ S) ∩ HOD is a
HOD-ultrafilter. Let U = (Cδ ↾ S) ∩ HOD. Since HOD satisfies that U is a normal
ultrafilter, the set of HOD-regular cardinals less than δ is in U . Since S ∈ U , HOD
satisfies that there are arbitrarily large regular cardinals in S. But every ordinal in S
has countable cofinality in V , which implies that the κ-cover property fails at δ.

Claim 1. Suppose λ is an ordinal, δ ≥ λ is a regular cardinal, and Sδ
ω admits an

ordinal definable partition S⃗ = ⟨Sα⟩α<λ into stationary sets. Then HOD has the κ-
cover property at λ.

Proof. To see this, we appeal to a version of Solovay’s lemma [3] which was observed
by Usuba [4]:

Theorem 2.3 (Usuba). Suppose j : V → M is an elementary embedding, δ is a regular
cardinal, and S⃗ = ⟨Sα⟩α<λ is a partition of Sδ

ω into stationary sets. Let δ∗ = sup j[δ]
and let

R = {α < j(λ) : M ⊨ j(S⃗)α is stationary in δ∗}
Then j[λ] ⊆ R and |R|M < cfM (δ∗).

By the strong compactness of κ, there is an elementary j : V → M with critical
point κ such that cfM (δ∗) < j(κ), where δ∗ = sup j[δ]. Let

R = {α < j(λ) : M ⊨ j(S⃗)α is stationary in δ∗}

and note thatR ∈ j(Pκ(λ)∩HOD) sinceR ∈ HODM and |R|M < cfM (δ∗). If σ ∈ Pκ(λ),
then j(σ) = j[σ] ⊆ j[λ] ⊆ R, and hence M satisfies that j(σ) is covered by a set in
j(Pκ(λ) ∩ HOD). By elementarity, σ is covered by a set in Pκ(λ) ∩ HOD, which
establishes the κ-cover property at λ.

To finish the proof, note that trivially, either HOD has the κ-cover property or there
is some λ such that HOD does not have the κ-cover property at λ. If the latter holds
and δ > (2λ)HOD is regular, then by our observations above, Sδ

ω cannot be ordinal
definably partitioned into λ disjoint stationary sets, and so by Woodin’s Lemma 2.1, δ
is ω-strongly measurable in HOD.

Note that the proof shows that if δ > κ is ω-strongly measurable in HOD, then so
is every regular cardinal above δ (but see Question 2.5). In fact, the proof establishes
something slightly stronger that we will need later. If γ is a regular cardinal, λ ≤ ν
are ordinals, and cf(δ) > γ, then δ is (γ, λ)-strongly measurable in HOD if there is a
partition of Sδ

γ into fewer than λ OD-atoms of the club filter.

Theorem 2.4. Suppose κ is a strongly compact cardinal and γ > κ is ω-strongly
measurable in HOD. Then for all ordinals ν with cf(ν) ≥ δ and all regular cardinals
γ < κ, ν is (γ, δ)-strongly measurable in HOD.

Sketch. Following the proof of Theorem 2.2, one shows that for all ordinals ν ≥ δ and
all regular γ < κ, there is no ordinal definable partition of Sν

γ into δ stationary sets.
Then one appeals to a generalization of Woodin’s lemma.

Question 2.5. Is the previous theorem true with δ = κ?

We now turn to the covering properties of HOD that follow in case HOD has the
κ-cover property. Let us start with Woodin’s HOD dichotomy theorem. A cardinal κ
is HOD-supercompact if for all λ ≥ κ, there is an elementary embedding j : V → M
with critical point κ such that j(κ) > λ, Mλ ⊆ M and HODM ∩ P (λ) = HOD∩ P (λ).
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Theorem 2.6 (Woodin). Suppose κ is HOD-supercompact. Either all sufficiently
large regular cardinals are ω-strongly measurable in HOD or HOD has the κ-cover and
approximation properties.

