

The Σ_2 -Potentialist Principle

Gabriel Goldberg

UC Berkeley

January 9, 2025

On potentialism

On potentialism

I protest against the use of infinite magnitude as something completed, which is never permissible in mathematics.

—Carl Friedrich Gauss, 1831

On potentialism

I protest against the use of infinite magnitude as something completed, which is never permissible in mathematics.

—Carl Friedrich Gauss, 1831

The transfinite number series reaches no true completion in its unrestricted advance, but possesses only relative stopping-points, just those “boundary numbers.”

—Ernst Zermelo, 1930

On potentialism

I protest against the use of infinite magnitude as something completed, which is never permissible in mathematics.

—Carl Friedrich Gauss, 1831

The transfinite number series reaches no true completion in its unrestricted advance, but possesses only relative stopping-points, just those “boundary numbers.”

—Ernst Zermelo, 1930

No matter how far our mind may have progressed in the contemplation of God, it does not attain to what He is but only to what is beneath Him.

—St. Gregory, ~600

Locally verifiable sentences

Locally verifiable sentences

A sentence φ in the language of set theory is *locally verifiable* if it has the form $\exists\alpha \in \text{Ord} (V_\alpha \models \psi)$ for some sentence ψ .

Locally verifiable sentences

A sentence φ in the language of set theory is *locally verifiable* if it has the form $\exists\alpha \in \text{Ord} (V_\alpha \models \psi)$ for some sentence ψ .

Theorem

A sentence is Σ_2 if and only if it is equivalent to a locally verifiable sentence.

Locally verifiable sentences

A sentence φ in the language of set theory is *locally verifiable* if it has the form $\exists\alpha \in \text{Ord} (V_\alpha \models \psi)$ for some sentence ψ .

Theorem

A sentence is Σ_2 if and only if it is equivalent to a locally verifiable sentence.

In fact, if φ is Σ_2 , it is equivalent to the sentence

$$\exists\alpha V_\alpha \models (\varphi \wedge \forall\beta \neg\exists\beta \text{ exists})$$

Similarly, Π_2 -sentences are *locally falsifiable*.

Σ_2 -potentialism

Σ_2 -potentialism

Σ_2 -potentialism is the philosophical position that the only meaningful set-theoretic questions are those that can be locally verified or falsified.

Σ_2 -potentialism

Σ_2 -potentialism is the philosophical position that the only meaningful set-theoretic questions are those that can be locally verified or falsified.

It is motivated by *set-theoretic potentialism*, the view that the universe of sets forms a *potential totality*, not a completed one.

The Σ_2 -Potentialist Principle

The Σ_2 -Potentialist Principle

A Σ_2 -sentence is V_α -satisfiable if it holds in a forcing extension $V[G]$ such that $V[G]_\alpha = V_\alpha$. A Σ_2 -sentence is V -satisfiable if it is V_α -satisfiable for all ordinals α .

The Σ_2 -Potentialist Principle

A Σ_2 -sentence is V_α -satisfiable if it holds in a forcing extension $V[G]$ such that $V[G]_\alpha = V_\alpha$. A Σ_2 -sentence is V -satisfiable if it is V_α -satisfiable for all ordinals α .

The philosophical idea: *a V -satisfiable sentence is consistent with all local information and therefore cannot be ruled out by any means acceptable to a Σ_2 -Potentialist.*

The Σ_2 -Potentialist Principle

A Σ_2 -sentence is V_α -satisfiable if it holds in a forcing extension $V[G]$ such that $V[G]_\alpha = V_\alpha$. A Σ_2 -sentence is V -satisfiable if it is V_α -satisfiable for all ordinals α .

The philosophical idea: *a V -satisfiable sentence is consistent with all local information and therefore cannot be ruled out by any means acceptable to a Σ_2 -Potentialist.*

Definition (Woodin)

The Σ_2 -Potentialist Principle states that every V -satisfiable Σ_2 -sentence is true.

Consequences of the Σ_2 -Potentialist Principle

Consequences of the Σ_2 -Potentialist Principle

Maybe the following analogy will explain my attitude; we use the standard American ethnic prejudice system, as it is generally familiar. So a typical universe of set theory is the parallel of Mr. John Smith, the typical American; my typical universe is quite interesting (even pluralistic), it has long intervals where GCH holds, but others in which it is violated badly, many λ 's such that λ^+ -Suslin trees exist and many λ 's for which every λ^+ -Aronszajn is special, and it may have lots of measurables, with a huge cardinal being a marginal case but certainly no supercompact.

