

UA from AD

Gabriel Goldberg

UC Berkeley

December 15, 2025

Introduction

UA and AD

The Ultrapower Axiom (UA):

- ▶ A regularity principle for large cardinals
- ▶ Motivated by the methodology of inner model theory
- ▶ Extends inner model theory abstractly to all large cardinals
- ▶ Holds in all known canonical inner models of ZFC

The Ultrapower Axiom (UA):

- ▶ A regularity principle for large cardinals
- ▶ Motivated by the methodology of inner model theory
- ▶ Extends inner model theory abstractly to all large cardinals
- ▶ Holds in all known canonical inner models of ZFC

The Axiom of Determinacy (AD):

- ▶ A regularity principle for sets of reals
- ▶ Motivated by game-theoretic methods in descriptive set theory
- ▶ Extends descriptive set theory abstractly to all sets of reals
- ▶ Holds for all canonical sets of reals but contradicts AC

Introduction

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Most large cardinal axioms are formulated in terms of measures.

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:

- ▶ AD implies the existence of many measures below Θ , the least ordinal that is not the surjective image of \mathbb{R}

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:

- ▶ AD implies the existence of many measures below Θ , the least ordinal that is not the surjective image of \mathbb{R}
- ▶ Their structure is central to the set theory of determinacy models; e.g., cofinalities, partition properties, uniformization

Introduction

UA governs the structure of countably complete ultrafilters on ordinals, which we refer to as *measures*.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:

- ▶ AD implies the existence of many measures below Θ , the least ordinal that is not the surjective image of \mathbb{R}
- ▶ Their structure is central to the set theory of determinacy models; e.g., cofinalities, partition properties, uniformization
- ▶ The connection between AD and large cardinals is mediated by the existence of measures (or systems of measures)

Main theorem

Main theorem

The connection between AD and UA goes beyond analogy:

Theorem (G.)

Assume ZF + AD⁺. Then UA holds below Θ .

Main theorem

The connection between AD and UA goes beyond analogy:

Theorem (G.)

Assume ZF + AD⁺. Then UA holds below Θ .

AD⁺ is an enhancement of AD due to Woodin. It is open whether AD implies AD⁺.

Main theorem

The connection between AD and UA goes beyond analogy:

Theorem (G.)

Assume ZF + AD⁺. Then UA holds below Θ .

AD⁺ is an enhancement of AD due to Woodin. It is open whether AD implies AD⁺.

Corollary (G.)

Assume ZF + AD^{L(\mathbb{R})}. Then $L(\mathbb{R})$ satisfies UA.

Prior results

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

- ▶ Steel and Woodin showed that $\text{AD}^{L(\mathbb{R})}$ implies $\text{HOD}^{L(\mathbb{R})}$ is a canonical inner model; in particular it satisfies UA

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

- ▶ Steel and Woodin showed that $\text{AD}^{L(\mathbb{R})}$ implies $\text{HOD}^{L(\mathbb{R})}$ is a canonical inner model; in particular it satisfies UA
- ▶ Woodin (2023): $\text{ZF} + \text{AD}^+ + V = L(P(\mathbb{R})) \vdash \text{"HOD} \models \text{UA"}$

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

- ▶ Steel and Woodin showed that $\text{AD}^{L(\mathbb{R})}$ implies $\text{HOD}^{L(\mathbb{R})}$ is a canonical inner model; in particular it satisfies UA
- ▶ Woodin (2023): $\text{ZF} + \text{AD}^+ + V = L(P(\mathbb{R})) \vdash \text{"HOD} \models \text{UA"}$
- ▶ G.-Sargsyan–Siskind tried to prove UA in $L(\mathbb{R})$ using the Steel/Woodin analysis; showed ultrapowers of V restrict to iterated ultrapowers of HOD, answering a question of Woodin

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

- ▶ Steel and Woodin showed that $\text{AD}^{L(\mathbb{R})}$ implies $\text{HOD}^{L(\mathbb{R})}$ is a canonical inner model; in particular it satisfies UA
- ▶ Woodin (2023): $\text{ZF} + \text{AD}^+ + V = L(P(\mathbb{R})) \vdash \text{"HOD} \models \text{UA"}$
- ▶ G.-Sargsyan–Siskind tried to prove UA in $L(\mathbb{R})$ using the Steel/Woodin analysis; showed ultrapowers of V restrict to iterated ultrapowers of HOD, answering a question of Woodin
- ▶ By work of Solovay, Martin–Paris, and Kunen from the 1970s, AD implies UA for measures on ω_2

Prior results

Deep connections between the structure of determinacy models and canonical inner models of ZFC have been known since the 1990s.

- ▶ Steel and Woodin showed that $\text{AD}^{L(\mathbb{R})}$ implies $\text{HOD}^{L(\mathbb{R})}$ is a canonical inner model; in particular it satisfies UA
- ▶ Woodin (2023): $\text{ZF} + \text{AD}^+ + V = L(P(\mathbb{R})) \vdash \text{"HOD} \models \text{UA"}$
- ▶ G.-Sargsyan–Siskind tried to prove UA in $L(\mathbb{R})$ using the Steel/Woodin analysis; showed ultrapowers of V restrict to iterated ultrapowers of HOD, answering a question of Woodin
- ▶ By work of Solovay, Martin–Paris, and Kunen from the 1970s, AD implies UA for measures on ω_2
- ▶ In fall 2024, G.–Jackson proved UA below \aleph_ω from AD

Outline

Outline

- ▶ The Ultrapower Axiom and the Ketonen order
- ▶ Measures under AD
- ▶ Sketch of proof of UA from determinacy
- ▶ Applications and future directions

A warning

A warning

In large cardinal theory it is typical to consider the ultrapower of the universe of sets V by some measure U .

A warning

In large cardinal theory it is typical to consider the ultrapower of the universe of sets V by some measure U .

The transitive collapse of the ultrapower, denoted V_U , is an inner model and the natural embedding $j_U : V \rightarrow V_U$ is elementary.

A warning

In large cardinal theory it is typical to consider the ultrapower of the universe of sets V by some measure U .

The transitive collapse of the ultrapower, denoted V_U , is an inner model and the natural embedding $j_U : V \rightarrow V_U$ is elementary.

These basic facts require the Axiom of Choice, via Łoś's theorem.

A warning

In large cardinal theory it is typical to consider the ultrapower of the universe of sets V by some measure U .

The transitive collapse of the ultrapower, denoted V_U , is an inner model and the natural embedding $j_U : V \rightarrow V_U$ is elementary.

These basic facts require the Axiom of Choice, via Łoś's theorem.

We will explore a different world: below Θ , Łoś's theorem fails for every nontrivial measure.

A warning

In large cardinal theory it is typical to consider the ultrapower of the universe of sets V by some measure U .

The transitive collapse of the ultrapower, denoted V_U , is an inner model and the natural embedding $j_U : V \rightarrow V_U$ is elementary.

These basic facts require the Axiom of Choice, via Łoś's theorem.

We will explore a different world: below Θ , Łoś's theorem fails for every nontrivial measure.

Our background theory is ZF + DC.