Proof. The structure of the proof is identical to that of Theorem 2.2, but one proves the
following stronger claim using HOD-supercompactness in place of strong compactness:

Claim 2. Suppose λ is an ordinal, δ ≥ λ is a regular cardinal, and Sδ
ω admits an ordinal

definable partition S⃗ = ⟨Sα⟩α<λ into stationary sets. Then HOD has the κ-cover and
approximation properties at λ.

For this, let j : V → M witness that κ is HOD-supercompact at δ. Instead of
Usuba’s theorem, we use Solovay’s original lemma [3]:

Theorem 2.7 (Solovay). Suppose j : V → M is an elementary embedding, δ is a
regular cardinal, and S⃗ = ⟨Sα⟩α<λ is a partition of Sδ

ω into stationary sets. If j[δ] ∈ M ,
then j[λ] = {α < j(λ) : j(S⃗)α is stationary in δ∗}.

Thus the assumption of the claim yields that j[λ] ∈ HODM . Fix a set A ⊆ λ that
is κ-approximated by HOD, and let us show that A ∈ HOD. Note that j(A) ∩ j[λ] ∈
HODM since j(A) is j(κ)-approximated by HODM . Since j ↾ λ ∈ HODM , it follows
that A ∈ HODM . But since HODM ∩ P (λ) = HOD ∩ P (λ), we have A ∈ HOD.

We now establish some stronger covering properties of HOD under the assumption
that there is a strongly compact cardinal κ such that HOD has the κ-cover property.

Theorem 2.8. Suppose HOD has the κ-cover property and κ is strongly compact.
Then for any HOD-regular ordinal δ ≥ κ, cf(δ) = |δ|. As a consequence, for all
singular cardinals λ ≥ κ, λ is singular in HOD and λ+HOD = λ+.

Theorem 2.8 is the author’s main contribution; the rest of the proof is a reograniza-
tion of Woodin’s techniques, but here one needs to do a little work because the proof
of [5, Lemma 3.9] does not seem to generalize to the current situation.

This uses the following lemma which will be useful later:

Theorem 2.9. Suppose δ is a HOD-regular ordinal and for some ordinal κ < δ,
S ⊆ (Sδ

<κ)
HOD is stationary in V . Then there is an ordinal definable family ⟨Sα⟩α<δ

of stationary subsets of S such that for any σ ∈ [δ]κ,
⋂

α∈σ Sα = ∅.

Proof. Let ⟨cξ : ξ ∈ S⟩ be an ordinal definable ladder sequence, so cξ ⊆ ξ is a cofinal
set of ordertype <κ. For ν < δ, let ν′ be the least ordinal such that {ξ ∈ S : cξ∩ [ν, ν′)}
is stationary. Note that ν′ < δ by a regressive function argument. Also the function
ν 7→ ν′ is ordinal definable.

In HOD, define a sequence ⟨να⟩α<δ by transfinite recursion, setting ν0 = 0, να+1 =
ν′
α, and νλ = supα<λ να when λ is a limit ordinal. The HOD-regularity of δ ensures

that this construction does not break down at limit steps below δ.
Let Sα = {ξ ∈ S : cξ ∩ [να, να+1) ̸= ∅}. Then Sα is stationary by construction, and

for any σ ∈ [δ]κ,
⋂

α∈σ Sα = ∅: if ξ ∈
⋂

α∈σ Sα, then cξ ∩ [να, να+1) ̸= ∅ for each α ∈ σ,
contradicting that ot(cξ) < κ.

Proof of Theorem 2.8. Since HOD has the κ-cover property, S = (Sδ
<κ)

HOD is station-
ary, so by Theorem 2.9, let ⟨Sα⟩α<δ be a family of stationary subsets of S such that
for any σ ∈ [δ]κ,

⋂
α∈σ Sα = ∅. For each ξ < δ, let σξ = {α < δ : ξ ∈ Sα}. Let C ⊆ δ

be a closed unbounded set of ordertype cf(δ). Then δ =
⋃

ξ∈C σξ since for any α < δ,
Sα ∩ C ̸= ∅, and therefore for some ξ ∈ C, α ∈ σξ.

