Predictions of the Ultrapower Axiom

Gabriel Goldberg

UC Berkeley

2021

Gabriel Goldberg Predictions of the Ultrapower Axiom

Outline

- 1. Inner model theory background
- 2. The Ultrapower Axiom
- 3. The HOD conjecture
- 4. The Kunen inconsistency theorem

Canonical models of set theory

Inner model program: Build canonical models of large cardinal axioms.

Example 1: The constructible universe L

- Inaccessibles, Mahlos, weakly compacts are downwards absolute to L.
- Scott's theorem: *L* has no measurable cardinals.

Example 2: The inner model L[U]

- If κ is measurable, the sets constructible with oracle access to a κ-complete ultrafilter U on κ form a canonical inner model with a measurable.
- Does not depend on the choice of U.

Surprisingly, there are canonical inner models satisfying containing much larger cardinals; e.g., many Woodin cardinals.

Open: Is there a canonical model with a supercompact cardinal?

The comparison lemma

Suppose α is an ordinal. If $M_0, M_1 \leq L_{\alpha}$, either $M_0 \cong M_1$, $M_0 \cong N_0 \in M_1$, or $M_1 \cong N_1 \in M_0$.

▶ False for V_{α} if there is a measurable cardinal below α .

The correct generalization is the *comparison lemma*:

Theorem (Kunen)

Any elementary substructures M_0 and M_1 of $L_{\alpha}[U]$ have iterated ultrapowers N_0 and N_1 such that either $N_0 = N_1$, $N_0 \in N_1$, or $N_1 \in N_0$.

The comparison lemma generalizes to all known canonical models.

Open: Is the comparison lemma compatible with a supercompact cardinal?

The Ultrapower Axiom

- An ultrapower is an inner model that is isomorphic to Ult(V, U) for some ultrafilter U.
- A substructure M of a transitive model N is an internal ultrapower of N if N satisfies that M is an ultrapower.

Weak UA: Any two ultrapowers have a common internal ultrapower. **Ultrapower Axiom (UA):** Weak UA + the diagram commutes:

Open: Is UA consistent with a supercompact cardinal?

The HOD conjecture

Theorem (Jensen's *L* dichotomy)

One of the following holds:

- V is close to L: For all singular cardinals γ , $(\gamma^+)^L = \gamma^+$.
- V is far from L: Every uncountable cardinal is inaccessible in L.

Assuming large cardinal axioms, V is far from L.

Theorem (Woodin's HOD dichotomy)

If κ is an extendible cardinal, one of the following holds:

V is close to HOD: For singular cardinals $\gamma \ge \kappa$, $(\gamma^+)^{HOD} = \gamma^+$.

V is far from HOD: Every regular above κ is measurable in HOD.

HOD Conjecture: Assuming large cardinals, V is *close* to HOD.

Goal of talk

Outline some results that constitute...

- evidence that UA is consistent with very large cardinals
- evidence for the HOD conjecture?
- evidence against the HOD conjecture??
- evidence that UA is true???

Themes:

- Analogies with determinacy
 - Definability and regularity properties of large cardinals
- Prediction and confirmation

Prediction and confirmation

Suppose δ is an ordinal. A function $f: 2^{\delta} \to 2^{\delta}$ is *Lipschitz* if for $x \in 2^{\delta}$ and $\alpha < \delta$, $f(x) \upharpoonright \alpha$ depends only on $x \upharpoonright \alpha$. If $A, B \subseteq 2^{\delta}$, $A \leq_L B$ if A is the preimage of B under a Lipschitz function.

• In general, \leq_L is illfounded and has large antichains.

Theorem (Wadge, Martin)

If every real has a sharp, \leq_L is wellfounded and semilinear on Σ_1^1 subsets of 2^{ω} ; that is, \leq_L -antichains have cardinality at most 2.

If $A \subseteq 2^{\omega}$ is open but not clopen, $\{A, 2^{\omega} \setminus A\}$ is an \leq_L -antichain.

Theorem (Louveau-Saint Raymond, Harrington)

- The semilinearity of ≤_L on Borel subsets of 2^ω is provable in second-order arithmetic.
- Assume that every Σ₁¹ set that is not Borel is Σ₁¹-complete. Then every real has a sharp.