The Ultrapower Axiom

The Ultrapower Axiom

The Ultrapower Axiom

- ▶ $U \in M$ is an *internal measure* if M satisfies “ U is a measure”
- ▶ Its *ultrapower embedding* is denoted $j_U : M \rightarrow M_U$
- ▶ $i : M \rightarrow N$ is an *internal ultrapower* if it is isomorphic to the ultrapower embedding of an internal measure of M

The Ultrapower Axiom

- ▶ $U \in M$ is an *internal measure* if M satisfies “ U is a measure”
- ▶ Its *ultrapower embedding* is denoted $j_U : M \rightarrow M_U$
- ▶ $i : M \rightarrow N$ is an *internal ultrapower* if it is isomorphic to the ultrapower embedding of an internal measure of M

Definition (Ultrapower Axiom)

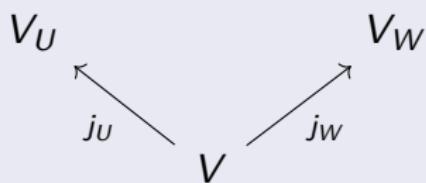
For all measures U and W , there exist internal ultrapowers $i^U : V_U \rightarrow N$ and $i^W : V_W \rightarrow N$ making the diagram commute:

The Ultrapower Axiom

- ▶ $U \in M$ is an *internal measure* if M satisfies “ U is a measure”
- ▶ Its *ultrapower embedding* is denoted $j_U : M \rightarrow M_U$
- ▶ $i : M \rightarrow N$ is an *internal ultrapower* if it is isomorphic to the ultrapower embedding of an internal measure of M

Definition (Ultrapower Axiom)

For all measures U and W , there exist internal ultrapowers $i^U : V_U \rightarrow N$ and $i^W : V_W \rightarrow N$ making the diagram commute:

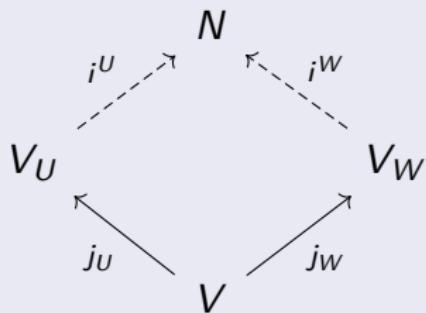


The Ultrapower Axiom

- ▶ $U \in M$ is an *internal measure* if M satisfies “ U is a measure”
- ▶ Its *ultrapower embedding* is denoted $j_U : M \rightarrow M_U$
- ▶ $i : M \rightarrow N$ is an *internal ultrapower* if it is isomorphic to the ultrapower embedding of an internal measure of M

Definition (Ultrapower Axiom)

For all measures U and W , there exist internal ultrapowers $i^U : V_U \rightarrow N$ and $i^W : V_W \rightarrow N$ making the diagram commute:



Comparison and UA

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

P

Q

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Outcome: Either $P^* \in Q^*$, $Q^* \in P^*$, or $P^* = Q^*$.

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Outcome: Either $P^* \in Q^*$, $Q^* \in P^*$, or $P^* = Q^*$.

- If P and Q are ultrapowers of M , comparison simplifies to UA

Comparison and UA

UA is an abstraction of the *comparison theorem*: any two canonical models P and Q can be compared by iterated ultrapowers.

Outcome: Either $P^* \in Q^*$, $Q^* \in P^*$, or $P^* = Q^*$.

- ▶ If P and Q are ultrapowers of M , comparison simplifies to UA
- ▶ UA is a first-order statement that can be analyzed in ZFC

Results from grad school

Results from grad school

Theorem (G., ZFC + UA, 2016)

The Mitchell order is linear on normal measures.

Results from grad school

Theorem (G., ZFC + UA, 2016)

The Mitchell order is linear on normal measures.

Theorem (G., ZFC + UA, 2017)

The generalized continuum hypothesis holds above the least strongly compact cardinal.

Results from grad school

Theorem (G., ZFC + UA, 2016)

The Mitchell order is linear on normal measures.

Theorem (G., ZFC + UA, 2017)

The generalized continuum hypothesis holds above the least strongly compact cardinal.

Theorem (G., ZFC + UA, 2018)

A cardinal κ is strongly compact if and only if it is supercompact or a measurable limit of supercompact cardinals.

The Ketonen order

The Ketonen order

Let $v(\kappa)$ denote the set of measures on κ .

The Ketonen order

Let $v(\kappa)$ denote the set of measures on κ .

The *Ketonen order on $v(\kappa)$* is given by $U <_{\mathbb{k}} W$ if there exist $U_\alpha \in v(\alpha)$, for $0 < \alpha < \kappa$, such that

$$A \in U \iff \{\alpha < \kappa : A \cap \alpha \in U_\alpha\} \in W$$

The Ketonen order

Let $v(\kappa)$ denote the set of measures on κ .

The *Ketonen order on $v(\kappa)$* is given by $U <_{\mathbb{k}} W$ if there exist $U_\alpha \in v(\alpha)$, for $0 < \alpha < \kappa$, such that

$$A \in U \iff \{\alpha < \kappa : A \cap \alpha \in U_\alpha\} \in W$$

Theorem (G.)

The Ketonen order on $v(\kappa)$ is a well-founded partial order.

The Ketonen order

Let $v(\kappa)$ denote the set of measures on κ .

The *Ketonen order on $v(\kappa)$* is given by $U <_{\mathbb{K}} W$ if there exist $U_\alpha \in v(\alpha)$, for $0 < \alpha < \kappa$, such that

$$A \in U \iff \{\alpha < \kappa : A \cap \alpha \in U_\alpha\} \in W$$

Theorem (G.)

The Ketonen order on $v(\kappa)$ is a well-founded partial order.

Theorem (G., UA)

For all κ , the Ketonen order on $v(\kappa)$ is linear.

Example: the Ketonen order on the first measurable

Example: the Ketonen order on the first measurable

U^4

U^3

U^2

U

1

U denotes normal measure on least measurable κ .

Example: the Ketonen order on the first measurable

U^4

U^3

U^2

U

κ
|
1
0

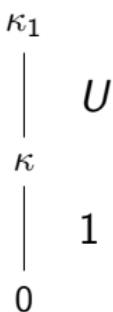
U denotes normal measure on least measurable κ .

Example: the Ketonen order on the first measurable

U^4

U^3

U^2



U denotes normal measure on least measurable κ . $\kappa_n = j_U^{(n)}(\kappa)$.

Example: the Ketonen order on the first measurable

U^4

U^3

κ_2

U^2

κ_1

U

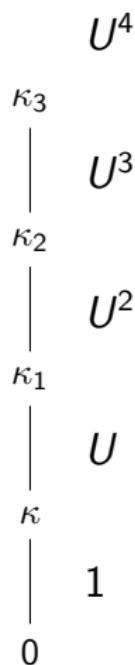
κ

1

0

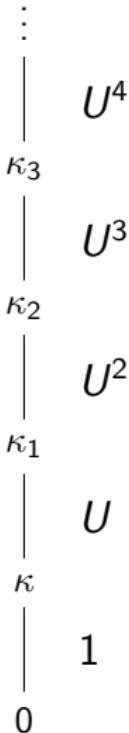
U denotes normal measure on least measurable κ . $\kappa_n = j_U^{(n)}(\kappa)$.

Example: the Ketonen order on the first measurable



U denotes normal measure on least measurable κ . $\kappa_n = j_U^{(n)}(\kappa)$.

Example: the Ketonen order on the first measurable



U denotes normal measure on least measurable κ . $\kappa_n = j_U^{(n)}(\kappa)$.

The Ketonen order and Lipschitz reducibility

The Ketonen order and Lipschitz reducibility

- ▶ A function $f : P(\kappa) \rightarrow P(\kappa)$ is *Lipschitz* if for any $A \subseteq \kappa$ and $\alpha < \kappa$, $f(A) \cap \alpha$ only depends on $A \cap \alpha$.

The Ketonen order and Lipschitz reducibility

- ▶ A function $f : P(\kappa) \rightarrow P(\kappa)$ is *Lipschitz* if for any $A \subseteq \kappa$ and $\alpha < \kappa$, $f(A) \cap \alpha$ only depends on $A \cap \alpha$.
- ▶ If $X, Y \subseteq P(\kappa)$, then X is L -reducible to Y if $X = f^{-1}[Y]$ for some Lipschitz $f : P(\kappa) \rightarrow P(\kappa)$.

The Ketonen order and Lipschitz reducibility

- ▶ A function $f : P(\kappa) \rightarrow P(\kappa)$ is *Lipschitz* if for any $A \subseteq \kappa$ and $\alpha < \kappa$, $f(A) \cap \alpha$ only depends on $A \cap \alpha$.
- ▶ If $X, Y \subseteq P(\kappa)$, then X is L -reducible to Y if $X = f^{-1}[Y]$ for some Lipschitz $f : P(\kappa) \rightarrow P(\kappa)$.
- ▶ A subset of $P(\kappa)$ is *self-dual* if reducible to its complement.