—Saharon Shelah, “The Future of Set Theory”

Woodin's question

Woodin's question

Question (Woodin)

Is the Σ_2 -Potentialist Principle consistent?

Woodin's question

Question (Woodin)

Is the Σ_2 -Potentialist Principle consistent?

Our main theorem is:

Theorem (Ben Neria–G.–Kaplan)

If ZFC plus a supercompact cardinal is consistent, so is ZFC plus the Σ_2 -Potentialist Principle.

A logical subtlety

A logical subtlety

The Σ_2 -*Potentialist Scheme* consists of all sentences of the form

$$(\varphi \text{ is } V\text{-satisfiable}) \implies \varphi$$

where φ is a Σ_2 -sentence.

A logical subtlety

The Σ_2 -Potentialist Scheme consists of all sentences of the form

$$(\varphi \text{ is } V\text{-satisfiable}) \implies \varphi$$

where φ is a Σ_2 -sentence.

Any ω -model of the Σ_2 -Potentialist Scheme is a model of the Σ_2 -Potentialist Principle.

A logical subtlety

The Σ_2 -Potentialist Scheme consists of all sentences of the form

$$(\varphi \text{ is } V\text{-satisfiable}) \implies \varphi$$

where φ is a Σ_2 -sentence.

Any ω -model of the Σ_2 -Potentialist Scheme is a model of the Σ_2 -Potentialist Principle.

Proposition

If ZFC is consistent, so is ZFC plus the Σ_2 -Potentialist Scheme.

Iterating distributive forcings, I

Iterating distributive forcings, I

The proof of the consistency of the Σ_2 -Potentialist Scheme suggests trying to build a model of the Σ_2 -Potentialist Principle by iterated forcing.

Iterating distributive forcings, I

The proof of the consistency of the Σ_2 -Potentialist Scheme suggests trying to build a model of the Σ_2 -Potentialist Principle by iterated forcing.

The following theorem rules out the most naive approach:

Theorem (Adolf–Ben Neria–Zeman)

If $V = L$, there is a forcing iteration $\langle \mathbb{P}_n, \dot{\mathbb{Q}}_n : n < \omega \rangle$ such that the following hold where $\kappa_n = \text{rank}(\mathbb{P}_n)$:

- ▶ $\mathbb{P}_n \Vdash \dot{\mathbb{Q}}_n$ preserves $V_{\kappa_n + \omega}$.
- ▶ $\lim_{\leftarrow} \mathbb{P}_n$ forces $\sup_{n < \omega} \kappa_n$ to be countable.

The Príkry property

The Príkry property

If $\mathbb{P} = (P, \leq)$ is a poset, a *direct extension order* on \mathbb{P} is a partial order \leq^* , included in \leq , that has the *Príkry property*:

For any condition $p \in \mathbb{P}$ and any statement φ in the forcing language of \mathbb{P} , there is a \leq^ -extension of p that decides φ .*

The Príkry property

If $\mathbb{P} = (P, \leq)$ is a poset, a *direct extension order* on \mathbb{P} is a partial order \leq^* , included in \leq , that has the *Príkry property*:

For any condition $p \in \mathbb{P}$ and any statement φ in the forcing language of \mathbb{P} , there is a \leq^ -extension of p that decides φ .*

The most basic nontrivial example is the direct extension order on the Príkry forcing. But there are many other examples: Radin forcing, Magidor forcing, diagonal Príkry forcing, extender based Príkry forcing, diagonal supercompact extender-based Magidor-Radin forcing with interleaved collapses...

κ -complete Príkry-type forcings

κ -complete Príkry-type forcings

Trivially, every poset admits a direct extension order.

κ -complete Príkry-type forcings

Trivially, every poset admits a direct extension order.

A partial order is κ -complete if any of its subsets of size less than κ that has an upper bound also has a lower bound.

κ -complete Príkry-type forcings

Trivially, every poset admits a direct extension order.

A partial order is κ -complete if any of its subsets of size less than κ that has an upper bound also has a lower bound.

Lemma

If \mathbb{P} admits a κ -complete direct extension order and $G \subseteq \mathbb{P}$ is V -generic, then $V[G]_\kappa = V_\kappa$.

κ -complete Príkry-type forcings

Trivially, every poset admits a direct extension order.

A partial order is κ -complete if any of its subsets of size less than κ that has an upper bound also has a lower bound.

Lemma

If \mathbb{P} admits a κ -complete direct extension order and $G \subseteq \mathbb{P}$ is V -generic, then $V[G]_\kappa = V_\kappa$.