It follows that |δ| = |
⋃

ξ∈C σξ| ≤ cf(δ) · κ = cf(δ).
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3 Weak covering and HOD

A filter F on X is λ-weakly saturated if there is no partition of X into λ disjoint F -
positive sets. For example, if F is the closed unbounded filter on an ordinal ν, then
F is cf(ν)+-weakly saturated. If δ is an ordinal, then F is δ-descendingly complete if
for any F -positive set S and function f : S → δ, there is an F -positive set T ⊆ S
such that f [T ] is bounded below δ. If F is the closed unbounded filter on an ordinal
of cofinality different from cf(δ), then F is δ-descendingly complete. The filter F is
strongly δ-descendingly complete if for any function f : X → δ, there is a set A ∈ F
such that f [A] is bounded. Equivalently, every ultrafilter extending F is δ-descendingly
complete.

Lemma 3.1. If δ is a regular cardinal and F is δ-descendingly complete and δ-weakly
saturated, then F is strongly δ-descendingly complete.

Proof. Suppose f : X → δ is a function and assume towards a contradiction that there
is no A ∈ F such that f [A] is bounded below δ. For ν < δ, let ν′ be least such that
{x ∈ X : f(x) ∈ [ν, ν′)} is F -positive. Our assumption implies {x ∈ X : f(x) > ν} is
F -positive, so ν′ exists, and the descending completeness of F implies that ν′ < δ.

By transfinite recursion, define a sequence ⟨να⟩α<δ by setting ν0 = 0, να+1 = ν′
α,

and νλ = supα<λ να for λ a limit ordinal. Setting Sα = {x ∈ X : f(x) ∈ [να, να+1)}
contradicts that F is δ-weakly saturated.

Exercise 2. Strong descending completeness is equivalent to the conjunction of de-
scending completeness and weak saturation.

Theorem 3.2 (Prikry–Silver, [1, Theorem 2.9]). If δ < ρ are regular cardinals and
there is a uniform strongly δ-descendingly complete filter on ρ, then every subset of Sρ

δ

reflects.

Theorem 3.3 (Goldberg–Casey). If δ is HOD-regular, cf(δ+HOD) ∈ {ω, cf(δ), |δ|, δ+}.

Proof. Let ρ = δ+HOD. Suppose ω < cf(ρ) < |δ|, and we will show that cf(ρ) = cf(δ).
Let F denote the club filter C on ρ intersected with HOD. Since cf(ρ) < |δ|, C is
|δ|-weakly saturated, and hence in HOD, F is |δ|-weakly saturated.

Assume towards a contradiction that cf(ρ) ̸= cf(δ). Then C is δ-descendingly com-
plete, and hence F is δ-descendingly complete in HOD. Working in HOD, the fact
that F is δ-descendingly complete and |δ|-weakly saturated implies that F is strongly
δ-descendingly complete. But this is a contradiction, since it implies that (in HOD),
Sρ
δ reflects.

Corollary 3.4. If δ is regular and cf(δ+HOD) > ω, then cf(δ+HOD) ≥ δ.

Exercise 3 (Casey). If every subset of δ+ has a sharp, then the set of ordinals {δ+L[A] :
A ⊆ δ+} contains a closed unbounded set. In particular, Corollary 3.4 does not apply
to arbitrary inner models.

Theorem 3.3 does apply to a broad class of inner models; namely, all those inner
models M that are club amenable at δ+M in the sense that Cδ+M ∩M ∈ M . In fact, it
suffices that F ∩M ∈ M for some filter F extending Cδ+M ∩M .

A filter F on an ordinal ρ is weakly normal if every regressive function from a
set in F to ρ is bounded on a set in F . Note that the club filter on any ordinal
of uncountable cofinality is weakly normal in the weaker sense that every regressive
function on a positive set is bounded on a positive set; this is equivalent to

The relationship between these two concepts is analogous to that between descend-
ing completeness and strong descending completeness:

Exercise 4. A filter on δ is weakly normal if and only if it is weakly normal in the
weaker sense and δ-weakly saturated.