The Ketonen order and Lipschitz reducibility

- ▶ A function $f : P(\kappa) \rightarrow P(\kappa)$ is *Lipschitz* if for any $A \subseteq \kappa$ and $\alpha < \kappa$, $f(A) \cap \alpha$ only depends on $A \cap \alpha$.
- ▶ If $X, Y \subseteq P(\kappa)$, then X is L -reducible to Y if $X = f^{-1}[Y]$ for some Lipschitz $f : P(\kappa) \rightarrow P(\kappa)$.
- ▶ A subset of $P(\kappa)$ is *self-dual* if reducible to its complement.

Theorem (Wadge, Martin–Monk, AD)

The self-dual subsets of $P(\omega)$ are pre-well-ordered by L -reducibility.

The Ketonen order and Lipschitz reducibility

- ▶ A function $f : P(\kappa) \rightarrow P(\kappa)$ is *Lipschitz* if for any $A \subseteq \kappa$ and $\alpha < \kappa$, $f(A) \cap \alpha$ only depends on $A \cap \alpha$.
- ▶ If $X, Y \subseteq P(\kappa)$, then X is L -reducible to Y if $X = f^{-1}[Y]$ for some Lipschitz $f : P(\kappa) \rightarrow P(\kappa)$.
- ▶ A subset of $P(\kappa)$ is *self-dual* if reducible to its complement.

Theorem (Wadge, Martin–Monk, AD)

The self-dual subsets of $P(\omega)$ are pre-well-ordered by L -reducibility.

UA itself implies a form of AD:

Proposition (G., UA)

The restriction of L -reducibility to $v(\kappa)$ is the Ketonen order. Thus $v(\kappa)$ is well-ordered by L -reducibility.

Measures and determinacy

Simple examples

Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are simple examples on small cardinals:

Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are simple examples on small cardinals:

Theorem (Solovay, Martin–Paris, AD)

- ▶ *The club filter on ω_1 is a normal measure.*
- ▶ *So are the ω -club and ω_1 -club filters on ω_2 .*

Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are simple examples on small cardinals:

Theorem (Solovay, Martin–Paris, AD)

- ▶ *The club filter on ω_1 is a normal measure.*
- ▶ *So are the ω -club and ω_1 -club filters on ω_2 .*

Kunen: all measures on ω_2 are products of these measures.

Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are simple examples on small cardinals:

Theorem (Solovay, Martin–Paris, AD)

- ▶ *The club filter on ω_1 is a normal measure.*
- ▶ *So are the ω -club and ω_1 -club filters on ω_2 .*

Kunen: all measures on ω_2 are products of these measures.

Theorem (Martin, AD)

For $n \geq 3$, ω_n is singular of cofinality ω_2 .

Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are simple examples on small cardinals:

Theorem (Solovay, Martin–Paris, AD)

- ▶ *The club filter on ω_1 is a normal measure.*
- ▶ *So are the ω -club and ω_1 -club filters on ω_2 .*

Kunen: all measures on ω_2 are products of these measures.

Theorem (Martin, AD)

For $n \geq 3$, ω_n is singular of cofinality ω_2 .

- ▶ ω_n 's carry increasingly complex measures classified by Kunen
- ▶ Measures below least weakly inaccessible classified by Jackson

Definability of measures

Definability of measures

Why are there so many measures?

Definability of measures

Why are there so many measures?

Theorem (Kunen, AD)

Every countably complete filter below Θ extends to a measure.

Definability of measures

Why are there so many *definable* measures?

Definability of measures

Why are there so many *definable* measures?

Theorem (Kunen, AD)

Every measure below Θ is ordinal definable.

Definability of measures

Why are there so many *definable* measures?

Theorem (Kunen, AD)

Every measure below Θ is ordinal definable.

This uses the Martin measure on the Turing degrees.

Definability of measures

Why are there so many *definable* measures?

Theorem (Kunen, AD)

Every measure below Θ is ordinal definable.

This uses the Martin measure on the Turing degrees.

Theorem (G., UA)

Every measure is ordinal definable.

Definability of measures

Why are there so many *definable* measures?

Theorem (Kunen, AD)

Every measure below Θ is ordinal definable.

This uses the Martin measure on the Turing degrees.

Theorem (G., UA)

Every measure is ordinal definable.

This is because they are well-ordered by the Ketonen order.

The Ketonen order and AD

The Ketonen order and AD

Question (AD)

Suppose $\kappa < \Theta$. Is the Ketonen order on $v(\kappa)$ a well-order?

The Ketonen order and AD

Question (AD)

Suppose $\kappa < \Theta$. Is the Ketonen order on $v(\kappa)$ a well-order?

In fact, this is equivalent to asking whether AD implies UA:

The Ketonen order and AD

Question (AD)

Suppose $\kappa < \Theta$. Is the Ketonen order on $v(\kappa)$ a well-order?

In fact, this is equivalent to asking whether AD implies UA:

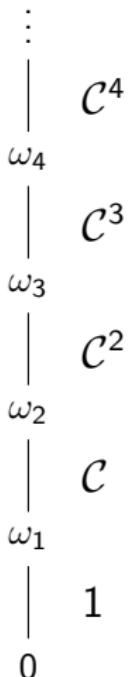
Theorem (G.)

For any ordinal κ , the following are equivalent:

- ▶ UA holds for measures on κ .
- ▶ The Ketonen order on $v(\kappa)$ is linear.

Example: the Ketonen order on ω_1

Example: the Ketonen order on ω_1



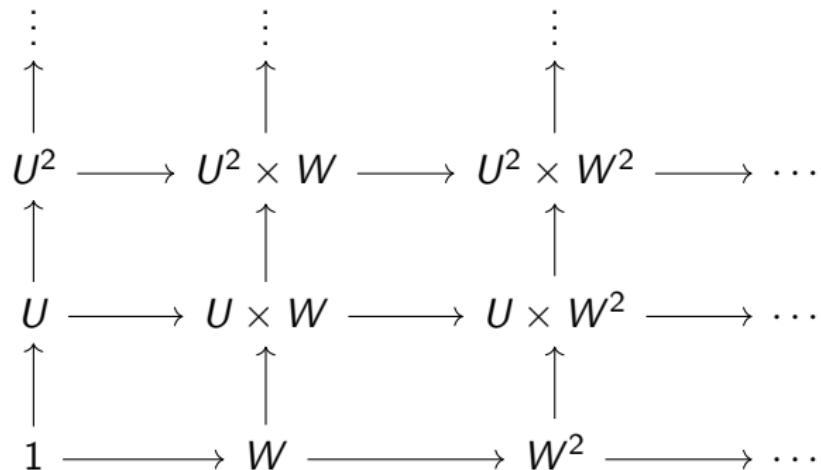
Example: the Ketonen order on ω_2

Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .

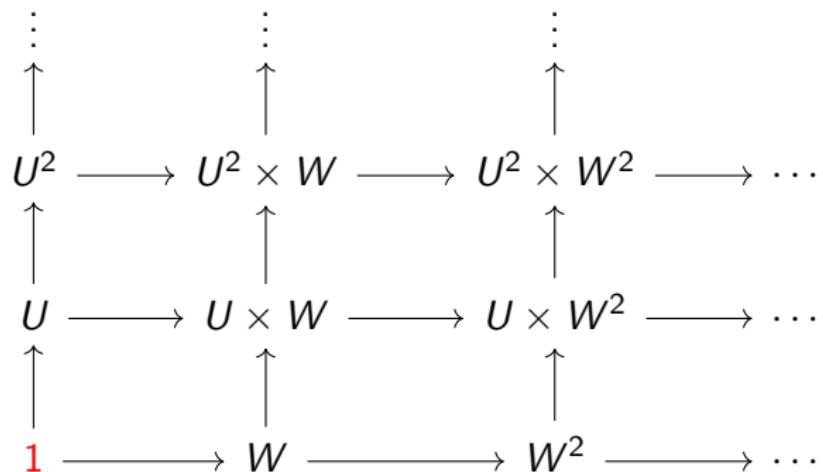
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