A κ -complete Príkry type forcing is a pair (\mathbb{P}, \leq^*) where \mathbb{P} is a poset and \leq^* is a κ -complete direct extension order on \mathbb{P} .

Gitik's iteration theorem

Gitik's iteration theorem

A sequence $\langle \mathbb{P}_\alpha, \dot{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a *Magidor support iteration of κ -complete Príkry type forcings* if

- ▶ For $\beta < \theta$, $1_{\mathbb{P}_\beta} \Vdash \dot{\mathbb{Q}}_\beta$ is a κ -complete Príkry-type forcing.
- ▶ $\langle \mathbb{P}_\alpha, \overline{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a forcing iteration, where $\overline{\mathbb{Q}}_\beta$ is a \mathbb{P}_β -name for the underlying poset of $\dot{\mathbb{Q}}_\beta$.
- ▶ For limits $\gamma \leq \theta$, \mathbb{P}_γ is the set of $p : \gamma \rightarrow V$ with $p \upharpoonright \beta \in \mathbb{P}_\beta$ and $p \upharpoonright \beta \Vdash p_\beta \leq^* 1_{\dot{\mathbb{Q}}_\beta}$ for all but finitely many $\beta < \gamma$.

Gitik's iteration theorem

A sequence $\langle \mathbb{P}_\alpha, \dot{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a *Magidor support iteration of κ -complete Príkry type forcings* if

- ▶ For $\beta < \theta$, $1_{\mathbb{P}_\beta} \Vdash \dot{\mathbb{Q}}_\beta$ is a κ -complete Príkry-type forcing.
- ▶ $\langle \mathbb{P}_\alpha, \overline{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a forcing iteration, where $\overline{\mathbb{Q}}_\beta$ is a \mathbb{P}_β -name for the underlying poset of $\dot{\mathbb{Q}}_\beta$.
- ▶ For limits $\gamma \leq \theta$, \mathbb{P}_γ is the set of $p : \gamma \rightarrow V$ with $p \upharpoonright \beta \in \mathbb{P}_\beta$ and $p \upharpoonright \beta \Vdash p_\beta \leq^* 1_{\dot{\mathbb{Q}}_\beta}$ for all but finitely many $\beta < \gamma$.

For $\alpha \leq \theta$, the *induced direct extension order* of \mathbb{P}_α is given by $p \leq^* q$ if and only if for all $\beta < \alpha$, $p \upharpoonright \beta \Vdash p_\beta \leq^* q_\beta$.

Gitik's iteration theorem

A sequence $\langle \mathbb{P}_\alpha, \dot{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a *Magidor support iteration of κ -complete Príkry type forcings* if

- ▶ For $\beta < \theta$, $1_{\mathbb{P}_\beta} \Vdash \dot{\mathbb{Q}}_\beta$ is a κ -complete Príkry-type forcing.
- ▶ $\langle \mathbb{P}_\alpha, \overline{\mathbb{Q}}_\beta : \alpha \leq \theta, \beta < \theta \rangle$ is a forcing iteration, where $\overline{\mathbb{Q}}_\beta$ is a \mathbb{P}_β -name for the underlying poset of $\dot{\mathbb{Q}}_\beta$.
- ▶ For limits $\gamma \leq \theta$, \mathbb{P}_γ is the set of $p : \gamma \rightarrow V$ with $p \upharpoonright \beta \in \mathbb{P}_\beta$ and $p \upharpoonright \beta \Vdash p_\beta \leq^* 1_{\dot{\mathbb{Q}}_\beta}$ for all but finitely many $\beta < \gamma$.

For $\alpha \leq \theta$, the *induced direct extension order* of \mathbb{P}_α is given by $p \leq^* q$ if and only if for all $\beta < \alpha$, $p \upharpoonright \beta \Vdash p_\beta \leq^* q_\beta$.

Theorem (Gitik)

The poset \mathbb{P}_θ , equipped with the induced direct extension order, is a κ -complete Príkry type forcing.

Iterating distributive forcings, II

Iterating distributive forcings, II

Under large cardinal hypotheses, Gitik's iteration theorem along with the following fact enables us to iterate the forcings relevant to the Σ_2 -Potentialist Principle without collapsing at limits.

Iterating distributive forcings, II

Under large cardinal hypotheses, Gitik's iteration theorem along with the following fact enables us to iterate the forcings relevant to the Σ_2 -Potentialist Principle without collapsing at limits.

Theorem (Ben Neria–G.–Kaplan)

If κ is strongly compact, a poset \mathbb{P} is equivalent to a κ -complete Príkry type forcing iff $V[G]_\kappa = V_\kappa$ for all V -generic $G \subseteq \mathbb{P}$.

