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Introduction



AD and large cardinals

This talk is about a new aspect of the connection between the
descriptive set theory (determinacy axioms) and inner model
theory (large cardinal axioms).

This connection has been the subject of half a century of intense
study in set theory. The history is barely covered in this talk.
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The Ultrapower Axiom

The Ultrapower Axiom (UA) is a set theoretic principle governing
the structure of measures on large cardinals (i.e., ℵ1-complete
ultrafilters), arranging them in a well-ordered complexity hierarchy.

UA is independent of the ZFC axioms but holds in all canonical
models of ZFC. These are the generalizations of L studied in inner
model theory.

But UA does not refer to these specific models and can instead be
studied abstractly in various contexts.
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UA and small cardinals

UA has many consequences for large cardinals but no impact on
small cardinals; e.g., ℵ1, ℵ2, the first inaccessible cardinal, etc.

Why? Because these cardinals carry no measures... assuming the
Axiom of Choice (AC).

The primary “competitor” to AC, the Axiom of Determinacy (AD),
implies many such measures exist.

Our main theorem (roughly): AD implies UA.

So the measures supplied by AD carry the same rigid structure first
observed in canonical models of ZFC.
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Determinacy



The Axiom of Determinacy

AD was formulated by Mycielski–Steinhaus as an alternative to the
Axiom of Choice.

Axiom of Determinacy (AD)
In any infinite two-player game of perfect information with a
countable state space, one of the players has a winning strategy.

Formalized by the Gale–Stewart game GA with payoff set A ⊆ ωω:

Player I: x0 x2 x4 · · ·
Player II: x1 x3 x5 · · ·

I wins a run of GA if the sequence x = ⟨xn : n < ω⟩ belongs to A.
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Determinacy and regularity properties

The early consequences of AD generalize descriptive set theory to
arbitrary sets of reals.

Theorem (Mycielski–Swierczkowski, 1964)
Assuming ZF + AD, every set of reals is Lebesgue measurable.

Theorem (Davis, 1964)
Assuming ZF + AD, the continuum hypothesis holds. (Every set of
reals is either countable or the same cardinality as R.)

Philosophy: AD is the theory of definable sets of reals.
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The set theory of determinacy

Problem: Develop set theory under AD. E.g., determine the
structure of transfinite cardinals.

Theorem (Mycielski–Steinhaus, 1964; Solovay, 1967)
Under ZF + AD, ℵ1 and ℵ2 are regular cardinals.

But shockingly...

Theorem (Martin, 1971)
Under ZF + AD, ℵn is singular for all natural numbers n ≥ 3.

The proof of Martin’s theorem involves the “large cardinal theory
of small cardinals.”
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Measurable cardinals and determinacy

▶ If κ is an uncountable cardinal, a measure on κ is a countably
additive monotone function µ : P(κ) → {0, 1}.

▶ κ is measurable if it carries a nontrivial κ-additive measure.

Theorem (Solovay, 1967)
Assuming ZF + AD, ℵ1 and ℵ2 are measurable.

Solovay shows the closed unbounded filter induces a measure on
ℵ1, called the club measure:

νclub(A) =
{

1 if A contains a closed unbounded set
0 otherwise
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Ultrapowers and the singularity of ℵn

The modern proof that ℵn is singular for n ≥ 3 involves analyzing
the ultrapowers associated to the club measure.

Notation: The ultrapower of a structure M by a measure µ is
denoted Mµ = Mκ/µ. The ultrapower embedding is denoted

jµ : M → Mµ

Theorem (Kunen)
Assume ZF + AD. For n ≥ 1, (ℵn)ν = ℵn+1 where ν = νclub.
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Ultrapowers and the singularity of ℵn
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Figure: The ultrapower of the cardinals by the club measure.
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Jackson’s analysis

Building on these ideas, Jackson analyzed the determinacy
structure of cardinals up to the least weakly inaccessible cardinal.

This leads to a beautiful theory of measures, ultrapowers,
cofinalities, partition properties.

The cardinals exhibit surprising patterns, connected to finite and
infinite combinatorics, descriptive set theory, inner model theory.

