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Introduction



UA and AD

The Ultrapower Axiom (UA):
▶ A regularity principle for large cardinals
▶ Motivated by the methodology of inner model theory
▶ Extends inner model theory abstractly to all large cardinals
▶ Holds in all known canonical inner models of ZFC

The Axiom of Determinacy (AD):
▶ A regularity principle for sets of reals
▶ Motivated by game-theoretic methods in descriptive set theory
▶ Extends descriptive set theory abstractly to all sets of reals
▶ Holds for all canonical sets of reals but contradicts AC
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Introduction

UA governs the structure of countably complete ultrafilters on
ordinals, which we refer to as measures.

Most large cardinal axioms are formulated in terms of measures.

Measures also play a fundamental role in determinacy theory:
▶ AD implies the existence of many measures below Θ, the least

ordinal that is not the surjective image of R
▶ Their structure is central to the set theory of determinacy

models; e.g., cofinalities, partition properties, uniformization
▶ The connection between AD and large cardinals is mediated

by the existence of measures (or systems of measures)
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Main theorem

The connection between AD and UA goes beyond analogy:

Theorem (G.)
Assume ZF + AD+. Then UA holds below Θ.

AD+ is an enhancement of AD due to Woodin. It is open whether
AD implies AD+.

Corollary (G.)
Assume ZF + ADL(R). Then L(R) satisfies UA.
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Prior results

Deep connections between the structure of determinacy models and
canonical inner models of ZFC have been known since the 1990s.
▶ Steel and Woodin showed that ADL(R) implies HODL(R) is a

canonical inner model; in particular it satisfies UA
▶ Woodin (2023): ZF + AD+ + V = L(P(R)) ⊢ “HOD ⊨ UA”
▶ G.–Sargsyan–Siskind tried to prove UA in L(R) using the

Steel/Woodin analysis; showed ultrapowers of V restrict to
iterated ultrapowers of HOD, answering a question of Woodin

▶ By work of Solovay, Martin–Paris, and Kunen from the 1970s,
AD implies UA for measures on ω2

▶ In fall 2024, G.–Jackson proved UA below ℵω from AD
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Outline

▶ The Ultrapower Axiom and the Ketonen order
▶ Measures under AD
▶ Sketch of proof of UA from determinacy
▶ Applications and future directions
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A warning

In large cardinal theory it is typical to consider the ultrapower of
the universe of sets V by some measure U.

The transitive collapse of the ultrapower, denoted VU , is an inner
model and the natural embedding jU : V → VU is elementary.

These basic facts require the Axiom of Choice, via  Loś’s theorem.

We will explore a different world: below Θ,  Loś’s theorem fails for
every nontrivial measure.

Our background theory is ZF + DC.
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We will explore a different world: below Θ,  Loś’s theorem fails for
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The Ultrapower Axiom



The Ultrapower Axiom

▶ U ∈ M is an internal measure if M satisfies “U is a measure”
▶ Its ultrapower embedding is denoted jU : M → MU
▶ i : M → N is an internal ultrapower if it is isomorphic to the

ultrapower embedding of an internal measure of M

Definition (Ultrapower Axiom)
For all measures U and W , there exist internal ultrapowers
iU : VU → N and iW : VW → N making the diagram commute:

VU VW

V
jU jW
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Comparison and UA

UA is an abstraction of the comparison theorem: any two canonical
models P and Q can be compared by iterated ultrapowers.

P Q

▶ If P and Q are ultrapowers of M, comparison simplifies to UA
▶ UA is a first-order statement that can be analyzed in ZFC
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Results from grad school

Theorem (G., ZFC + UA, 2016)
The Mitchell order is linear on normal measures.

Theorem (G., ZFC + UA, 2017)
The generalized continuum hypothesis holds above the least
strongly compact cardinal.

Theorem (G., ZFC + UA, 2018)
A cardinal κ is strongly compact if and only if it is supercompact
or a measurable limit of supercompact cardinals.
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The Ketonen order

Let υ(κ) denote the set of measures on κ.

The Ketonen order on υ(κ) is given by U <k W if there exist
Uα ∈ υ(α), for 0 < α < κ, such that

A ∈ U ⇐⇒ {α < κ : A ∩ α ∈ Uα} ∈ W

Theorem (G.)
The Ketonen order on υ(κ) is a well-founded partial order.

Theorem (G., UA)
For all κ, the Ketonen order on υ(κ) is linear.
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Example: the Ketonen order on the first measurable

U denotes normal measure on least measurable κ.
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The Ketonen order and Lipschitz reducibility

▶ A function f : P(κ) → P(κ) is Lipschitz if for any A ⊆ κ and
α < κ, f (A) ∩ α only depends on A ∩ α.

▶ If X , Y ⊆ P(κ), then X is L-reducible to Y if X = f −1[Y ] for
some Lipschitz f : P(κ) → P(κ).

▶ A subset of P(κ) is self-dual if reducible to its complement.

Theorem (Wadge, Martin–Monk, AD)
The self-dual subsets of P(ω) are pre-well-ordered by L-reducibility.

UA itself implies a form of AD:

Proposition (G., UA)
The restriction of L-reducibility to υ(κ) is the Ketonen order. Thus
υ(κ) is well-ordered by L-reducibility.
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Measures and determinacy



Simple examples

Under AD, every ultrafilter is a measure. Moreover, there are
simple examples on small cardinals:

Theorem (Solovay, Martin–Paris, AD)

▶ The club filter on ω1 is a normal measure.
▶ So are the ω-club and ω1-club filters on ω2.

Kunen: all measures on ω2 are products of these measures.

Theorem (Martin, AD)
For n ≥ 3, ωn is singular of cofinality ω2.