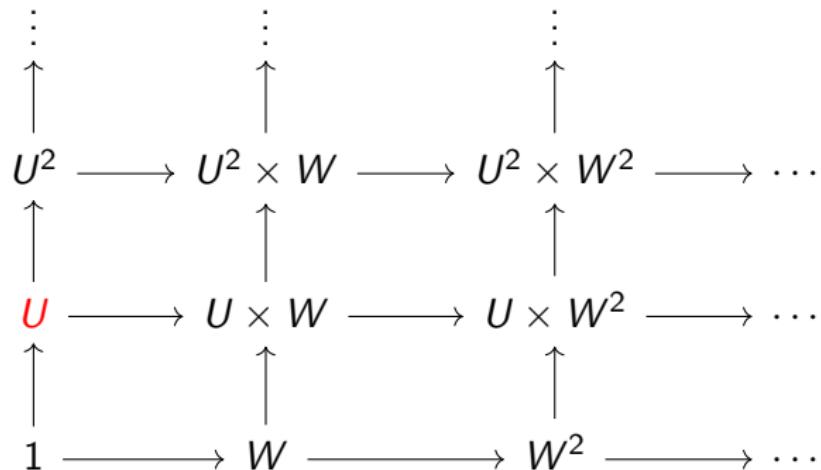
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



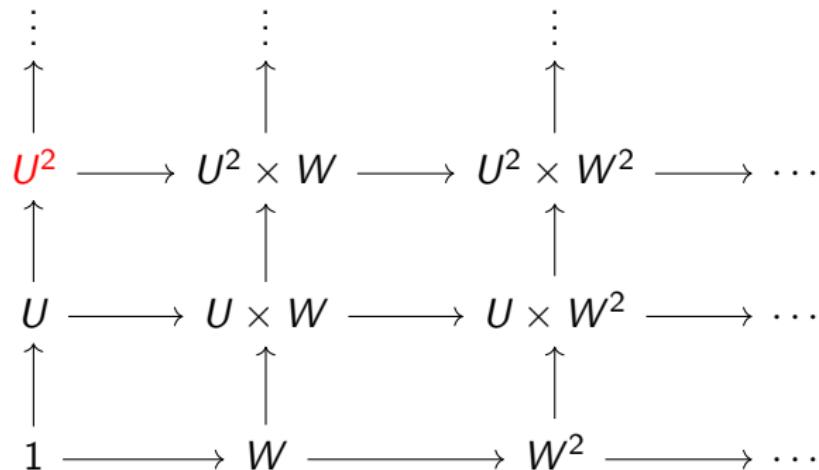
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



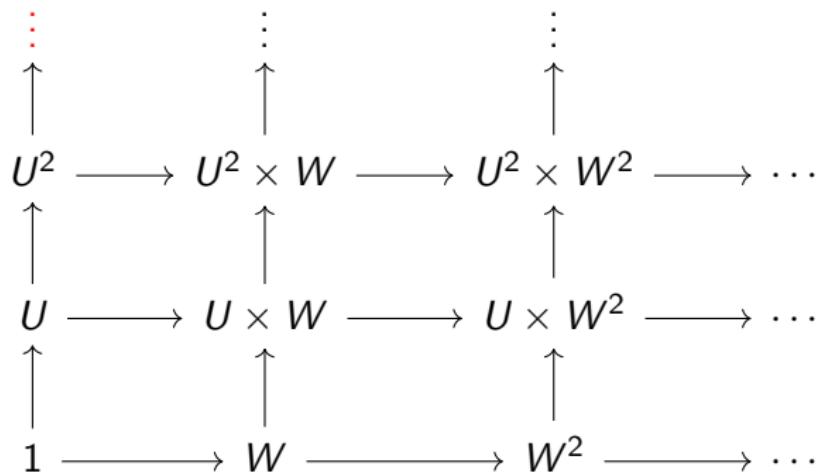
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



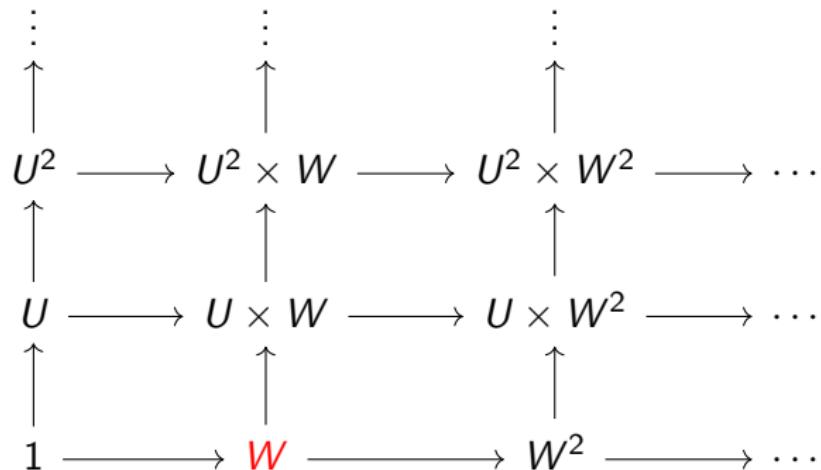
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



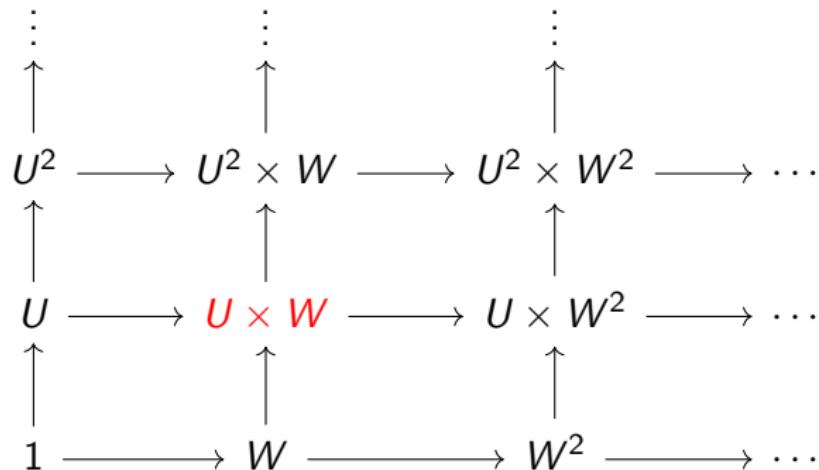
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



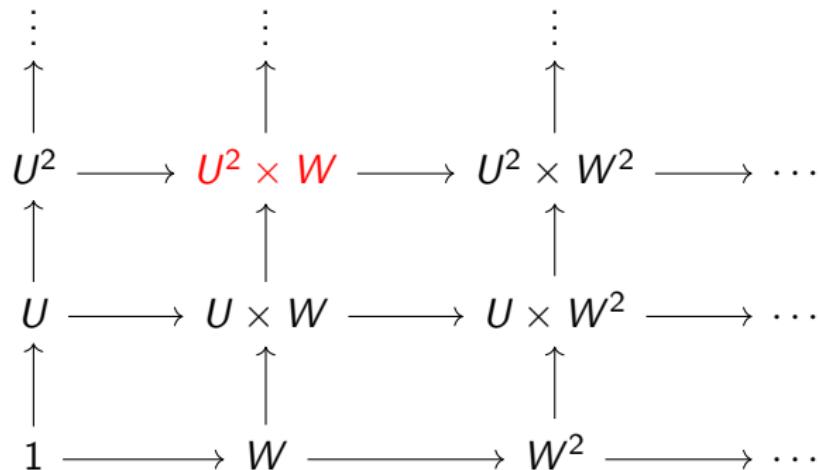
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



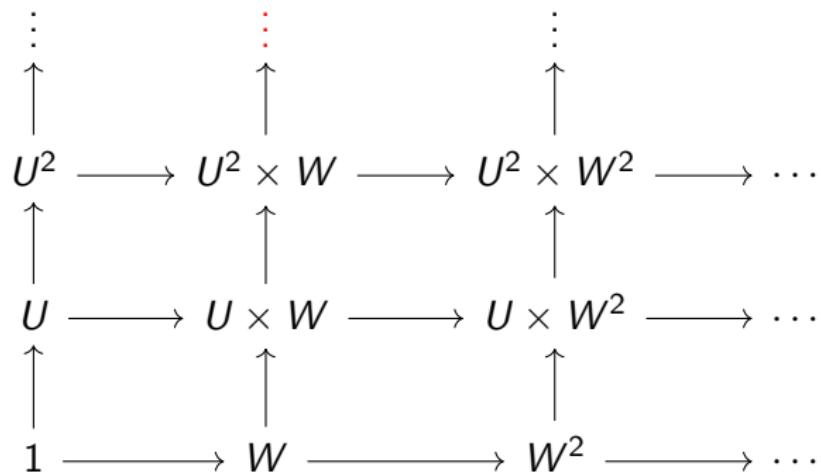
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



