Ultrafilters and definability

Gabriel Goldberg

UC Berkeley

2020

Outline

Main question: what is the relationship between V and HOD under large cardinal hypotheses?

- 1. The Ultrapower Axiom and ordinal definability
- 2. Definability from ultrafilters
- 3. Uniqueness of elementary embeddings:
 - Consequence of V = HOD: elementary embeddings of V are uniquely determined by their target models.
 - Assuming large cardinals, we show: elementary embeddings of V with sufficiently large critical points are uniquely determined by their target models.

The Ultrapower Axiom

An elementary embedding $i: M \rightarrow N$ between transitive models is an *ultrapower embedding* if *i* is given by an ultrafilter of *M*.

Ultrapower Axiom (UA)

For any ultrapower embeddings $j_0 : V \to M_0$ and $j_1 : V \to M_1$, there are ultrapower embeddings $i_0 : M_0 \to N$ and $i_1 : M_1 \to N$ with $i_0 \circ j_0 = i_1 \circ j_1$.

Wellordering ultrafilters

Definition (UA)

If U_0 and U_1 are countably complete ultrafilters on ordinals, set $U_0 \leq_{\Bbbk} U_1$ if there exist ultrapower embeddings $i_0 : M_{U_0} \to N$ and $i_1 : M_{U_1} \to N$ such that $i_0 \circ j_{U_0} = i_1 \circ j_{U_1}$ and $i_0([id]_{U_0}) \leq i_1([id]_{U_1})$.

A special case of this order was first discovered by Ketonen.

Theorem (UA)

For any ordinal δ , \leq_{\Bbbk} wellorders the set of countably complete ultrafilters on δ .

The ordinal definability of ultrafilters

Theorem (UA)

Every countably complete ultrafilter on an ordinal is ordinal definable.

- Unexplained coincidence: also a consequence of AD + DC (for ultrafilters on ordinals less than Θ).
- Assuming AC, if every ultrafilter on an ordinal is ordinal definable, then V = HOD.

With large cardinals

Question

Is UA consistent with a strongly compact cardinal?

Recall that an inner model M of ZFC is a ground of V if there is a partial order $\mathbb{P} \in M$ and an M-generic filter $G \subseteq \mathbb{P}$ such that V = M[G].

Theorem (UA)

Assume there is a strongly compact cardinal. Then HOD is a ground of V.

We first give a (very easy) proof assuming a supercompact.

$\mathsf{UA} + \mathsf{supercompact} \implies \mathsf{HOD} \mathsf{ is a ground}$

Theorem (Vopenka)

For any set of ordinals A, HOD is a ground of HOD_A .

This reduces the theorem to the following proposition.

Proposition (UA)

Suppose κ is supercompact and A is a set of ordinals such that $V_{\kappa} \subseteq \text{HOD}_{A}$. Then $V = \text{HOD}_{A}$.

Proof.

Fix $\lambda \geq \kappa$. Take an ultrafilter U such that $V_{\lambda} \subseteq \text{Ult}(V_{\kappa}, U)$. Then $V_{\lambda} \subseteq j_{U}(\text{HOD}_{A}) \subseteq \text{HOD}_{A}$ since U is OD.

The HOD Conjecture and the UA Conjecture

Conjecture (HOD Conjecture)

If κ is extendible, then HOD correctly computes all successors of singular cardinals greater than κ .

Conjecture (UA Conjecture)

If κ is strongly compact, there is an inner model M of ZFC + UA such that M satisfies "U is a κ -complete ultrafilter on X" if and only if $U = W \cap M$ for some κ -complete ultrafilter W on X.

Theorem

The UA Conjecture implies the HOD Conjecture.

The Weak Ultrapower Axiom

The Ultrapower Axiom can be decomposed into two principles:

- Weak UA: Any two ultrapowers of V have a common ultrapower.
- ▶ Uniqueness of Ultrapower Embeddings: An inner model M admits at most one ultrapower embedding $j : V \rightarrow M$.
 - Follows from V = HOD and drives the proof that HOD is a ground of V under UA + a supercompact.
 - In proof that UA holds in canonical inner models, one uses V = HOD to derive uniqueness.
 - Are the largeness properties of HOD under UA circular?

