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The Ultrapower Axiom (UA):
» A regularity principle for large cardinals
» Motivated by the methodology of inner model theory
» Extends inner model theory abstractly to all large cardinals

» Holds in all known canonical inner models of ZFC

The Axiom of Determinacy (AD):
P> A regularity principle for sets of reals
> Motivated by game-theoretic methods in descriptive set theory
» Extends descriptive set theory abstractly to all sets of reals
» Holds for all canonical sets of reals but contradicts AC
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Introduction

UA governs the structure of countably complete ultrafilters on
ordinals, which we refer to as measures.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:

» AD implies the existence of many measures below ©, the least
ordinal that is not the surjective image of R

» Their structure is central to the set theory of determinacy
models; e.g., cofinalities, partition properties, uniformization

» The connection between AD and large cardinals is mediated
by the existence of measures (or systems of measures)
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Main theorem

The connection between AD and UA goes beyond analogy:
Theorem (G.)
Assume ZF + AD™. Then UA holds below ©.

AD™ is an enhancement of AD due to Woodin. It is open whether
AD implies AD™.

Corollary (G.)
Assume ZF + AD"R®) . Then L(R) satisfies UA.
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Prior results

Deep connections between the structure of determinacy models and
canonical inner models of ZFC have been known since the 1990s.

>

>
>

Steel and Woodin showed that ADX®) implies HODX®) is a
canonical inner model; in particular it satisfies UA

Woodin (2023): ZF + AD" + V = L(P(R)) - “HOD F UA"
G.—Sargsyan—Siskind tried to prove UA in L(R) using the
Steel /Woodin analysis; showed ultrapowers of V restrict to
iterated ultrapowers of HOD, answering a question of Woodin

By work of Solovay, Martin—Paris, and Kunen from the 1970s,
AD implies UA for measures on w»

In fall 2024, G.—Jackson proved UA below X, from AD

6/ 34
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Outline

» The Ultrapower Axiom and the Ketonen order
» Measures under AD

» Sketch of proof of UA from determinacy

» Applications and future directions
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A warning

In large cardinal theory it is typical to consider the ultrapower of
the universe of sets V' by some measure U.

The transitive collapse of the ultrapower, denoted Vyy, is an inner
model and the natural embedding jy, : V — V| is elementary.

These basic facts require the Axiom of Choice, via Lo$'s theorem.

We will explore a different world: below ©, to$'s theorem fails for
every nontrivial measure.

Our background theory is ZF + DC.
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The Ultrapower Axiom
» U € M is an internal measure if M satisfies “U is a measure”
> lts ultrapower embedding is denoted jy : M — My

» i: M — Nis an internal ultrapower if it is isomorphic to the
ultrapower embedding of an internal measure of M

Definition (Ultrapower Axiom)

For all measures U and W, there exist internal ultrapowers
iV: Vy— Nand i : Viy — N making the diagram commute:

N
v //W F\\ i
Vu Vi
74
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Comparison and UA

UA is an abstraction of the comparison theorem: any two canonical
models P and @ can be compared by iterated ultrapowers.

P Q
Outcome: Either P* € Q*, Q* € P*, or P* = Q*.

» If P and Q are ultrapowers of M, comparison simplifies to UA
» UA is a first-order statement that can be analyzed in ZFC

11/ 34
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Theorem (G., ZFC + UA, 2016)

The Mitchell order is linear on normal measures.

Theorem (G., ZFC + UA, 2017)

The generalized continuum hypothesis holds above the least
strongly compact cardinal.

Theorem (G., ZFC + UA, 2018)

A cardinal k is strongly compact if and only if it is supercompact
or a measurable limit of supercompact cardinals.
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Let v(x) denote the set of measures on k.

The Ketonen order on v(k) is given by U <y W if there exist
U € v(a), for 0 < a < K, such that

AclU <= {a<k:ANac lU,} e W

Theorem (G.)

The Ketonen order on v(k) is a well-founded partial order.

Theorem (G., UA)

For all k, the Ketonen order on v(k) is linear.
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The Ketonen order and Lipschitz reducibility

» A function f : P(k) — P(k) is Lipschitz if for any A C k and
a < K, f(A) N« only depends on AN a.