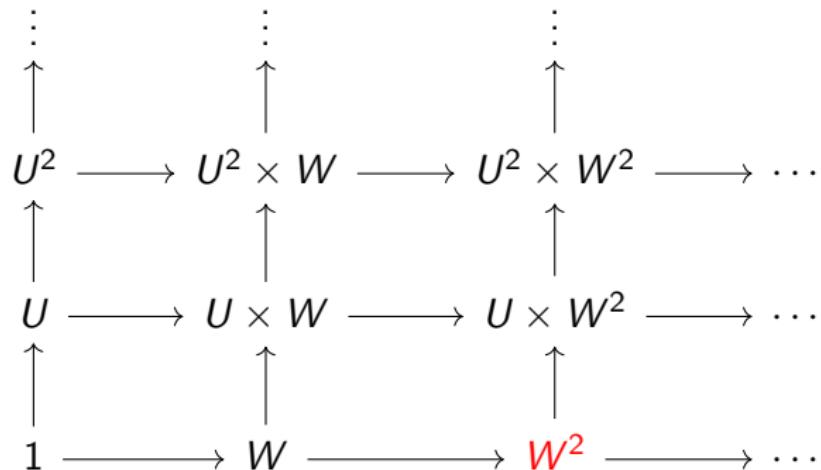
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



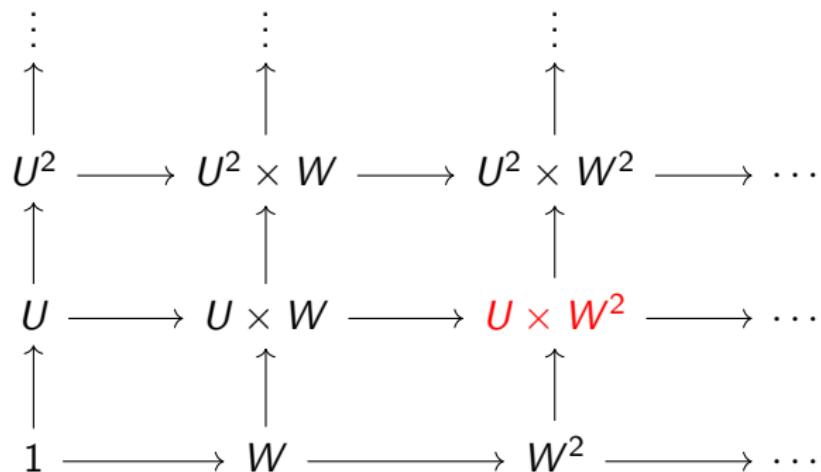
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



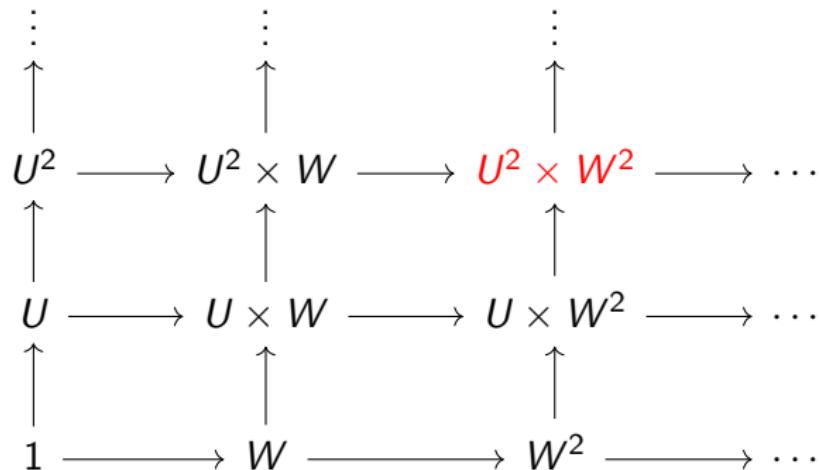
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



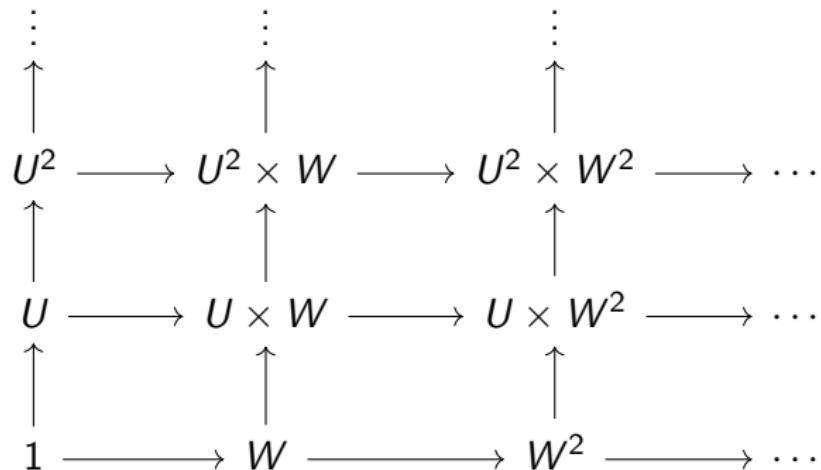
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .



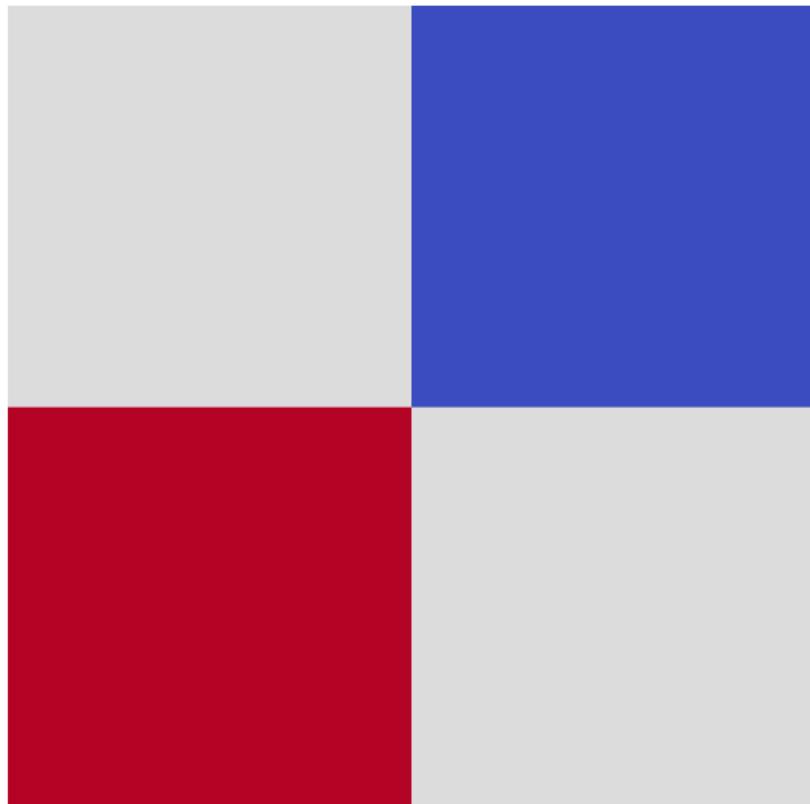
Example: the Ketonen order on ω_2

Let U be the ω -club filter on ω_2 and W be the ω_1 -club filter on ω_2 .