Question

Assume Weak UA plus a supercompact cardinal. Must V be a generic extension of HOD?

Completely definable sets

Definition

A set x is κ -completely definable if it is definable from a κ -complete ultrafilter on an ordinal.

- $CD(\kappa)$ denotes the class of κ -completely definable sets.
- HCD(κ) denotes the union of all transitive sets $M \subseteq CD(\kappa)$.

Equivalently, $CD(\kappa)$ is the class of sets ordinal definable from ultrapower embeddings with critical point at least κ .

$$V = \mathsf{HCD}(\omega) \supseteq \mathsf{HCD}(\omega_1) \supseteq \cdots \mathsf{HCD}(\infty) = \mathsf{HOD}$$

Hereditarily completely definable sets

Theorem

If κ is strongly compact then HCD(κ) is a ground of V.

- If g ⊆ ω is Cohen generic over V, then (HCD(κ))^{V[g]} ⊆ V for any uncountable κ, so HCD(κ) can be a *nontrivial* ground.
- Logic showing that HOD is a ground under UA plus a supercompact κ almost shows HCD(κ) is a ground without the assumption of UA.
- Issue: does HCD(κ) satisfy the Axiom of Choice?

The Axiom of Choice in $HCD(\kappa)$

Theorem

Suppose κ is strongly compact. Then HCD(κ) satisfies the Axiom of Choice.

Key fact: If \mathcal{W} on $P_{\kappa}(P(\lambda))$ is fine, then every κ -complete ultrafilter on λ is of the form $\{A \subseteq \lambda : \alpha \in j_{\mathcal{W}}(A)\}$.

Proof.

- Suffices to show that for any set S of κ-complete ultrafilters on ordinals, there is a κ-completely definable wellorder of S.
- Let λ be such every ultrafilter in S lies on an ordinal less than λ . and let \mathcal{W} be a κ -complete fine ultrafilter on $P_{\kappa}(P(\lambda))$.
 - For every $U \in S$, let α_U be least such that $U = \{A \subseteq \lambda : \alpha_U \in j_W(A)\}.$
 - The order defined by U < W if $\alpha_U < \alpha_W$ is in $CD(\kappa)$.

Uniqueness of elementary embeddings

Suppose M is an inner model. How many elementary embeddings from V to M can exist?

Proposition

Letting κ be the least measurable cardinal, it is consistent that there is an inner model M such that Ult(V, U) = M for $2^{2^{\kappa}}$ -many distinct normal ultrafilters U on κ .

- The model is obtained by Kunen-Paris forcing.
- The embeddings all lift a single elementary embedding of the ground model.
- In particular, they agree on the ordinals and hence they agree on HOD.

Uniqueness of elementary embeddings, continued

Theorem (Woodin)

If $j_0, j_1 : V \to M$ are definable embeddings, then $j_0 \upharpoonright HOD = j_1 \upharpoonright HOD$.

Theorem (Eventual SCH)

If $j_0, j_1 : V \to M$ are elementary embeddings, then $j_0 \upharpoonright HOD = j_1 \upharpoonright HOD$.

Theorem (UA or V = HOD)

For any inner model M, there is at most one elementary embedding from V to M.

Uniqueness of embeddings measures the closeness of V and HOD.

Uniqueness of elementary embeddings above an extendible

Our main theorem is that uniqueness of embeddings holds for all elementary embeddings with large enough critical points:

Theorem

Suppose there is a proper class of strongly compact cardinals, κ is extendible, and $j_0, j_1 : V \to M$ are elementary embeddings with $\operatorname{crit}(j_0) > \kappa$. Then $j_0 = j_1$.

In other words: elementary embeddings with sufficiently large critical point are uniquely determined by their target models.

Elementary embeddings and set theoretic geology

Theorem

Suppose $j_0, j_1 : V \to M$ are the ultrapowers associated to ultrafilters in V_{κ} where κ is strongly compact. Then there is a ground $N \subseteq V$ such that $j_0 \upharpoonright N = j_1 \upharpoonright N$.

