

The Ultrapower Axiom from Determinacy

Gabriel Goldberg

UC Berkeley

December 15, 2025

Introduction

AD and large cardinals

AD and large cardinals

This talk is about a new aspect of the connection between the descriptive set theory (determinacy axioms) and inner model theory (large cardinal axioms).

AD and large cardinals

This talk is about a new aspect of the connection between the descriptive set theory (determinacy axioms) and inner model theory (large cardinal axioms).

This connection has been the subject of half a century of intense study in set theory. The history is barely covered in this talk.

The Ultrapower Axiom

The Ultrapower Axiom

The Ultrapower Axiom (UA) is a set theoretic principle governing the structure of measures on large cardinals (i.e., \aleph_1 -complete ultrafilters), arranging them in a well-ordered complexity hierarchy.

The Ultrapower Axiom

The Ultrapower Axiom (UA) is a set theoretic principle governing the structure of measures on large cardinals (i.e., \aleph_1 -complete ultrafilters), arranging them in a well-ordered complexity hierarchy.

UA is independent of the ZFC axioms but holds in all *canonical models of ZFC*. These are the generalizations of L studied in inner model theory.

The Ultrapower Axiom

The Ultrapower Axiom (UA) is a set theoretic principle governing the structure of measures on large cardinals (i.e., \aleph_1 -complete ultrafilters), arranging them in a well-ordered complexity hierarchy.

UA is independent of the ZFC axioms but holds in all *canonical models of ZFC*. These are the generalizations of L studied in inner model theory.

But UA does not refer to these specific models and can instead be studied abstractly in various contexts.

UA and small cardinals

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures...

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures... assuming the Axiom of Choice (AC).

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures... assuming the Axiom of Choice (AC).

The primary “competitor” to AC, the *Axiom of Determinacy* (AD), implies many such measures exist.

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures... assuming the Axiom of Choice (AC).

The primary “competitor” to AC, the *Axiom of Determinacy* (AD), implies many such measures exist.

Our main theorem (roughly): *AD implies UA.*

UA and small cardinals

UA has many consequences for large cardinals but no impact on small cardinals; e.g., \aleph_1 , \aleph_2 , the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures... assuming the Axiom of Choice (AC).

The primary “competitor” to AC, the *Axiom of Determinacy* (AD), implies many such measures exist.

Our main theorem (roughly): *AD implies UA.*

So the measures supplied by AD carry the same rigid structure first observed in canonical models of ZFC.

Determinacy

The Axiom of Determinacy

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I:

Player II:

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I: x_0

Player II:

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I: x_0

Player II: x_1

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I: $x_0 \quad x_2$

Player II: $\quad x_1$

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I: $x_0 \quad x_2$

Player II: $x_1 \quad x_3$

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I: $x_0 \quad x_2 \quad x_4$

Player II: $x_1 \quad x_3$

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I:	x_0	x_2	x_4
Player II:	x_1	x_3	x_5

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I:	x_0	x_2	x_4	\dots
Player II:	x_1	x_3	x_5	\dots

The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the Axiom of Choice.

Axiom of Determinacy (AD)

In any infinite two-player game of perfect information with a countable state space, one of the players has a winning strategy.

Formalized by the *Gale–Stewart game* G_A with payoff set $A \subseteq \omega^\omega$:

Player I:	x_0	x_2	x_4	\dots
Player II:	x_1	x_3	x_5	\dots

I wins a run of G_A if the sequence $x = \langle x_n : n < \omega \rangle$ belongs to A .

Determinacy and regularity properties

Determinacy and regularity properties

The early consequences of AD generalize descriptive set theory to arbitrary sets of reals.

Determinacy and regularity properties

The early consequences of AD generalize descriptive set theory to arbitrary sets of reals.

Theorem (Mycielski–Swierczkowski, 1964)

Assuming ZF + AD, every set of reals is Lebesgue measurable.

Determinacy and regularity properties

The early consequences of AD generalize descriptive set theory to arbitrary sets of reals.

Theorem (Mycielski–Swierczkowski, 1964)

Assuming ZF + AD, every set of reals is Lebesgue measurable.