4



Theorem 3.5 (Ketonen). Suppose U is a weakly normal ultrafilter on a regular cardinal
δ and Sδ

<κ ∈ U for some cardinal κ < δ. Then U is γ-descendingly incomplete for every
regular ordinal γ ∈ [κ, δ].

Proof. Let δ∗ = [id]U . Since U is weakly normal, δ∗ = sup jU [δ]. Since Sδ
<κ ∈ U , MU

satisfies that cf(δ∗) < jU (κ). By Usuba’s lemma (Theorem 2.3), there is a set R ∈ MU

with |R|MU < jU (κ) such that jU [δ] ⊆ R. But then if γ ∈ [κ, δ] is regular, R ∩ j(γ) is
cofinal in sup j[γ], so cfM (sup j[γ]) < j(κ), and hence j(γ) > sup j[γ]. This means U
is γ-descendingly incomplete.

Theorem 3.6 (Goldberg–Casey). If ρ is HOD-regular, then one of the following holds:

(1) cf(ρ) = ω.

(2) cf(ρ) = |ρ|.
(3) There is a closed unbounded set of HOD-regular ordinals less than ρ.

(4) ρ is weakly inaccessible in HOD and for all sufficiently large HOD-regular ordinals
γ < ρ, cf(γ) = cf(ρ).

(5) ρ = λ+HOD where cf(λ) = cf(ρ).

(6) ρ = λ+HOD where λ is singular in HOD and for all sufficiently large HOD-regular
ordinals γ < λ, cf(γ) = cf(ρ).

Proof. Assume ω < cf(ρ) < |ρ|, so (1) and (2) fail. Let F denote the club filter on ρ
restricted to HOD. Assume that the set of HOD-singular ordinals is F -positive, so (3)
fails as well. We must show that (4) or (5) holds.

By Exercise 4, F is weakly normal in HOD. By weak normality and the fact that
F concentrates on singular ordinals, there is some κ < ρ such that (Sρ

<κ)
HOD ∈ F . If

U is a HOD-ultrafilter extending F , U is weakly normal and hence is γ-descendingly
incomplete for all HOD-regular γ ∈ [κ, ρ]. In particular, F cannot be strongly γ-
descendingly complete.

Now fix γ ≥ max{cf(ρ)+, κ}. We have that F is γ-weakly saturated and not strongly
γ-descendingly complete, and hence F is γ-descendingly incomplete by the contraposi-
tive of Lemma 3.1. It follows that cf(γ) = cf(ρ) since the club filter on ρ is descendingly
incomplete only at ordinals with the same cofinality as ρ. Thus for all sufficiently large
HOD-regular ordinals γ < ρ, cf(γ) = cf(ρ).

In particular, if ρ is weakly inaccessible, we have (4) and if ρ is the successor of a
HOD-regular ordinal, we have (5). Finally, if ρ is the successor of a HOD-singular λ,
either F is λ-descendingly complete or F is γ-descendingly complete for all sufficiently
large regular cardinals below λ, which yields that either (5) or (5) holds.

Vaguely speaking, (3) states that the closed unbounded filter almost witnesses that
ρ is measurable, while (4) asserts that it almost witnesses that κ is ρ-strongly compact
where κ is least such that for all HOD-regular γ ∈ [κ, ρ), cf(γ) = cf(ρ). In particular,
(3) implies that ρ is strongly Mahlo in HOD, and (4) implies that HOD ⊨ ¬□(γ) for
all sufficiently large HOD-regular ordinals γ < ρ.

We highlight one particular mystery around Theorem 3.6.

Corollary 3.7. If λ is a cardinal, cf(λ) = ω, and cf(λ+HOD) > ω, then λ+HOD = λ+.