» If X, Y C P(x), then X is L-reducible to Y if X = f~1[Y] for
some Lipschitz f : P(k) — P(k).
» A subset of P(k) is self-dual if reducible to its complement.

Theorem (Wadge, Martin—-Monk, AD)

The self-dual subsets of P(w) are pre-well-ordered by L-reducibility.
UA itself implies a form of AD:
Proposition (G., UA)

The restriction of L-reducibility to v(k) is the Ketonen order. Thus
v(k) is well-ordered by L-reducibility.

15 / 34
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Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are
simple examples on small cardinals:

Theorem (Solovay, Martin—Paris, AD)

» The club filter on wy is a normal measure.

» So are the w-club and wy-club filters on w>.

Kunen: all measures on wy are products of these measures.

Theorem (Martin, AD)

For n > 3, wy, is singular of cofinality w.

> w,'s carry increasingly complex measures classified by Kunen

> Measures below least weakly inaccessible classified by Jackson
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Definability of measures

Why are there so many definable measures?

Theorem (Kunen, AD)

Every measure below © s ordinal definable.

This uses the Martin measure on the Turing degrees.

Theorem (G., UA)

Every measure is ordinal definable.

This is because they are well-ordered by the Ketonen order.
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The Ketonen order and AD

Question (AD)

Suppose k < ©. Is the Ketonen order on v(x) a well-order?

In fact, this is equivalent to asking whether AD implies UA:
Theorem (G.)

For any ordinal k, the following are equivalent:
» UA holds for measures on k.

» The Ketonen order on v(k) is linear.

19/ 34
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The proof of UA from AD™ replaces weak comparison with
Kechris's coding theorem for measures, a determinacy method for
coding measures by reals.

Key consequence of Kechris’'s theorem:
Roughly, every elementary embedding m: M — V is close to M.

To prove UA, suppose M is countable and 7: M — V is
elementary. We want to show that any two internal ultrapowers

ju: M — My and jiy : M — My, admit a close comparison.

By Kechris, it suffices to re-embed the ultrapowers into V.
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Ifi: M — N and m: M — P are elementary, then i is w-realizable
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ultrapower of M is w-realizable.

Jensen's theorem false without choice for a trivial reason:
ultrapowers are not elementary equivalent to V/, let alone
elementary embeddable.

Under AD™, however, there is a technique for replacing
ultrapowers with fully elementary generic ultrapowers.
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such that if G C P(R)/J is generic, then in V[G]:

» The ultrapower j : V — Vi is elementary.
» There is a embedding k : Vy — Vi fixing every ordinal.

Observations:

» The forcing P(R)/J is canonically associated to U

> It's cone homogeneous, automorphisms fix the name for jg
Conclusion: All properties of V[G], Vi, and j are decided in V.

Almost nothing is known even when U is the club measure on wj.
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The linearity of the Mitchell order

A measure U lies below W in the Mitchell order if U belongs to
the ultrapower of the universe by W.

Theorem (G., UA)

For any k, the Mitchell order well-orders the normal measures on k.

The proof is local, so:

Corollary (G., AD™)

If kK < ©, the Mitchell order well-orders the normal measures on k.
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A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

Theorem (G., AD™)

Any precipitous ideal on an ordinal below © is atomic.

This justifies our terminology:

Corollary (AD™)

If v is a probability measure on an ordinal below ©, then p is a
weighted sum of countably many measures.
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L(R) under AD | L(Vx11) under lg
w1 is measurable AT is measurable
© is inaccessible ©v,,, is inaccessible
perfect set theorem | \-perfect set theorem

UA was predicted by ly and then confirmed in L(R):
Theorem (G., ZFC + 1o, 2021)

In L(V\y1), for any ordinal k, the Ketonen order on v(k) is almost
linear: there are fewer than \ measures of any fixed rank.

However...

Theorem (G., ZF + DC + lp)

If L(V\41) satisfies UA, then wy is measurable.
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Future directions

Global classification of measures

Woodin's generic ultrapowers

Connections with lg and stronger hypotheses
Unification with HOD

>

>

P> Measures on sets that are not well-orderable

>

>

» Strong and Woodin cardinals in determinacy models
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Thanks!
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