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On potentialism

I protest against the use of infinite magnitude as something
completed, which is never permissible in mathematics.

—Carl Friedrich Gauss, 1831

The transfinite number series reaches no true completion
in its unrestricted advance, but possesses only relative
stopping-points, just those “boundary numbers.”

—Ernst Zermelo, 1930

No matter how far our mind may have progressed in the
contemplation of God, it does not attain to what He is but
only to what is beneath Him.

—St. Gregory, ∼600
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Locally verifiable sentences

A sentence φ in the language of set theory is locally verifiable if it
has the form ∃α ∈ Ord (Vα ⊨ ψ) for some sentence ψ.

Theorem
A sentence is Σ2 if and only if it is equivalent to a locally verifiable
sentence.

In fact, if φ is Σ2, it is equivalent to the sentence

∃αVα ⊨ (φ ∧ ∀β ℶβ exists)

Similarly, Π2-sentences are locally falsifiable.
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Σ2-potentialism

Σ2-potentialism is the philosophical position that the only
meaningful set-theoretic questions are those that can be locally
verified or falsified.

It is motivated by set-theoretic potentialism, the view that the
universe of sets forms a potential totality, not a completed one.
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The Σ2-Potentialist Principle

A Σ2-sentence is Vα-satisfiable if it holds in a forcing extension
V [G ] such that V [G ]α = Vα. A Σ2-sentence is V -satisfiable if it is
Vα-satisfiable for all ordinals α.

The philosophical idea: a V -satisfiable sentence is consistent with
all local information and therefore cannot be ruled out by any
means acceptable to a Σ2-Potentialist.

Definition (Woodin)
The Σ2-Potentialist Principle states that every V -satisfiable
Σ2-sentence is true.
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Consequences of the Σ2-Potentialist Principle

Maybe the following analogy will explain my attitude; we
use the standard American ethnic prejudice system, as it
is generally familiar. So a typical universe of set theory is
the parallel of Mr. John Smith, the typical American; my
typical universe is quite interesting (even pluralistic), it has
long intervals where GCH holds, but others in which it is
violated badly, many λ’s such that λ+-Suslin trees exist
and many λ’s for which every λ+-Aronszajn is special, and
it may have lots of measurables, with a huge cardinal being
a marginal case but certainly no supercompact.

—Saharon Shelah, “The Future of Set Theory”
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Woodin’s question

Question (Woodin)
Is the Σ2-Potentialist Principle consistent?

Our main theorem is:

Theorem (Ben Neria–G.–Kaplan)
If ZFC plus a supercompact cardinal is consistent, so is ZFC plus
the Σ2-Potentialist Principle.
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A logical subtlety

The Σ2-Potentialist Scheme consists of all sentences of the form

(φ is V -satisfiable) =⇒ φ

where φ is a Σ2-sentence.

Any ω-model of the Σ2-Potentialist Scheme is a model of the
Σ2-Potentialist Principle.

Proposition
If ZFC is consistent, so is ZFC plus the Σ2-Potentialist Scheme.
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Iterating distributive forcings, I

The proof of the consistency of the Σ2-Potentialist Scheme
suggests trying to build a model of the Σ2-Potentialist Principle by
iterated forcing.

The following theorem rules out the most naive approach:

Theorem (Adolf–Ben Neria–Zeman)
If V = L, there is a forcing iteration ⟨Pn, Q̇n : n < ω⟩ such that the
following hold where κn = rank(Pn):
▶ Pn ⊩ Q̇n preserves Vκn+ω.
▶ lim
←

Pn forces supn<ω κn to be countable.
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The Pŕıkry property

If P = (P,≤) is a poset, a direct extension order on P is a partial
order ≤∗, included in ≤, that has the Pŕıkry property :

For any condition p ∈ P and any statemeng φ in the
forcing language of P, there is a ≤∗-extension of p that
decides φ.

The most basic nontrivial example is the direct extension order on
the Pŕıkry forcing. But there are many other examples: Radin
forcing, Magidor forcing, diagonal Pŕıkry forcing, extender based
Pŕıkry forcing, diagonal supercompact extender-based
Magidor-Radin forcing with interleaved collapses...
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the Pŕıkry forcing. But there are many other examples: Radin
forcing, Magidor forcing, diagonal Pŕıkry forcing, extender based
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κ-complete Pŕıkry-type forcings

Trivially, every poset admits a direct extension order.

A partial order is κ-complete if any of its subsets of size less than
κ that has an upper bound also has a lower bound.

Lemma
If P admits a κ-complete direct extension order and G ⊆ P is
V -generic, then V [G ]κ = Vκ.

A κ-complete Pŕıkry type forcing is a pair (P,≤∗) where P is a
poset and ≤∗ is a κ-complete direct extension order on P.
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Gitik’s iteration theorem

A sequence ⟨Pα, Q̇β : α ≤ θ, β < θ⟩ is a Magidor support iteration
of κ-complete Pŕıkry type forcings if
▶ For β < θ, 1Pβ

⊩ Q̇β is a κ-complete Pŕıkry-type forcing.
▶ ⟨Pα,Qβ : α ≤ θ, β < θ⟩ is a forcing iteration, where Qβ is a

Pβ-name for the underlying poset of Q̇β.
▶ For limits γ ≤ θ, Pγ is the set of p : γ → V with p ↾ β ∈ Pβ

and p ↾ β ⊩ pβ ≤∗ 1Q̇β
for all but finitely many β < γ.

For α ≤ θ, the induced direct extension order of Pα is given by
p ≤∗ q if and only if for all β < α, p ↾ β ⊩ pβ ≤∗ qβ.

Theorem (Gitik)
The poset Pθ, equipped with the induced direct extension order, is
a κ-complete Pŕıkry type forcing.
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Iterating distributive forcings, II

Under large cardinal hypotheses, Gitik’s iteration theorem along
with the following fact enables us to iterate the forcings relevant to
the Σ2-Potentialist Principle without collapsing at limits.

Theorem (Ben Neria–G.–Kaplan)
If κ is strongly compact, a poset P is equivalent to a κ-complete
Pŕıkry type forcing iff V [G ]κ = Vκ for all V -generic G ⊆ P.

This improves a result of Gitik.
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Forcing the Σ2-Potentialist Principle

A Σ2-sentence φ is λ-completely satisfiable if there is a λ-complete
Pŕıkry type forcing extension that satisfies φ.

Given a supercompact cardinal κ, we can force the Σ2-Potentialist
Principle by a Magidor support iteration ⟨Pn, Q̇m : n ≤ ω,m < ω⟩.

At the n-th stage we will also have defined some λn < κ. Working
in V Pn , we define Q̇n. Let

φn = “∃αVα ⊨ ψ”

be the least λn-completely satisfiable Σ2-sentence. Choose a
λn-complete Pŕıkry type forcing Ṗn ∈ V Pn

κ such that (V Pn)Q̇n ⊨ φn.

Finally, working in V , let λn+1 ≥ λn be least such that
(V Pn)Q̇n ⊨ “∃α ≤ λn+1 Vα ⊨ ψn”.
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A lower bound

There is a gap between the known consistency strength upper
bound of the Σ2-Potentialist Principle and that of the
Σ2-Potentialist Scheme.

Question (Woodin)
Does the Σ2-Potentialist Principle imply that 0# exists?

Using unpublished ideas of Adolf–Ben Neria–Zeman on mutual
stationarity, we show:

Theorem (Ben Neria–G.–Kaplan)
The Σ2-Potentialist Principle implies the consistency of ZFC plus
a Woodin cardinal.
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a Woodin cardinal.
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