Theorem (Davis, 1964)

Assuming ZF + AD, the continuum hypothesis holds. (Every set of reals is either countable or the same cardinality as \mathbb{R} .)

Determinacy and regularity properties

The early consequences of AD generalize descriptive set theory to arbitrary sets of reals.

Theorem (Mycielski–Swierczkowski, 1964)

Assuming ZF + AD, every set of reals is Lebesgue measurable.

Theorem (Davis, 1964)

Assuming ZF + AD, the continuum hypothesis holds. (Every set of reals is either countable or the same cardinality as \mathbb{R} .)

Philosophy: AD is the theory of definable sets of reals.

The set theory of determinacy

The set theory of determinacy

Problem: Develop set theory under AD. E.g., determine the structure of transfinite cardinals.

The set theory of determinacy

Problem: Develop set theory under AD. E.g., determine the structure of transfinite cardinals.

Theorem (Mycielski–Steinhaus, 1964; Solovay, 1967)

Under ZF + AD, \aleph_1 and \aleph_2 are regular cardinals.

The set theory of determinacy

Problem: Develop set theory under AD. E.g., determine the structure of transfinite cardinals.

Theorem (Mycielski–Steinhaus, 1964; Solovay, 1967)

Under ZF + AD, \aleph_1 and \aleph_2 are regular cardinals.

But shockingly...

Theorem (Martin, 1971)

Under ZF + AD, \aleph_n is singular for all natural numbers $n \geq 3$.

The set theory of determinacy

Problem: Develop set theory under AD. E.g., determine the structure of transfinite cardinals.

Theorem (Mycielski–Steinhaus, 1964; Solovay, 1967)

Under ZF + AD, \aleph_1 and \aleph_2 are regular cardinals.

But shockingly...

Theorem (Martin, 1971)

Under ZF + AD, \aleph_n is singular for all natural numbers $n \geq 3$.

The proof of Martin's theorem involves the “large cardinal theory of small cardinals.”

Measurable cardinals and determinacy

Measurable cardinals and determinacy

- ▶ If κ is an uncountable cardinal, a *measure* on κ is a countably additive monotone function $\mu : P(\kappa) \rightarrow \{0, 1\}$.

Measurable cardinals and determinacy

- ▶ If κ is an uncountable cardinal, a *measure* on κ is a countably additive monotone function $\mu : P(\kappa) \rightarrow \{0, 1\}$.
- ▶ κ is *measurable* if it carries a nontrivial κ -additive measure.

Measurable cardinals and determinacy

- ▶ If κ is an uncountable cardinal, a *measure* on κ is a countably additive monotone function $\mu : P(\kappa) \rightarrow \{0, 1\}$.
- ▶ κ is *measurable* if it carries a nontrivial κ -additive measure.

Theorem (Solovay, 1967)

Assuming $ZF + AD$, \aleph_1 and \aleph_2 are measurable.

Measurable cardinals and determinacy

- ▶ If κ is an uncountable cardinal, a *measure* on κ is a countably additive monotone function $\mu : P(\kappa) \rightarrow \{0, 1\}$.
- ▶ κ is *measurable* if it carries a nontrivial κ -additive measure.

Theorem (Solovay, 1967)

Assuming $ZF + AD$, \aleph_1 and \aleph_2 are measurable.

Solovay shows the closed unbounded filter induces a measure on \aleph_1 , called the *club measure*:

$$\nu_{\text{club}}(A) = \begin{cases} 1 & \text{if } A \text{ contains a closed unbounded set} \\ 0 & \text{otherwise} \end{cases}$$

Ultrapowers and the singularity of \aleph_n

Ultrapowers and the singularity of \aleph_n

The modern proof that \aleph_n is singular for $n \geq 3$ involves analyzing the *ultrapowers* associated to the club measure.

Ultrapowers and the singularity of \aleph_n

The modern proof that \aleph_n is singular for $n \geq 3$ involves analyzing the *ultrapowers* associated to the club measure.

Notation: The ultrapower of a structure \mathcal{M} by a measure μ is denoted $\mathcal{M}_\mu = \mathcal{M}^\kappa/\mu$. The ultrapower embedding is denoted

$$j_\mu : \mathcal{M} \rightarrow \mathcal{M}_\mu$$

Ultrapowers and the singularity of \aleph_n

The modern proof that \aleph_n is singular for $n \geq 3$ involves analyzing the *ultrapowers* associated to the club measure.