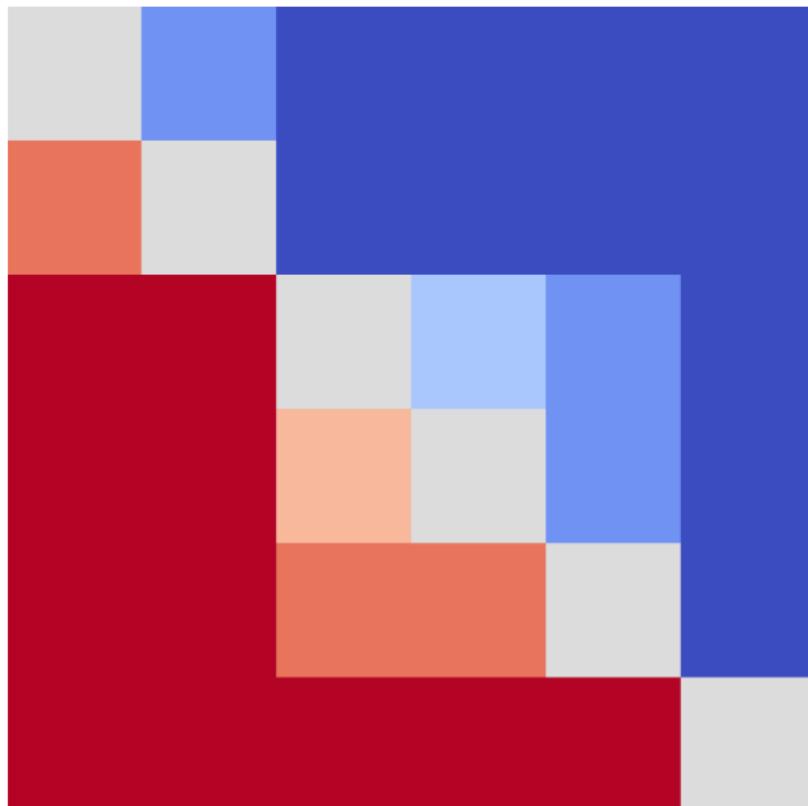


Example: the Ketonen order from ω_3 to ω_7

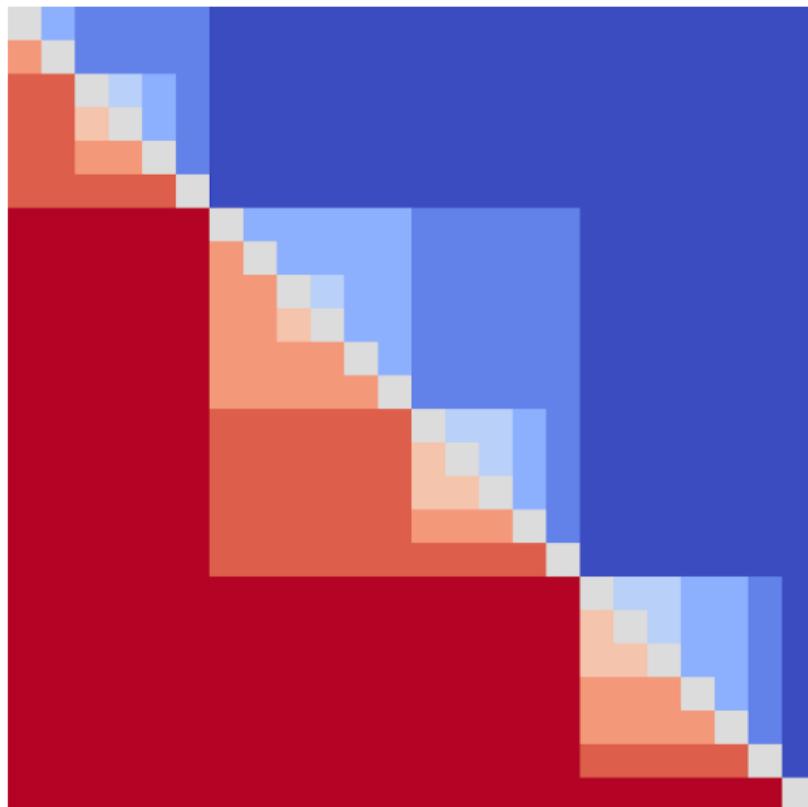
Example: the Ketonen order from ω_3 to ω_7



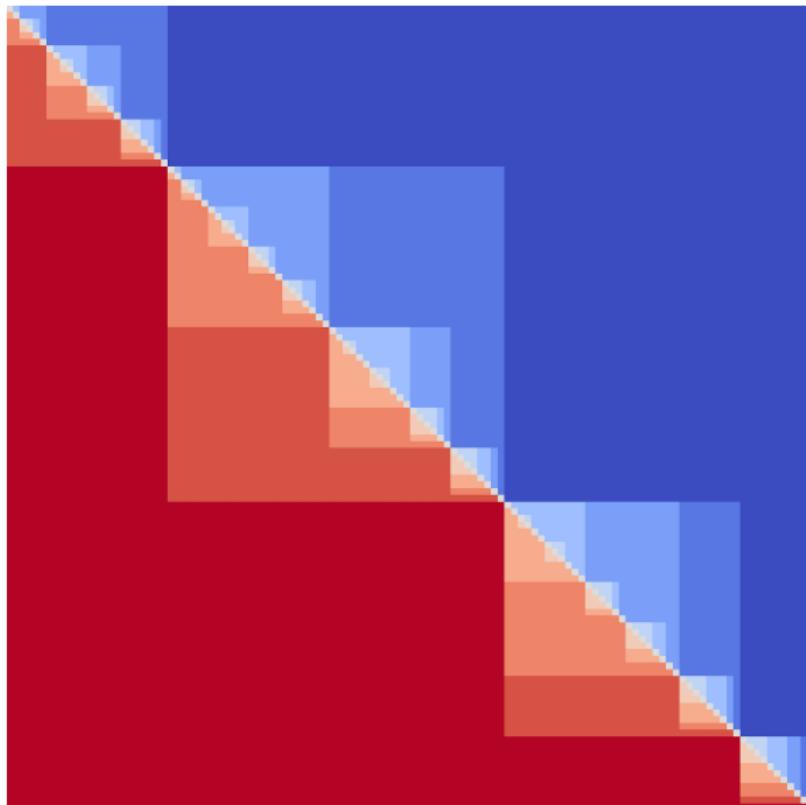
Example: the Ketonen order from ω_3 to ω_7



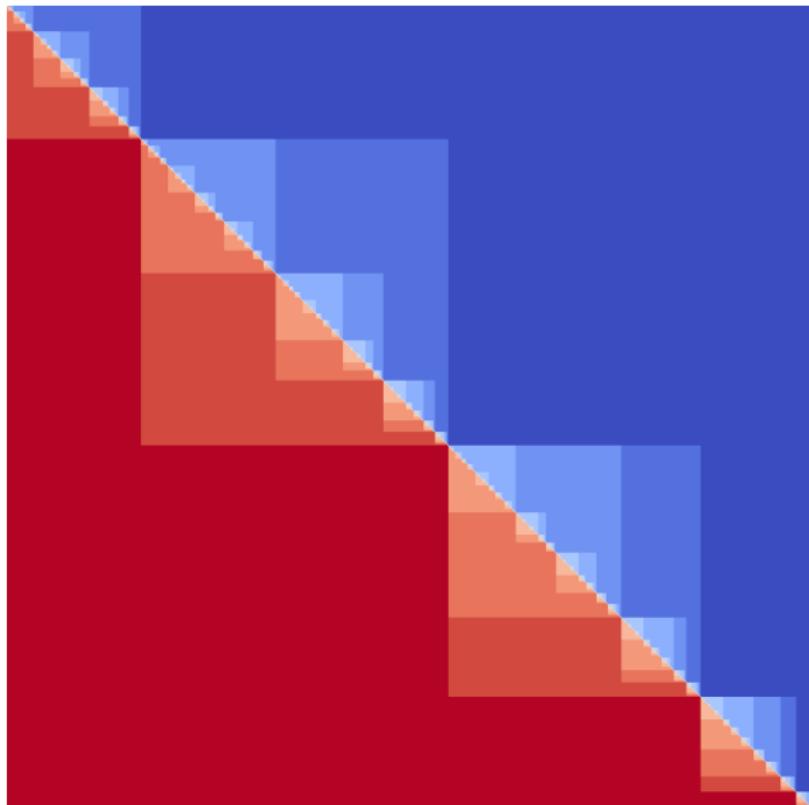
Example: the Ketonen order from ω_3 to ω_7



Example: the Ketonen order from ω_3 to ω_7



Example: the Ketonen order from ω_3 to ω_7



Proof sketch

UA from comparison

UA from comparison

The proof of UA from the comparison lemma can be presented axiomatically using Woodin's *weak comparison axiom*.