Theorem (Jackson)
Under ZF + AD, the first eight infinite regular cardinals are

ℵ0 ℵ1 ℵ2 ℵω+1 ℵω+2 ℵω·2+1 ℵωω+1 ℵωωω +1
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The global theory

Jackson’s theory handles the first inaccessible. But the
determinacy world extends far beyond:

Definition
The cardinal Θ is the supremum of all ordinals α such that there is
a surjection from R onto α.

▶ Under ZFC, Θ = (2ℵ0)+.
▶ Determinacy implies Θ is very large.

Theorem (Moschovakis, 1970)
Under ZF + AD, Θ is a limit of weakly inaccessible cardinals.

What is the structure of cardinals below Θ? To answer this, we’d
need a global classification of measures and their ultrapowers.
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The Ultrapower Axiom

The Ultrapower Axiom (UA) provides a global classification of
measures in a completely different context: canonical inner models
of ZFC + large cardinal axioms.

UA holds in all these models and provides an apparently complete
picture of the behavior of measures within them.
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The statement of UA

UA is an amalgamation principle for ultrapowers.

Ultrapower Axiom (UA)
For all measures µ and ν, there exist internal measures ν∗ ∈ Vµ

and µ∗ ∈ Vν such that (Vµ)ν∗ = (Vν)µ∗ and, denoting this model
by N, the following diagram commutes:

Vµ Vν

V
jµ jν

Informally: any two ultrapowers have a common ultrapower.
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The complexity hierarchy of measures

If µ and ν are measures on a cardinal κ, set µ <k ν if

µ =
∫

α<κ
µα dν

where µα is a measure on α. This is called the Ketonen order.

Theorem (G.)
The following are equivalent:
▶ The Ultrapower Axiom holds for measures on κ.
▶ The measures on κ are well-ordered by the Ketonen order.

Conclusion: Under UA, the measures on a cardinal are classified
by ordinal invariants.
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The theorem



From AD to UA

Our main theorem is:

Theorem (G.)
Under ZF + AD+, UA holds for all measures on cardinals below Θ.

AD+ is an extension of AD due to Woodin, which holds in all
known models of AD; e.g., L(R) under large cardinals.

Important subtlety:  Loś’s theorem fails for the ultrapowers we are
dealing with. So ultrapowers of V do not yield elementary
embeddings.

Still we have our classification of measures:

Theorem (G.)
Under ZF + AD+, the measures on cardinals below Θ are
well-ordered by the Ketonen order.
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Aspects of the proof

The proof avoids getting into Jackson’s detailed analysis; instead
uses softer methods from large cardinals and semi-classical
descriptive set theory.

The main techniques:
▶ Kechris’s method of coding measures by reals.
▶ A generic ultrapower construction due to Woodin that enables

us to recover  Loś’s theorem.
▶ A realizability lemma for Woodin’s ultrapowers using the

theory of precipitous ideals.
▶ The proof that large cardinals imply the existence of inner

models with Woodin cardinals.
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Conclusion

Under AD, despite their intricate structure, measures and
ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson’s work to push
his analysis up to Θ.

In any case, we have a surprising connection between canonical
models of ZFC and models of determinacy which will hopefully
shed light on both subjects.

22 / 23



Conclusion

Under AD, despite their intricate structure, measures and
ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson’s work to push
his analysis up to Θ.

In any case, we have a surprising connection between canonical
models of ZFC and models of determinacy which will hopefully
shed light on both subjects.

22 / 23



Conclusion

Under AD, despite their intricate structure, measures and
ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson’s work to push
his analysis up to Θ.

In any case, we have a surprising connection between canonical
models of ZFC and models of determinacy which will hopefully
shed light on both subjects.

22 / 23



Conclusion

Under AD, despite their intricate structure, measures and
ultrapowers are governed by a simple rule: UA.

Optimistically, UA can be integrated with Jackson’s work to push
his analysis up to Θ.

In any case, we have a surprising connection between canonical
models of ZFC and models of determinacy which will hopefully
shed light on both subjects.

22 / 23



Thanks!
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