Notation: The ultrapower of a structure \mathcal{M} by a measure μ is denoted $\mathcal{M}_\mu = \mathcal{M}^\kappa/\mu$. The ultrapower embedding is denoted

$$j_\mu : \mathcal{M} \rightarrow \mathcal{M}_\mu$$

Theorem (Kunen)

Assume ZF + AD. For $n \geq 1$, $(\aleph_n)_\nu = \aleph_{n+1}$ where $\nu = \nu_{club}$.

Ultrapowers and the singularity of \aleph_n

Ultrapowers and the singularity of \aleph_n

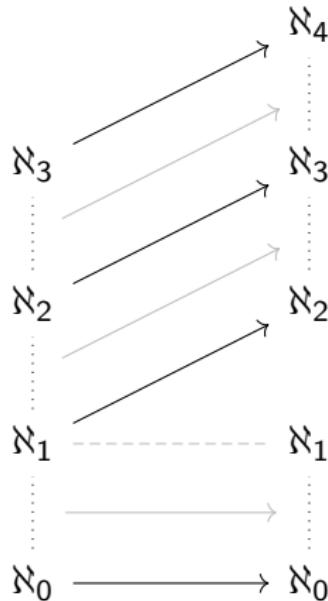


Figure: The ultrapower of the cardinals by the club measure.

Jackson's analysis

Jackson's analysis

Building on these ideas, Jackson analyzed the determinacy structure of cardinals up to the least weakly inaccessible cardinal.

Jackson's analysis

Building on these ideas, Jackson analyzed the determinacy structure of cardinals up to the least weakly inaccessible cardinal.

This leads to a beautiful theory of measures, ultrapowers, cofinalities, partition properties.

Jackson's analysis

Building on these ideas, Jackson analyzed the determinacy structure of cardinals up to the least weakly inaccessible cardinal.

This leads to a beautiful theory of measures, ultrapowers, cofinalities, partition properties.

The cardinals exhibit surprising patterns, connected to finite and infinite combinatorics, descriptive set theory, inner model theory.

Jackson's analysis

Building on these ideas, Jackson analyzed the determinacy structure of cardinals up to the least weakly inaccessible cardinal.

This leads to a beautiful theory of measures, ultrapowers, cofinalities, partition properties.

The cardinals exhibit surprising patterns, connected to finite and infinite combinatorics, descriptive set theory, inner model theory.

Theorem (Jackson)

Under ZF + AD, the first eight infinite regular cardinals are

$$\aleph_0 \quad \aleph_1 \quad \aleph_2 \quad \aleph_{\omega+1} \quad \aleph_{\omega+2} \quad \aleph_{\omega \cdot 2+1} \quad \aleph_{\omega^\omega+1} \quad \aleph_{\omega^{\omega^\omega}+1}$$

The global theory

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

Definition

The cardinal Θ is the supremum of all ordinals α such that there is a surjection from \mathbb{R} onto α .

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

Definition

The cardinal Θ is the supremum of all ordinals α such that there is a surjection from \mathbb{R} onto α .

- ▶ Under ZFC, $\Theta = (2^{\aleph_0})^+$.

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

Definition

The cardinal Θ is the supremum of all ordinals α such that there is a surjection from \mathbb{R} onto α .

- ▶ Under ZFC, $\Theta = (2^{\aleph_0})^+$.
- ▶ Determinacy implies Θ is very large.

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

Definition

The cardinal Θ is the supremum of all ordinals α such that there is a surjection from \mathbb{R} onto α .

- ▶ Under ZFC, $\Theta = (2^{\aleph_0})^+$.
- ▶ Determinacy implies Θ is very large.

Theorem (Moschovakis, 1970)

Under ZF + AD, Θ is a limit of weakly inaccessible cardinals.

The global theory

Jackson's theory handles the first inaccessible. But the determinacy world extends far beyond:

Definition

The cardinal Θ is the supremum of all ordinals α such that there is a surjection from \mathbb{R} onto α .

- ▶ Under ZFC, $\Theta = (2^{\aleph_0})^+$.
- ▶ Determinacy implies Θ is very large.