Lipschitz reducibility and ultrafilters

Since $P(\delta) \cong 2^{\delta}$, one can port \leq_L to subsets of $P(\delta)$. Ultrafilters on δ are subsets of $P(\delta)$!

Even on ultrafilters, \leq_L is illfounded with large antichains.

Theorem (UA)

The restriction of \leq_L to ω_1 -complete ultrafilters on δ is a wellorder.

It is natural in this context to consider only Lipschitz reductions $f: P(\delta) \rightarrow P(\delta)$ with the property that the inverse image of any ω_1 -complete ultrafilter under f is again an ω_1 -complete ultrafilter.

The resulting reducibility, called the Ketonen order, is wellfounded.

Theorem

UA holds if and only if the Ketonen order is linear.

Ordinal definability and UA

The linearity of the Ketonen order implies:

Theorem (UA)

- 1. Every ω_1 -complete ultrafilter on an ordinal is OD.
- 2. If κ is strongly compact, then HOD correctly computes cardinals, cofinalities, and the continuum function above κ^{++} .

Aside: assuming AD + DC, Kunen proved (1) for ordinals below Θ , the least ordinal that is not the surjective image of \mathbb{R} .

Theorem (Woodin)

Assume κ is extendible and V is close to HOD. If U is a κ -complete ultrafilter on an ordinal, $U \cap HOD$ is ordinal definable.

Theorem

The HOD dichotomy only requires a strongly compact cardinal.

The Kunen inconistency theorem

The potential failure of the HOD conjecture is related to the consistency of large cardinals beyond the Axiom of Choice.

Definition

A cardinal λ is rank Berkeley if for all $\alpha < \lambda \leq \beta$, there is an elementary embedding $j : V_{\beta} \to V_{\beta}$ such that $\alpha < \operatorname{crit}(j) < \lambda$.

Theorem (Kunen)

There are no rank Berkeley cardinals.

Open: Can this be proved without the Axiom of Choice?

Dropping AC, an apparently endless hierarchy of *large cardinals beyond choice* emerges.

Theorem (Woodin, ZF + HOD Conjecture)

There is at most one rank Berkeley cardinal.

UA from large cardinals

The Lévy-Solovay theorem shows that nothing like UA follows from traditional large cardinal axioms.

What about large cardinals beyond choice?

- The ultrapower formulation of UA seems useless without AC.
- Instead, consider the linearity of the Ketonen order, which is equivalent to UA assuming AC.

Theorem (ZF)

If λ is rank Berkeley, there is a cardinal κ such that:

- The Ketonen order on κ-complete ultrafilters is wellfounded and any set of ≤_k-incomparables has cardinality at most λ.
- Consequently, if U is a κ-complete ultrafilter on an ordinal, U belongs to an OD set of size less than λ and U ∩ HOD is OD.

Idea: An elementary $j: P(\delta) \to P(\delta)$ is a Lipschitz reduction.

The uniqueness of elementary embeddings

Theorem (UA)

If $j_0, j_1: V \to M$ are elementary, then $j_0 = j_1$.

Theorem

If $j_0, j_1 : V \to M$ are elementary, then j_0 and j_1 agree on the ordinals. If crit (j_0) is above the least extendible cardinal, $j_0 = j_1$.

Theorem

If κ is an extendible cardinal, the following are equivalent: V is close to HOD: For singular cardinals $\lambda \ge \kappa$, $(\lambda^+)^{\text{HOD}} = \lambda^+$. Unique embeddings: If $\delta \ge \kappa$ is regular, α is sufficiently large, $j_0, j_1 : V_\alpha \to M$ are elementary, $j_0(\delta) = j_1(\delta)$, and $\sup j_0[\delta] = \sup j_1[\delta]$, then $j_0 \upharpoonright \delta = j_1 \upharpoonright \delta$.

Conclusions

- UA is a long determinacy principle for ω_1 -complete ultrafilters.
- UA predicts consequences of the HOD conjecture.
- UA also predicts consequences of choiceless large cardinals.
- UA also makes predictions verified in ZFC.

Conjecture

If κ is extendible and U is a κ -complete ultrafilter on an ordinal, then $U \cap HOD$ is ordinal definable.

Speculation

The HOD conjecture is true but the existence of a rank Berkeley cardinal is consistent.

Thanks!