The open problem around Theorem 3.6 is exemplified by the following open ques-
tion:

Question 3.8. If λ is a singular cardinal and cf(λ+HOD) > ω, must λ+HOD = λ+?

So it is the case cf(λ) > ω that is unclear. The more general problem is whether
one can rule out Theorem 3.6 (5) in the case that λ is singular in HOD.

Note that Theorem 3.6 implies this when cf(λ) = ω. Let us mention one result on
weak covering in the successor of singular case, an analog of Silver’s theorem:
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Theorem 3.9 (Goldberg–Poveda). If λ is a strong limit singular cardinal of uncount-
able cofinality and {ν < λ : ν+HOD = ν+} is stationary, then λ+HOD = λ+.

4 Supercompact cardinals

Theorem 4.1. Suppose κ is strongly compact and δ > κ is ω-strongly measurable in
HOD. If cf(δ+HOD) > ω, then HOD satisfies that δ is δ+HOD-supercompact.

Proof. Let ν = δ+HOD. By Theorem 3.3, since δ is regular and cf(ν) > ω, we have
cf(δ+HOD) ≥ δ.

The main idea of the proof is to show that there is an ordinal definable stationary
set S ⊆ ν such that if FS is the club filter restricted to S, then US = FS ∩ HOD
witnesses that δ is ν-supercompact in HOD. More precisely, US is a HOD-ultrafilter
and jUS [ν] ∈ Ult(HOD, US).

By Theorem 2.4, if γ < κ is regular, there exists a stationary set S ⊆ Sν
γ such that

US is a HOD-ultrafilter. Perhaps surprisingly, we are only able to show US witnesses
the theorem — meaning jUS [ν] ∈ Ult(HOD, US) — when γ is uncountable. So fix any
regular γ ∈ (ω, κ), and fix a set S ⊆ Sν

γ such that US is a HOD-ultrafilter.
Let T ⊆ Sν

ω be such that UT is a HOD-ultrafilter. By Theorem 2.9, there is an
ordinal definable family ⟨Tα⟩α<ν of stationary subsets of T such that for any σ ∈ [ν]δ,⋂

α∈σ Tα = ∅. For each ξ < ν, let

Rξ = {α < ν : Tα ∩ ξ is stationary in ξ}

We will prove that the function ξ 7→ Rξ represents jUS [ν] in Ult(HOD, US).
We first show that for each α < ν, {ξ < ν : α ∈ Rξ} ∈ US . To see this, note that

for A ⊆ ν in HOD, A ∈ UT if and only if for US-almost all ξ < ν, A ∩ ξ ∈ Uξ
T . The

reason is that
{A ∈ PHOD(ν) : {ξ < ν : A ∩ ξ ∈ Uξ

T } ∈ US}
is a filter in HOD extending the restriction of the club filter to HOD and containing
T , and UT is the unique such filter. Therefore since each Tα belongs to UT , we have
{ξ < ν : Tα ∩ ξ ∈ Uξ

T } ∈ US , which implies that {ξ < ν : α ∈ Rξ} ∈ US .
Next we show that if f : ν → ν is ordinal definable and f(ξ) ∈ Rξ for US-almost all

ξ < ν, then f is constant on a set in US . Let p : δ → ν be a continuous cofinal map,
which exists since cf(ν) = δ. If β < δ has uncountable cofinality, let

h(β) = min{γ < β : p(γ) ∈ Tf(p(β))}

Note that h(β) exists because p[β] is closed unbounded in p(β) and Tf(p(β)) is stationary
in p(β) since f(p(β)) ∈ Rp(β).

The function h is regressive and defined on the stationary set p−1[S]. Therefore by
Fodor’s lemma, there is an ordinal γ < δ such that

E = {β ∈ p−1[S] : h(β) = γ}

is stationary. It follows that p[E] is a stationary subset of S. Note that if ξ ∈ p[E], then
ξ = p(β) for some β such that h(β) = γ, and so by the definition of h, p(γ) ∈ Tf(ξ). In
other words p[E] is contained in the set A = {ξ ∈ S : p(γ) ∈ Tf(ξ)}, which means that
this set is an ordinal definable stationary subset of S. Since S is an atom of the club
filter restricted to HOD and A is ordinal definable, it follows that A ∈ US .