UA from comparison

The proof of UA from the comparison lemma can be presented axiomatically using Woodin's *weak comparison axiom*.

Key concept:

An elementary embedding $j : M \rightarrow N$ is *close to M* if every measure derived from j is an element of M .

UA from comparison

The proof of UA from the comparison lemma can be presented axiomatically using Woodin's *weak comparison axiom*.

Key concept:

An elementary embedding $j : M \rightarrow N$ is *close to M* if every measure derived from j is an element of M .

Key consequence of weak comparison:

There is an elementary embedding $\pi : M \rightarrow V$ such that any internal ultrapowers $j_U : M \rightarrow M_U$ and $j_W : M \rightarrow M_W$ have a *close comparison*: a pair of close $i^U : M_U \rightarrow N$ and $i^W : M_W \rightarrow N$ with

$$i^U \circ j_U = i^W \circ j_W$$

UA from comparison

The proof of UA from the comparison lemma can be presented axiomatically using Woodin's *weak comparison axiom*.

Key concept:

An elementary embedding $j : M \rightarrow N$ is *close to M* if every measure derived from j is an element of M .

Key consequence of weak comparison:

There is an elementary embedding $\pi : M \rightarrow V$ such that any internal ultrapowers $j_U : M \rightarrow M_U$ and $j_W : M \rightarrow M_W$ have a *close comparison*: a pair of close $i^U : M_U \rightarrow N$ and $i^W : M_W \rightarrow N$ with

$$i^U \circ j_U = i^W \circ j_W$$

This suffices to prove UA.

UA from determinacy

UA from determinacy

The proof of UA from AD^+ replaces weak comparison with Kechris's *coding theorem for measures*, a determinacy method for coding measures by reals.

UA from determinacy

The proof of UA from AD^+ replaces weak comparison with Kechris's *coding theorem for measures*, a determinacy method for coding measures by reals.

Key consequence of Kechris's theorem:

Roughly, every *elementary embedding* $\pi : M \rightarrow V$ is close to M .

UA from determinacy

The proof of UA from AD^+ replaces weak comparison with Kechris's *coding theorem for measures*, a determinacy method for coding measures by reals.

Key consequence of Kechris's theorem:

Roughly, every *elementary embedding* $\pi : M \rightarrow V$ is close to M .

To prove UA, suppose M is countable and $\pi : M \rightarrow V$ is elementary. We want to show that any two internal ultrapowers $j_U : M \rightarrow M_U$ and $j_W : M \rightarrow M_W$ admit a close comparison.

UA from determinacy

The proof of UA from AD^+ replaces weak comparison with Kechris's *coding theorem for measures*, a determinacy method for coding measures by reals.

Key consequence of Kechris's theorem:

Roughly, *every elementary embedding $\pi : M \rightarrow V$ is close to M .*

To prove UA, suppose M is countable and $\pi : M \rightarrow V$ is elementary. We want to show that any two internal ultrapowers $j_U : M \rightarrow M_U$ and $j_W : M \rightarrow M_W$ admit a close comparison.

By Kechris, it suffices to *re-embed the ultrapowers into V .*

Jensen's realization lemma

Jensen's realization lemma

If $i : M \rightarrow N$ and $\pi : M \rightarrow P$ are elementary, then i is π -realizable if there is an elementary $\pi^* : N \rightarrow P$ such that $\pi = \pi^* \circ i$.

Jensen's realization lemma

If $i : M \rightarrow N$ and $\pi : M \rightarrow P$ are elementary, then i is π -realizable if there is an elementary $\pi^* : N \rightarrow P$ such that $\pi = \pi^* \circ i$.

Theorem (Jensen, ZFC)

If M is countable and $\pi : M \rightarrow V$ is elementary, then every internal ultrapower of M is π -realizable.

Jensen's realization lemma

If $i : M \rightarrow N$ and $\pi : M \rightarrow P$ are elementary, then i is π -realizable if there is an elementary $\pi^* : N \rightarrow P$ such that $\pi = \pi^* \circ i$.

Theorem (Jensen, ZFC)

If M is countable and $\pi : M \rightarrow V$ is elementary, then every internal ultrapower of M is π -realizable.

Jensen's theorem false without choice for a trivial reason: ultrapowers are not elementary equivalent to V , let alone elementary embeddable.

Jensen's realization lemma

If $i : M \rightarrow N$ and $\pi : M \rightarrow P$ are elementary, then i is π -realizable if there is an elementary $\pi^* : N \rightarrow P$ such that $\pi = \pi^* \circ i$.

Theorem (Jensen, ZFC)

If M is countable and $\pi : M \rightarrow V$ is elementary, then every internal ultrapower of M is π -realizable.

Jensen's theorem false without choice for a trivial reason: ultrapowers are not elementary equivalent to V , let alone elementary embeddable.

Under AD^+ , however, there is a technique for replacing ultrapowers with fully elementary *generic* ultrapowers.

Woodin's generic ultrapowers

Woodin's generic ultrapowers

Theorem (Woodin, $\text{AD}^+ + V = L(P(\mathbb{R})) + \Theta \text{ is regular}$)

For any measure U below Θ , there is a precipitous ideal J on \mathbb{R} such that if $G \subseteq P(\mathbb{R})/J$ is generic, then in $V[G]$:

- ▶ The ultrapower $j_G : V \rightarrow V_G$ is elementary.
- ▶ There is a embedding $k : V_U \rightarrow V_G$ fixing every ordinal.

Woodin's generic ultrapowers

Theorem (Woodin, $\text{AD}^+ + V = L(P(\mathbb{R})) + \Theta \text{ is regular}$)

For any measure U below Θ , there is a precipitous ideal J on \mathbb{R} such that if $G \subseteq P(\mathbb{R})/J$ is generic, then in $V[G]$:

- ▶ The ultrapower $j_G : V \rightarrow V_G$ is elementary.
- ▶ There is a embedding $k : V_U \rightarrow V_G$ fixing every ordinal.

Observations:

- ▶ The forcing $P(\mathbb{R})/J$ is canonically associated to U
- ▶ It's cone homogeneous, automorphisms fix the name for j_G

Woodin's generic ultrapowers

Theorem (Woodin, $\text{AD}^+ + V = L(P(\mathbb{R})) + \Theta \text{ is regular}$)

For any measure U below Θ , there is a precipitous ideal J on \mathbb{R} such that if $G \subseteq P(\mathbb{R})/J$ is generic, then in $V[G]$:

- ▶ The ultrapower $j_G : V \rightarrow V_G$ is elementary.
- ▶ There is an embedding $k : V_U \rightarrow V_G$ fixing every ordinal.

Observations:

- ▶ The forcing $P(\mathbb{R})/J$ is canonically associated to U
- ▶ It's cone homogeneous, automorphisms fix the name for j_G

Conclusion: All properties of $V[G]$, V_G , and j_G are decided in V .

Woodin's generic ultrapowers

Theorem (Woodin, $\text{AD}^+ + V = L(P(\mathbb{R})) + \Theta \text{ is regular}$)

For any measure U below Θ , there is a precipitous ideal J on \mathbb{R} such that if $G \subseteq P(\mathbb{R})/J$ is generic, then in $V[G]$:

- ▶ The ultrapower $j_G : V \rightarrow V_G$ is elementary.
- ▶ There is an embedding $k : V_U \rightarrow V_G$ fixing every ordinal.

Observations:

- ▶ The forcing $P(\mathbb{R})/J$ is canonically associated to U
- ▶ It's cone homogeneous, automorphisms fix the name for j_G

Conclusion: All properties of $V[G]$, V_G , and j_G are decided in V .

Almost nothing is known even when U is the club measure on ω_1 .