▶ ωn’s carry increasingly complex measures classified by Kunen
▶ Measures below least weakly inaccessible classified by Jackson
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Definability of measures

Why are there so many measures?

Theorem (Kunen, AD)
Every countably complete filter below Θ extends to a measure.

This uses the Martin measure on the Turing degrees.

Theorem (G., UA)
Every measure is ordinal definable.

This is because they are well-ordered by the Ketonen order.
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The Ketonen order and AD

Question (AD)
Suppose κ < Θ. Is the Ketonen order on υ(κ) a well-order?

In fact, this is equivalent to asking whether AD implies UA:

Theorem (G.)
For any ordinal κ, the following are equivalent:
▶ UA holds for measures on κ.
▶ The Ketonen order on υ(κ) is linear.
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Example: the Ketonen order on ω1

...

ω4

ω3

ω2

ω1

0

C4
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C2

C

1
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Example: the Ketonen order on ω2

Let U be the ω-club filter on ω2 and W be the ω1-club filter on ω2.

...
...

...

U2 U2 × W U2 × W 2 · · ·

U U × W U × W 2 · · ·

1 W W 2 · · ·
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Example: the Ketonen order from ω3 to ω7
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Proof sketch



UA from comparison

The proof of UA from the comparison lemma can be presented
axiomatically using Woodin’s weak comparison axiom.

Key concept:
An elementary embedding j : M → N is close to M if every
measure derived from j is an element of M.

Key consequence of weak comparison:
There is an elementary embedding π : M → V such that any
internal ultrapowers jU : M → MU and jW : M → MW have a close
comparison: a pair of close iU : MU → N and iW : MW → N with

iU ◦ jU = iW ◦ jW

This suffices to prove UA.
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UA from determinacy

The proof of UA from AD+ replaces weak comparison with
Kechris’s coding theorem for measures, a determinacy method for
coding measures by reals.

Key consequence of Kechris’s theorem:
Roughly, every elementary embedding π : M → V is close to M.

To prove UA, suppose M is countable and π : M → V is
elementary. We want to show that any two internal ultrapowers
jU : M → MU and jW : M → MW admit a close comparison.

By Kechris, it suffices to re-embed the ultrapowers into V .
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Jensen’s realization lemma

If i : M → N and π : M → P are elementary, then i is π-realizable
if there is an elementary π∗ : N → P such that π = π∗ ◦ i .

Theorem (Jensen, ZFC)
If M is countable and π : M → V is elementary, then every internal
ultrapower of M is π-realizable.

Jensen’s theorem false without choice for a trivial reason:
ultrapowers are not elementary equivalent to V , let alone
elementary embeddable.

Under AD+, however, there is a technique for replacing
ultrapowers with fully elementary generic ultrapowers.
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Woodin’s generic ultrapowers

Theorem (Woodin, AD+ + V = L(P(R)) + Θ is regular)
For any measure U below Θ, there is a precipitous ideal J on R
such that if G ⊆ P(R)/J is generic, then in V [G ]:
▶ The ultrapower jG : V → VG is elementary.
▶ There is a embedding k : VU → VG fixing every ordinal.

Observations:
▶ The forcing P(R)/J is canonically associated to U
▶ It’s cone homogeneous, automorphisms fix the name for jG

Conclusion: All properties of V [G ], VG , and jG are decided in V .

Almost nothing is known even when U is the club measure on ω1.
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The final realization

Need a Jensen realization lemma for Woodin’s generic ultrapowers.
▶ Proof is similar to ZFC realization lemma for precipitous ideals
▶ Steel contributed proof that Nonempty wins precipitous game

Now we can finish the proof of UA from AD+:

V

MG MU MW MH

M
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Conclusions



The linearity of the Mitchell order

A measure U lies below W in the Mitchell order if U belongs to
the ultrapower of the universe by W .

Theorem (G., UA)
For any κ, the Mitchell order well-orders the normal measures on κ.

The proof is local, so:

Corollary (G., AD+)
If κ < Θ, the Mitchell order well-orders the normal measures on κ.
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A negative result on precipitous ideals

Same ideas yield another inner model consequence of determinacy.

Theorem (G., AD+)
Any precipitous ideal on an ordinal below Θ is atomic.

This justifies our terminology:

Corollary (AD+)
If µ is a probability measure on an ordinal below Θ, then µ is a
weighted sum of countably many measures.
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Analogy with very large cardinals

Axiom I0 posits j : L(Vλ+1) → L(Vλ+1) with crit(j) < λ.

L(R) under AD L(Vλ+1) under I0
ω1 is measurable λ+ is measurable
Θ is inaccessible ΘVλ+1 is inaccessible

perfect set theorem λ-perfect set theorem

UA was predicted by I0 and then confirmed in L(R):

Theorem (G., ZFC + I0, 2021)
In L(Vλ+1), for any ordinal κ, the Ketonen order on υ(κ) is almost
linear: there are fewer than λ measures of any fixed rank.

However...

Theorem (G., ZFC + I0)
L(Vλ+1) does not satisfy UA.
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Theorem (G., ZFC + I0, 2021)
In L(Vλ+1), for any ordinal κ, the Ketonen order on υ(κ) is almost
linear: there are fewer than λ measures of any fixed rank.

However...

Theorem (G., ZF + DC + I0)
If L(Vλ+1) satisfies UA, then ω1 is measurable.
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Future directions

▶ Global classification of measures
▶ Woodin’s generic ultrapowers
▶ Measures on sets that are not well-orderable
▶ Connections with I0 and stronger hypotheses
▶ Unification with HOD
▶ Strong and Woodin cardinals in determinacy models
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Thanks!
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