In fact, the following theorem implies one can take $N = \text{HCD}(\kappa)$:

Theorem

Suppose $j_0, j_1 : V \to M$ are the ultrapowers associated to ultrafilters in V_{κ} . Then $j_0 \upharpoonright CD(\kappa) = j_1 \upharpoonright CD(\kappa)$.

Proof.

It suffices to show that if $i: V \to P$ is a an ultrapower embedding with $\operatorname{crit}(i) \ge \kappa$, then $j_0(i) = j_1(i)$. But by Kunen's Commuting Ultrapowers Lemma, $j_0(i) = i \upharpoonright M = j_1(i)$.

Usuba's Theorem

For any cardinal κ , a κ -ground is an inner model M of ZFC such that V = M[G] for an M-generic filter G on a partial order $\mathbb{P} \in M$ with $|\mathbb{P}| < \kappa$.

Theorem (Usuba)

Suppose κ is an extendible cardinal. Then every ground is a $\beth_{\omega}(\kappa)$ -ground.

- Combined with another result of Usuba, this implies there is a minimum ground. In fact, this ground is the intersection of all κ-grounds.
- □_ω(κ) is not optimal, but it open whether every ground must be a κ-ground if κ is extendible.

Reduction from arbitrary embeddings to ultrapowers

Theorem (Eventual SCH)

If $j_0, j_1 : V \to M$ are elementary embeddings, then one can find an elementary embedding $k : P \to M$ and ultrapower embeddings $i_0, i_1 : V \to P$ such that $j_0 = k \circ i_0$ and $j_1 = k \circ i_1$.

Since strongly compact cardinals yield the eventual SCH, to prove the uniqueness of elementary embeddings with critical point above the least extendible cardinal κ , it suffices to prove the uniqueness of *ultrapower embeddings* with critical point above κ .

Uniqueness of ultrapower embeddings above an extendible

Proposition

If there is a proper class of strongly compacts, κ is extendible, $j_0, j_1 : V \to M$ are ultrapowers, and $\operatorname{crit}(j_0) > \kappa$, then $j_0 = j_1$.

Proof.

- Fix a strongly compact δ past the underlying sets of ultrafilters inducing j₀ and j₁.
- j_0 and j_1 agree on HCD(δ).
- ▶ By Usuba's Theorem, $HCD(\delta)$ is a $\beth_{\omega}(\kappa)$ -ground of V.
- Since crit(j₀) > (2^κ)⁺, the Lévy-Solovay theorem implies that j₀ ↾ HCD(δ) lifts uniquely to an elementary embedding of V.
- Since j_0 and j_1 lift $j_0 \upharpoonright \text{HCD}(\delta)$, $j_0 = j_1$.

HOD under Weak UA

Theorem (Weak UA)

If there is a proper class of supercompact cardinals and κ is extendible, then HOD is a ground of V.

- ▶ **Issue:** given ultrapowers $j_0 : V \to M_0$ and $j_1 : V \to M_1$ with critical point above κ , Weak UA yields ultrapowers $i_0 : M_0 \to N$ and $i_1 : M_1 \to N$, but it is not clear their critical points must lie above κ , so one cannot get $i_0 \circ j_0 = i_1 \circ j_1$.
- Idea: prove that the Mitchell order is linear on κ⁺-complete supercompactness measures using argument for linearity of the Mitchell order under UA combined with uniqueness of elementary embeddings with critical point above κ. This implies κ⁺-complete supercompactness measures are OD, which is enough to conclude HCD(κ⁺) = HOD.

Conclusion

- Many tools to study the relationship between HOD and V assuming large cardinals:
 - Countably complete ultrafilter combinatorics
 - UA phenomena
 - Kunen's Commuting Ultrapowers Lemma
 - Mitchell order
 - Solovay's Theorem
 - Set theoretic geology
 - Lévy-Solovay phenomena
 - Vopenka's Theorem
 - Usuba's Theorems
 - Approximation and cover properties
- No reason to think the HOD Conjecture itself could not be established using simple (fine structure free) arguments like the ones from this talk.

Thanks

Thanks!

Gabriel Goldberg Ultrafilters and definability