Iterating distributive forcings, II

Under large cardinal hypotheses, Gitik's iteration theorem along with the following fact enables us to iterate the forcings relevant to the Σ_2 -Potentialist Principle without collapsing at limits.

Theorem (Ben Neria–G.–Kaplan)

If κ is strongly compact, a poset \mathbb{P} is equivalent to a κ -complete Príkry type forcing iff $V[G]_\kappa = V_\kappa$ for all V -generic $G \subseteq \mathbb{P}$.

This improves a result of Gitik.

Forcing the Σ_2 -Potentialist Principle

Forcing the Σ_2 -Potentialist Principle

A Σ_2 -sentence φ is λ -completely satisfiable if there is a λ -complete Príkry type forcing extension that satisfies φ .

Forcing the Σ_2 -Potentialist Principle

A Σ_2 -sentence φ is λ -completely satisfiable if there is a λ -complete Príkry type forcing extension that satisfies φ .

Given a supercompact cardinal κ , we can force the Σ_2 -Potentialist Principle by a Magidor support iteration $\langle \mathbb{P}_n, \dot{\mathbb{Q}}_m : n \leq \omega, m < \omega \rangle$.

Forcing the Σ_2 -Potentialist Principle

A Σ_2 -sentence φ is λ -completely satisfiable if there is a λ -complete Príkry type forcing extension that satisfies φ .

Given a supercompact cardinal κ , we can force the Σ_2 -Potentialist Principle by a Magidor support iteration $\langle \mathbb{P}_n, \dot{\mathbb{Q}}_m : n \leq \omega, m < \omega \rangle$.

At the n -th stage we will also have defined some $\lambda_n < \kappa$. Working in $V^{\mathbb{P}_n}$, we define $\dot{\mathbb{Q}}_n$. Let

$$\varphi_n = \text{"}\exists \alpha V_\alpha \models \psi\text{"}$$

be the least λ_n -completely satisfiable Σ_2 -sentence. Choose a λ_n -complete Príkry type forcing $\dot{\mathbb{P}}_n \in V_\kappa^{\mathbb{P}_n}$ such that $(V^{\mathbb{P}_n})^{\dot{\mathbb{Q}}_n} \models \varphi_n$.

Forcing the Σ_2 -Potentialist Principle

A Σ_2 -sentence φ is *λ -completely satisfiable* if there is a λ -complete Príkry type forcing extension that satisfies φ .

Given a supercompact cardinal κ , we can force the Σ_2 -Potentialist Principle by a Magidor support iteration $\langle \mathbb{P}_n, \dot{\mathbb{Q}}_m : n \leq \omega, m < \omega \rangle$.

At the n -th stage we will also have defined some $\lambda_n < \kappa$. Working in $V^{\mathbb{P}_n}$, we define $\dot{\mathbb{Q}}_n$. Let

$$\varphi_n = \text{"}\exists \alpha V_\alpha \models \psi\text{"}$$

be the least λ_n -completely satisfiable Σ_2 -sentence. Choose a λ_n -complete Príkry type forcing $\dot{\mathbb{P}}_n \in V_\kappa^{\mathbb{P}_n}$ such that $(V^{\mathbb{P}_n})^{\dot{\mathbb{Q}}_n} \models \varphi_n$.

Finally, working in V , let $\lambda_{n+1} \geq \lambda_n$ be least such that $(V^{\mathbb{P}_n})^{\dot{\mathbb{Q}}_n} \models \text{"}\exists \alpha \leq \lambda_{n+1} V_\alpha \models \psi_n\text{"}$.

A lower bound

A lower bound

There is a gap between the known consistency strength upper bound of the Σ_2 -Potentialist Principle and that of the Σ_2 -Potentialist Scheme.

A lower bound

There is a gap between the known consistency strength upper bound of the Σ_2 -Potentialist Principle and that of the Σ_2 -Potentialist Scheme.

Question (Woodin)

Does the Σ_2 -Potentialist Principle imply that $0^\#$ exists?

A lower bound

There is a gap between the known consistency strength upper bound of the Σ_2 -Potentialist Principle and that of the Σ_2 -Potentialist Scheme.

Question (Woodin)

Does the Σ_2 -Potentialist Principle imply that $0^\#$ exists?

Using unpublished ideas of Adolf–Ben Neria–Zeman on mutual stationarity, we show:

Theorem (Ben Neria–G.–Kaplan)

The Σ_2 -Potentialist Principle implies the consistency of ZFC plus a Woodin cardinal.