On the other hand, f takes fewer than δ-many values on A. To see this, note that
we have that

⋂
α∈f [A] Tα ̸= ∅ since for each α ∈ f [A], we have p(γ) ∈ Tα. By our choice

of the sequence ⟨Tα⟩α<ν , this means |f [A]| < δ. Since A ∈ US , |f [A]| < δ, and US is
δ-complete, f is constant on a set in US , as desired.
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The same proof yields:

Theorem 4.2. Suppose κ is strongly compact and δ > κ is regular in V and ω-
strongly measurable in HOD. If λ ≥ δ is regular in HOD and {ξ < λ : cfHOD(ξ) < δ}
is stationary in V , then HOD satisfies that δ is λ-supercompact.

5 Partition cardinals above Θ

A long-standing question in determinacy theory is whether there can exist partition
cardinals above Θ. Here we show that if such cardinals exist far beyond Θ, then the
HOD conjecture is false.

Theorem 5.1 (Goldberg–Blue). Suppose λ is an inaccessible limit of Lowenheim-
Skolem cardinals and δ > λ satisfies δ → (δ)γ for all γ < λ. Then there is a model of
ZFC in which all regular cardinals are ω-strongly measurable in HOD.

We prefer to prove the following theorem whose hypothesis is arguably better mo-
tivated:

Theorem 5.2 (Goldberg–Blue). Assume I0(λ) and that in L(Vλ+1), Dependent Choice
holds and for all γ < λ, λ+ → (λ+)γ . Then for any limit of Lowenheim-Skolem
cardinals γ of Vλ, either γ or γ+ is measurable.

Corollary 5.3. Under the hypothesis of the previous theorem, the HOD conjecture is
false.

The axiom I0 is typically studied in the context of the Axiom of Choice. It is a
conjecture of Woodin that ZFC plus I0 implies that L(Vλ+1) satisfies λ+ → (λ+)α for
all α < ω1. On the other hand, assuming AC, L(Vλ+1) does not satisfy λ+ → (λ+)ω1 ,
since this partition property implies R cannot be wellordered, whereas any wellorder
of R in V is an element of L(Vλ+1).

1

Could some choiceless extension of ZF + I0-theory imply a structure theory even
more closely analogous to that of L(R)? The theorem and corollary are a first step
towards understanding this possibility.

We will use the following result of the author which is a consequence of Cramer’s
technique of inverse limit reflection in L(Vλ+1):

Theorem 5.4 (Goldberg, [2]). Assume I0(λ). Suppose L(Vλ+1) satisfies DC and for
some γ < λ, Vλ satisfies DCγ . Then L(Vλ+1) satisfies DCγ .

Sketch of Theorem 5.2. Suppose γ is a limit of Lowenheim-Skolem cardinals in Vλ. We
will show that γ+ is measurable. The key property of γ we will use is that one can
force DCγ over Vλ by a countably closed forcing P ∈ Vλ that preserves γ+. Let G ⊆ P
be a V -generic filter. Then L(Vλ+1)[G] = L(V [G]λ+1), V [G] satisfies I0, L(V [G]λ+1)
satisfies DC, and V [G]λ satisfies DCγ . Therefore we can apply Theorem 5.4 to conclude
that L(Vλ+1)[G] satisfies DCγ .

We first show that there is no wellordered sequence ⟨Aα⟩α<γ+ of distinct subsets
of γ. For this, we consider Moschovakis’s generalized perfect set game. This is the
ordinal game of length ω in which Players I and II alternate moves, with Player I
playing ordinals less than γ and II playing either 0 or 1. At the end of a run, Player I
has constructed s ∈ γω and Player II has constructed x ∈ 2ω. Player I wins if there is
some α such that x is the restriction of the characteristic function of A to ordinals in
the range of s; more precisely, for all n < ω, x(n) = Aα(s(n)).

