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Canonical models of set theory

Inner model program: Build canonical models of large cardinal
axioms.

Example 1: The constructible universe L

I Inaccessibles, Mahlos, weakly compacts are
downwards absolute to L.

I Scott’s theorem: L has no measurable cardinals.

Example 2: The inner model L[U]

I If κ is measurable, the sets constructible with
oracle access to a κ-complete ultrafilter U on κ
form a canonical inner model with a measurable.

I Does not depend on the choice of U.

Surprisingly, there are canonical inner models satisfying containing
much larger cardinals; e.g., many Woodin cardinals.

Open: Is there a canonical model with a supercompact cardinal?
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The comparison lemma

Suppose α is an ordinal. If M0,M1 � Lα, either M0
∼= M1,

M0
∼= N0 ∈ M1, or M1

∼= N1 ∈ M0.

I False for Vα if there is a measurable cardinal below α.

The correct generalization is the comparison lemma:

Theorem (Kunen)

Any elementary substructures M0 and M1 of Lα[U] have iterated
ultrapowers N0 and N1 such that either N0 = N1, N0 ∈ N1, or
N1 ∈ N0.

The comparison lemma generalizes to all known canonical models.

Open: Is the comparison lemma compatible with a supercompact
cardinal?
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The Ultrapower Axiom
I An ultrapower is an inner model that is isomorphic to

Ult(V ,U) for some ultrafilter U.

I A substructure M of a transitive model N is an internal
ultrapower of N if N satisfies that M is an ultrapower.

Weak UA: Any two ultrapowers have a common internal ultrapower.

Ultrapower Axiom (UA): Weak UA + the diagram commutes:

Open: Is UA consistent with a supercompact cardinal?
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The HOD conjecture

Theorem (Jensen’s L dichotomy)

One of the following holds:

V is close to L: For all singular cardinals γ, (γ+)L = γ+.

V is far from L: Every uncountable cardinal is inaccessible in L.

Assuming large cardinal axioms, V is far from L.

Theorem (Woodin’s HOD dichotomy)

If κ is an extendible cardinal, one of the following holds:

V is close to HOD: For singular cardinals γ ≥ κ, (γ+)HOD = γ+.

V is far from HOD: Every regular above κ is measurable in HOD.

HOD Conjecture: Assuming large cardinals, V is close to HOD.
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Goal of talk

Outline some results that constitute...

I evidence that UA is consistent with very large cardinals

I evidence for the HOD conjecture?

I evidence against the HOD conjecture??

I evidence that UA is true???

Themes:
I Analogies with determinacy

I Definability and regularity properties of large cardinals

I Prediction and confirmation
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Prediction and confirmation
Suppose δ is an ordinal. A function f : 2δ → 2δ is Lipschitz if for
x ∈ 2δ and α < δ, f (x) � α depends only on x � α. If A,B ⊆ 2δ,
A ≤L B if A is the preimage of B under a Lipschitz function.

I In general, ≤L is illfounded and has large antichains.

Theorem (Wadge, Martin)

If every real has a sharp, ≤L is wellfounded and semilinear on Σ1
1

subsets of 2ω; that is, ≤L-antichains have cardinality at most 2.

If A ⊆ 2ω is open but not clopen, {A, 2ω \ A} is an ≤L-antichain.

Theorem (Louveau-Saint Raymond, Harrington)

I The semilinearity of ≤L on Borel subsets of 2ω is provable in
second-order arithmetic.

I Assume that every Σ1
1 set that is not Borel is Σ1

1-complete.
Then every real has a sharp.
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Lipschitz reducibility and ultrafilters

Since P(δ) ∼= 2δ, one can port ≤L to subsets of P(δ).

Ultrafilters on δ are subsets of P(δ)!

I Even on ultrafilters, ≤L is illfounded with large antichains.

Theorem (UA)

The restriction of ≤L to ω1-complete ultrafilters on δ is a wellorder.

It is natural in this context to consider only Lipschitz reductions
f : P(δ)→ P(δ) with the property that the inverse image of any
ω1-complete ultrafilter under f is again an ω1-complete ultrafilter.

The resulting reducibility, called the Ketonen order, is wellfounded.

Theorem

UA holds if and only if the Ketonen order is linear.
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Ordinal definability and UA
The linearity of the Ketonen order implies:

Theorem (UA)

1. Every ω1-complete ultrafilter on an ordinal is OD.

2. If κ is strongly compact, then HOD correctly computes
cardinals, cofinalities, and the continuum function above κ++.

Aside: assuming AD + DC, Kunen proved (1) for ordinals below
Θ, the least ordinal that is not the surjective image of R.

Theorem (Woodin)

Assume κ is extendible and V is close to HOD. If U is a
κ-complete ultrafilter on an ordinal, U ∩ HOD is ordinal definable.

Theorem

The HOD dichotomy only requires a strongly compact cardinal.
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The Kunen inconistency theorem
The potential failure of the HOD conjecture is related to the
consistency of large cardinals beyond the Axiom of Choice.

Definition

A cardinal λ is rank Berkeley if for all α < λ ≤ β, there is an
elementary embedding j : Vβ → Vβ such that α < crit(j) < λ.

Theorem (Kunen)

There are no rank Berkeley cardinals.

Open: Can this be proved without the Axiom of Choice?

Dropping AC, an apparently endless hierarchy of large cardinals
beyond choice emerges.

Theorem (Woodin, ZF + HOD Conjecture)

There is at most one rank Berkeley cardinal.
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UA from large cardinals

The Lévy-Solovay theorem shows that nothing like UA follows
from traditional large cardinal axioms.

What about large cardinals beyond choice?

I The ultrapower formulation of UA seems useless without AC.

I Instead, consider the linearity of the Ketonen order, which is
equivalent to UA assuming AC.

Theorem (ZF)

If λ is rank Berkeley, there is a cardinal κ such that:

I The Ketonen order on κ-complete ultrafilters is wellfounded
and any set of ≤k-incomparables has cardinality at most λ.

I Consequently, if U is a κ-complete ultrafilter on an ordinal, U
belongs to an OD set of size less than λ and U ∩ HOD is OD.

Idea: An elementary j : P(δ)→ P(δ) is a Lipschitz reduction.
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The uniqueness of elementary embeddings

Theorem (UA)

If j0, j1 : V → M are elementary, then j0 = j1.

Theorem

If j0, j1 : V → M are elementary, then j0 and j1 agree on the
ordinals. If crit(j0) is above the least extendible cardinal, j0 = j1.

Theorem

If κ is an extendible cardinal, the following are equivalent:

V is close to HOD: For singular cardinals λ ≥ κ, (λ+)HOD = λ+.

Unique embeddings: If δ ≥ κ is regular, α is sufficiently large,
j0, j1 : Vα → M are elementary, j0(δ) = j1(δ), and
sup j0[δ] = sup j1[δ], then j0 � δ = j1 � δ.
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Conclusions

I UA is a long determinacy principle for ω1-complete ultrafilters.

I UA predicts consequences of the HOD conjecture.

I UA also predicts consequences of choiceless large cardinals.

I UA also makes predictions verified in ZFC.

Conjecture

If κ is extendible and U is a κ-complete ultrafilter on an ordinal,
then U ∩ HOD is ordinal definable.

Speculation

The HOD conjecture is true but the existence of a rank Berkeley
cardinal is consistent.
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Thanks!
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