Theorem (Moschovakis, 1970)

Under ZF + AD, Θ is a limit of weakly inaccessible cardinals.

What is the structure of cardinals below Θ ? To answer this, we'd need a *global classification of measures and their ultrapowers*.

The Ultrapower Axiom

The Ultrapower Axiom

The Ultrapower Axiom

The Ultrapower Axiom (UA) provides a global classification of measures in a completely different context: canonical inner models of $\text{ZFC} + \text{large cardinal axioms}$.

The Ultrapower Axiom

The Ultrapower Axiom (UA) provides a global classification of measures in a completely different context: canonical inner models of $ZFC +$ large cardinal axioms.

UA holds in all these models and provides an apparently complete picture of the behavior of measures within them.

The statement of UA

The statement of UA

UA is an *amalgamation principle* for ultrapowers.

The statement of UA

UA is an *amalgamation principle* for ultrapowers.

Ultrapower Axiom (UA)

For all measures μ and ν , there exist internal measures $\nu^* \in V_\mu$ and $\mu^* \in V_\nu$ such that $(V_\mu)_{\nu^*} = (V_\nu)_{\mu^*}$

The statement of UA

UA is an *amalgamation principle* for ultrapowers.

Ultrapower Axiom (UA)

For all measures μ and ν , there exist internal measures $\nu^* \in V_\mu$ and $\mu^* \in V_\nu$ such that $(V_\mu)_{\nu^*} = (V_\nu)_{\mu^*}$ and, denoting this model by N , the following diagram commutes:

The statement of UA

UA is an *amalgamation principle* for ultrapowers.

Ultrapower Axiom (UA)

For all measures μ and ν , there exist internal measures $\nu^* \in V_\mu$ and $\mu^* \in V_\nu$ such that $(V_\mu)_{\nu^*} = (V_\nu)_{\mu^*}$ and, denoting this model by N , the following diagram commutes:

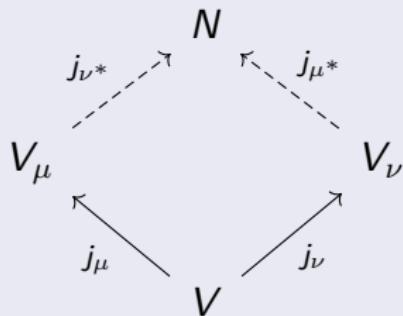
$$\begin{array}{ccc} V_\mu & & V_\nu \\ \swarrow j_\mu & & \searrow j_\nu \\ V & & \end{array}$$

The statement of UA

UA is an *amalgamation principle* for ultrapowers.

Ultrapower Axiom (UA)

For all measures μ and ν , there exist internal measures $\nu^* \in V_\mu$ and $\mu^* \in V_\nu$ such that $(V_\mu)_{\nu^*} = (V_\nu)_{\mu^*}$ and, denoting this model by N , the following diagram commutes:

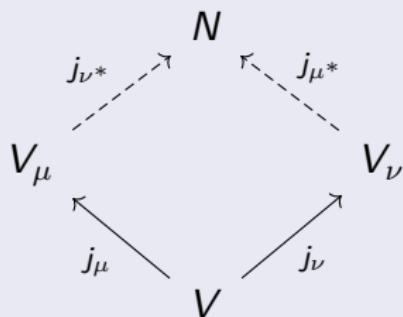


The statement of UA

UA is an *amalgamation principle* for ultrapowers.

Ultrapower Axiom (UA)

For all measures μ and ν , there exist internal measures $\nu^* \in V_\mu$ and $\mu^* \in V_\nu$ such that $(V_\mu)_{\nu^*} = (V_\nu)_{\mu^*}$ and, denoting this model by N , the following diagram commutes:



Informally: any two ultrapowers have a common ultrapower.

The complexity hierarchy of measures

The complexity hierarchy of measures

If μ and ν are measures on a cardinal κ , set $\mu <_{\mathbb{k}} \nu$ if

$$\mu = \int_{\alpha < \kappa} \mu_\alpha \, d\nu$$

where μ_α is a measure on α .