1A similar situation arises with the Ultrapower Axiom. In L(Vλ+1), the Ketonen order is semilinear in
the sense that each rank of the order has size less than λ. It is natural to wonder whether L(Vλ+1) could
satisfy UA itself, but this again is impossible assuming the Axiom of Choice.
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If Player I has a winning strategy τ in this game, then there is an injection from
2ω to γ+ defined by sending x ∈ 2ω to the least α such that for all n < ω, x(n) =
Aα((τ ∗x)(n)). Since λ+ → (λ+)ω1 implies R cannot be wellordered, Player I does not
win this game.

This game is γ+-Suslin. To see this, let cα : ω → {α} denote the constant function,
and note that B = {(s, x, cα) : ∀n < ω x(n) = Aα(s(n))} is a closed subset of γω ×
2ω × (γ+)ω and p(B) is the payoff set for Player I in the game of interest.

We now run the proof the determinacy of this game using that λ+ → (λ+)γ
+

, which
is based on Martin’s proof of Π1

1-determinacy. Consider the open auxiliary game in
which Player I plays ordinals s(n) less than γ while II responds with pairs (x(n), fn)
where x(n) ∈ {0, 1}, fn : Bs↾n,x↾n → λ+ is order-preserving in the Kleene–Brouwer
order, and fn ⊇ fn−1 if n > 0.

If Player I has a winning strategy in the auxiliary game, then by using partition
measures to integrate out the auxiliary moves as in Martin’s proof, one shows that
Player I wins the original game.

Therefore Player I does not win the auxiliary game. In this case, one would like
to appeal to the Gale-Stewart theorem to assert that Player II wins the game. But
since Player II’s moves are drawn from a set that is not well-orderable, one can only
conclude that Player II has a winning quasi-strategy in the auxiliary game.

For this reason, we move to L(Vλ+1)[G], where DCγ holds and γ+ is preserved.
Since Player I plays ordinals less than γ, in the resulting extension, one can use DCγ

to thin out Player II’s winning quasi-strategy to a winning strategy. It follows that in
L(Vλ+1)[G], Player II has a winning strategy in the original game. (Note that since we
have added no ω-sequences, we do not need to reinterpret the payoff set.)

By the usual argument from the perfect set theorem, this implies that in L(Vλ+1)[G],
|{Aα : α < γ+}| ≤ γ. This contradicts that γ+ is not collapsed in L(Vλ+1)[G].

Now assume γ is the least limit of supercompact cardinals in Vλ and suppose δ ∈
(γ, λ) is a regular cardinal. We will show that Sδ

ω is γ+-unsplittable in V . Otherwise,
suppose A⃗ = ⟨Aα⟩α<γ+ partitions Sδ

ω into stationary sets. Then if κ is the least
strongly compact cardinal of Vλ, Pκ(γ

+) ∩HODA⃗ is cofinal in Pκ(γ
+) by the proof of

Theorem 2.2. In particular, Pκ(γ) ∩HODA⃗ is cofinal in Pκ(γ).
Since Pκ(γ) ∩ HODA⃗ is well-orderable, we have |Pκ(γ) ∩ HODA⃗| = γ. But this

contradicts König’s Theorem. To see this, let Y ⊆ γ × γ be such that for all τ ∈
Pκ(γ) ∩ HODA⃗, there is some α < γ such that τ = {β < γ : (α, β) ∈ Y }. Working in
L[Y ], there is a cofinal subset of Pκ(γ) of size γ, and this implies

L[Y ] ⊨ γ+ ≤ γ<κ = |Pκ(γ)| = 2<κ · cf(Pκ(γ)) = γ

a contradiction.
Finally, suppose δ ∈ (γ, λ) is a limit of Lowenheim-Skolem cardinals. Then the

closed unbounded filter on η is η-complete and one can run the argument of Lemma 2.1
(after forcing DCγ+) to obtain atoms for the ω-club filter. This yields the theorem.
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