The final realization

The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

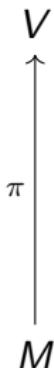
Now we can finish the proof of UA from AD^+ :

The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD^+ :

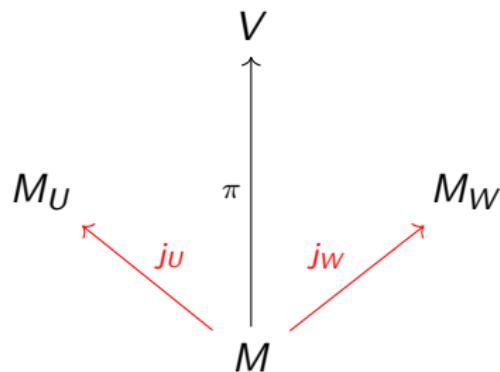


The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD^+ :

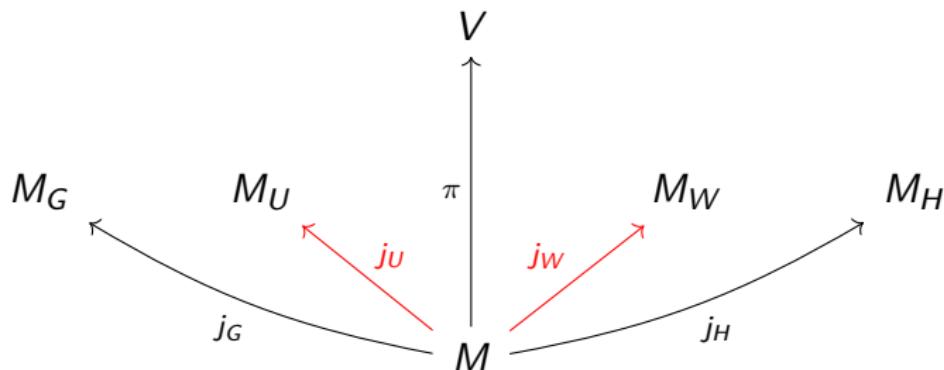


The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD^+ :

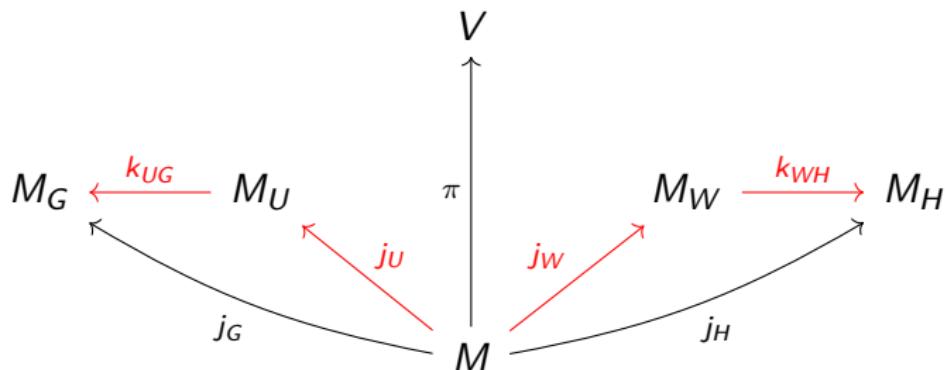


The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD^+ :

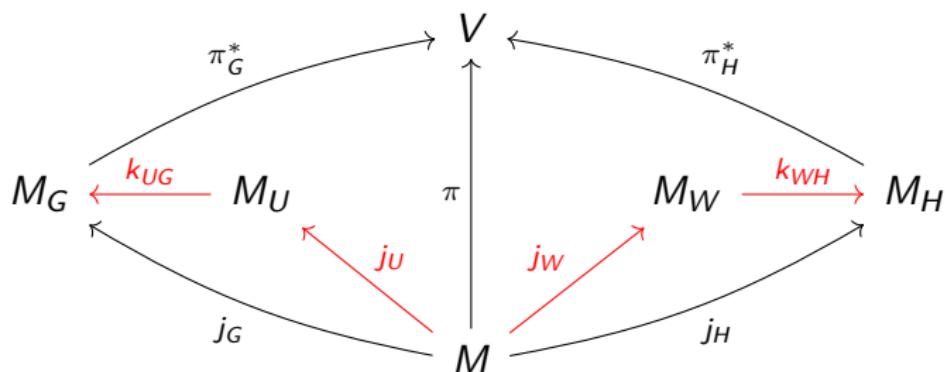


The final realization

Need a Jensen realization lemma for Woodin's generic ultrapowers.

- ▶ Proof is similar to ZFC realization lemma for precipitous ideals
- ▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD^+ :



Conclusions

The linearity of the Mitchell order

The linearity of the Mitchell order

A measure U lies below W in the *Mitchell order* if U belongs to the ultrapower of the universe by W .

The linearity of the Mitchell order

A measure U lies below W in the *Mitchell order* if U belongs to the ultrapower of the universe by W .

Theorem (G., UA)

For any κ , the Mitchell order well-orders the normal measures on κ .

The linearity of the Mitchell order

A measure U lies below W in the *Mitchell order* if U belongs to the ultrapower of the universe by W .

Theorem (G., UA)

If any κ , the Mitchell order well-orders the normal measures on κ .

The proof is local, so:

Corollary (G., AD⁺)

If $\kappa < \Theta$, the Mitchell order well-orders the normal measures on κ .

A negative result on precipitous ideals

A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

Theorem (G., AD⁺)

Any precipitous ideal on an ordinal below Θ is atomic.

A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

Theorem (G., AD⁺)

Any precipitous ideal on an ordinal below Θ is atomic.

This justifies our terminology:

A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

Theorem (G., AD⁺)

Any precipitous ideal on an ordinal below Θ is atomic.

This justifies our terminology:

Corollary (AD⁺)

If μ is a probability measure on an ordinal below Θ , then μ is a weighted sum of countably many measures.

Analogy with very large cardinals

Analogy with very large cardinals

Axiom I₀ posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

Analogy with very large cardinals

Axiom I_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under I_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

Analogy with very large cardinals

Axiom I_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under I_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

UA was predicted by I_0 and then confirmed in $L(\mathbb{R})$:

Analogy with very large cardinals

Axiom \mathbf{I}_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under \mathbf{I}_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

UA was predicted by \mathbf{I}_0 and then confirmed in $L(\mathbb{R})$:

Theorem (G., ZFC + \mathbf{I}_0 , 2021)

In $L(V_{\lambda+1})$, for any ordinal κ , the Ketonen order on $v(\kappa)$ is almost linear: there are fewer than λ measures of any fixed rank.

Analogy with very large cardinals

Axiom \mathbf{I}_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under \mathbf{I}_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

UA was predicted by \mathbf{I}_0 and then confirmed in $L(\mathbb{R})$:

Theorem (G., ZFC + \mathbf{I}_0 , 2021)

In $L(V_{\lambda+1})$, for any ordinal κ , the Ketonen order on $v(\kappa)$ is almost linear: there are fewer than λ measures of any fixed rank.

However...

Analogy with very large cardinals

Axiom \mathbf{I}_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under \mathbf{I}_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

UA was predicted by \mathbf{I}_0 and then confirmed in $L(\mathbb{R})$:

Theorem (G., ZFC + \mathbf{I}_0 , 2021)

In $L(V_{\lambda+1})$, for any ordinal κ , the Ketonen order on $v(\kappa)$ is almost linear: there are fewer than λ measures of any fixed rank.

However...

Theorem (G., ZFC + \mathbf{I}_0)

$L(V_{\lambda+1})$ does not satisfy UA.

Analogy with very large cardinals

Axiom \mathbf{I}_0 posits $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\text{crit}(j) < \lambda$.

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under \mathbf{I}_0
ω_1 is measurable	λ^+ is measurable
Θ is inaccessible	$\Theta_{V_{\lambda+1}}$ is inaccessible
perfect set theorem	λ -perfect set theorem

UA was predicted by \mathbf{I}_0 and then confirmed in $L(\mathbb{R})$:

Theorem (G., ZFC + \mathbf{I}_0 , 2021)

In $L(V_{\lambda+1})$, for any ordinal κ , the Ketonen order on $v(\kappa)$ is almost linear: there are fewer than λ measures of any fixed rank.

However...

Theorem (G., ZF + DC + \mathbf{I}_0)

If $L(V_{\lambda+1})$ satisfies UA, then ω_1 is measurable.

Future directions

Future directions

- ▶ Global classification of measures
- ▶ Woodin's generic ultrapowers
- ▶ Measures on sets that are not well-orderable
- ▶ Connections with \mathbb{I}_0 and stronger hypotheses
- ▶ Unification with HOD
- ▶ Strong and Woodin cardinals in determinacy models

Thanks!