The complexity hierarchy of measures

If μ and ν are measures on a cardinal κ , set $\mu <_{\kappa} \nu$ if

$$\mu = \int_{\alpha < \kappa} \mu_\alpha \, d\nu$$

where μ_α is a measure on α . This is called the *Ketonen order*.

The complexity hierarchy of measures

If μ and ν are measures on a cardinal κ , set $\mu <_{\kappa} \nu$ if

$$\mu = \int_{\alpha < \kappa} \mu_\alpha \, d\nu$$

where μ_α is a measure on α . This is called the *Ketonen order*.

Theorem (G.)

The following are equivalent:

- ▶ *The Ultrapower Axiom holds for measures on κ .*
- ▶ *The measures on κ are well-ordered by the Ketonen order.*

The complexity hierarchy of measures

If μ and ν are measures on a cardinal κ , set $\mu <_{\kappa} \nu$ if

$$\mu = \int_{\alpha < \kappa} \mu_\alpha \, d\nu$$

where μ_α is a measure on α . This is called the *Ketonen order*.

Theorem (G.)

The following are equivalent:

- ▶ *The Ultrapower Axiom holds for measures on κ .*
- ▶ *The measures on κ are well-ordered by the Ketonen order.*

Conclusion: Under UA, the measures on a cardinal are classified by ordinal invariants.

The theorem

From AD to UA

From AD to UA

Our main theorem is:

Theorem (G.)

Under $ZF + AD^+$, UA holds for all measures on cardinals below Θ .

From AD to UA

Our main theorem is:

Theorem (G.)

Under $ZF + AD^+$, UA holds for all measures on cardinals below Θ .

AD^+ is an extension of AD due to Woodin, which holds in all known models of AD; e.g., $L(\mathbb{R})$ under large cardinals.

From AD to UA

Our main theorem is:

Theorem (G.)

Under $ZF + AD^+$, UA holds for all measures on cardinals below Θ .

AD^+ is an extension of AD due to Woodin, which holds in all known models of AD; e.g., $L(\mathbb{R})$ under large cardinals.

Important subtlety: Łoś's theorem fails for the ultrapowers we are dealing with. So *ultrapowers of V do not yield elementary embeddings*.

From AD to UA

Our main theorem is:

Theorem (G.)

Under $ZF + AD^+$, UA holds for all measures on cardinals below Θ .

AD^+ is an extension of AD due to Woodin, which holds in all known models of AD; e.g., $L(\mathbb{R})$ under large cardinals.

Important subtlety: Łoś's theorem fails for the ultrapowers we are dealing with. So *ultrapowers of V do not yield elementary embeddings*.

Still we have our classification of measures:

Theorem (G.)

Under $ZF + AD^+$, the measures on cardinals below Θ are well-ordered by the Ketonen order.

Aspects of the proof

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

The main techniques:

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

The main techniques:

- ▶ Kechris's method of coding measures by reals.

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

The main techniques:

- ▶ Kechris's method of coding measures by reals.
- ▶ A generic ultrapower construction due to Woodin that enables us to recover Łoś's theorem.

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

The main techniques:

- ▶ Kechris's method of coding measures by reals.
- ▶ A generic ultrapower construction due to Woodin that enables us to recover Łoś's theorem.
- ▶ A realizability lemma for Woodin's ultrapowers using the theory of precipitous ideals.

Aspects of the proof

The proof avoids getting into Jackson's detailed analysis; instead uses softer methods from large cardinals and semi-classical descriptive set theory.

The main techniques:

- ▶ Kechris's method of coding measures by reals.
- ▶ A generic ultrapower construction due to Woodin that enables us to recover Łoś's theorem.
- ▶ A realizability lemma for Woodin's ultrapowers using the theory of precipitous ideals.
- ▶ The proof that large cardinals imply the existence of inner models with Woodin cardinals.

Conclusion

Conclusion

Under AD, despite their intricate structure, measures and ultrapowers are governed by a simple rule: UA.

Conclusion

Under AD, despite their intricate structure, measures and ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson's work to push his analysis up to Θ .

Conclusion

Under AD, despite their intricate structure, measures and ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson's work to push his analysis up to Θ .

In any case, we have a surprising connection between canonical models of ZFC and models of determinacy which will hopefully shed light on both subjects.

Thanks!