Ordinal definability and the structure of large cardinals

Gabriel Goldberg

UC Berkeley

2021

Gabriel Goldberg Ordinal definability and the structure of large cardinals

Outline

- 1. The Jensen covering lemma
- 2. Canonical models and the HOD dichotomy
- 3. A case for/against the HOD conjecture

The universe of sets

Two sources of uncountability (Cantor):

- Powerset operation: $P(X) = \{A : A \subseteq X\}$
- Transfinite ordinals: Ord = $\{0, 1, 2, 3, \dots, \omega, \omega + 1, \dots, \omega + \omega, \dots, \omega \times \omega, \dots, \omega_1, \dots, \omega_2, \dots, \omega_\omega, \dots\}$

Classical set theory: can they be reconciled?

• E.g., continuum problem: is $|P(\mathbb{N})| = \omega_1$?

Definition

Cumulative hierarchy:

►
$$V_0 = \emptyset$$
.
► $V_{\alpha+1} = P(V_{\alpha})$.
► $V_{\gamma} = \bigcup_{\beta < \gamma} V_{\beta}$ for limit ordinals γ .
Universe of sets: $V = \bigcup_{\alpha \in \text{Ord}} V_{\alpha}$.

Many universes

- ► ZFC axioms of set theory attempt to describe V in the same way Peano axioms describe N.
- But Cohen's forcing technique shows there are many models ZFC. Rough rough idea:
 - Start with a countable model *M* of ZFC.
 - Pick a real number x at random.
 - ▶ With probability 1, one can adjoin *x* to *M* preserving ZFC.
- Modern set theory: the model theory of ZFC?
 - ZFC does not pin down the structure of the universe of sets.
 - Different models of ZFC have different versions of the transfinite ordinals, the powerset operation, the cumulative hierarchy...
 - Answers to classical questions depend on choice of model.

The constructible universe

Granted one model of ZFC, forcing shows there are many others... without providing a single explicit example.

Denote the set of first-order definable subsets of M by def(M).

Definition (Gödel)

Constructible hierarchy:

•
$$L_0 = \emptyset$$
.

•
$$L_{\alpha+1} = \operatorname{def}(L_{\alpha}, \in).$$

•
$$L_{\gamma} = \bigcup_{\beta < \gamma} L_{\beta}$$
 for limit ordinals γ .

Constructible universe: $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$.

L is the minimum model of ZFC containing every ordinal.

The constructible universe, continued

The constructible universe *L* is *canonical* in various ways:

- If M_0 and M_1 are models of ZFC containing the same ordinal numbers, $L^{M_0} = L^{M_1}$.
- Every question about L can be answered in ZFC except those that concern "how many ordinals exist"
 - (Gödel) L satisfies the generalized continuum hypothesis
 - Independent: is there an ordinal α large enough that L_α ⊨ ZFC?
- In general, ZFC does not decide which large cardinal axioms are true in L.
 - Such axioms just reveal more levels of constructible hierarchy?
 - Assuming these levels exist, all questions about them have answers, too.

The Jensen covering lemma

Does V = L? This is independent of ZFC. Can arbitrary sets be approximated by constructible ones?

Definition

Suppose κ is an infinite cardinal. A class of sets M has the κ -cover property if for every $<\kappa$ -sized set $A \subseteq M$, there is a $<\kappa$ -sized set $B \in M$ such that $A \subseteq B$.

Theorem (Jensen)

One of the following holds:

- (1) For all cardinals $\kappa \geq \omega_2$, L has the κ -cover property.
- (2) There is an elementary embedding from L to L.

If (1) holds, we say L covers V.

One side of the Jensen dichotomy

Definition

A cardinal κ is *regular* if every $<\kappa$ -sized set of cardinals less than κ is bounded below κ . (E.g., $\omega, \omega_1, \omega_2, \ldots$) Otherwise κ is *singular*. (E.g., $\omega_{\omega}, \omega_{\omega+\omega}, \ldots$) A cardinal κ is a *strong limit cardinal* if for all $\lambda < \kappa$, $|P(\lambda)| < \kappa$. E.g. $|V_{\omega+\omega}|$.

- If L covers V, then V resembles L:
 - Many instances of the Generalized Continuum Hypothesis must hold. In fact, |P(λ)| = λ⁺ for all singular strong limit cardinals λ.
 - If λ is a singular cardinal, then λ is singular in L. Moreover L correctly computes the successor of λ.
 - Equivalently, if a constructible set A has cardinality λ, then there is a constructible bijection between A and λ.

The other side of the Jensen dichotomy

Definition

A cardinal is *inaccessible* if it is a regular strong limit cardinal.

If there is an elementary embedding from L to L:

- \blacktriangleright $V \neq L$.
- For all ordinals α , $|P(\alpha) \cap L| = |\alpha|$.
 - L does not compute any successor cardinals correctly.
 - Every infinite cardinal is inaccessible in *L*.
- ln fact, if κ is an uncountable cardinal, then in *L*, κ has every large cardinal property that can hold in *L*.

The existence of an embedding from L to L is the *minimum large* cardinal axiom beyond L. Widely believed to be consistent.

The inner model hierarchy

If there is an elementary embedding from L to L, there is a *canonical model beyond* L:

- It's the class L[j] of sets constructible relative to a carefully chosen elementary embedding j : L → L.
- L[j] satisfies an analogous covering lemma; i.e., either L[j] covers V or there is an embedding from L[j] to L[j]. The latter yields yet another canonical model.
- Proceeding this way, one obtains a transfinite hierarchy of canonical models of ZFC, satisfying stronger and stronger large cardinal axioms.

Some open problems

(1) How far does the inner model hierarchy go?

- Do all large cardinal axioms have canonical models?
 - The known canonical models can satisfy large cardinal axioms up to a Woodin cardinal and somewhat beyond.

Definition

A cardinal κ is *strongly compact* if every κ -complete filter can be extended to a κ -complete ultrafilter.

The known canonical models of ZFC cannot contain strongly compact cardinals.

 (2) Is there a canonical model of ZFC that covers V (unconditionally)? I.e., does the universe of sets admit a deeper analysis...

Ordinal definability

The definable elements of a model of ZFC usually do not themselves form a definable set. (Otherwise consider the least undefinable ordinal, contradiction.)

Definition (Gödel)

A set is ordinal definable (OD) if it is definable in the structure (V, \in) from ordinal parameters.

Equivalently x is OD if for some ordinal α , x is definable in (V_{α}, \in) without parameters. So ordinal definability is a first-order expressible property.

Hereditary ordinal definability

Definition

A set x is *hereditarily ordinal definable* if x is ordinal definable, every element of x is ordinal definable, every element of every element of x is ordinal definable, etc.

The class HOD of all hereditarily ordinal definable sets is a model of ZFC.

But HOD is *not* a canonical model of ZFC in the sense that L is.

- Different models of ZFC can have wildly different HODs.
- ZFC proves nothing about the internal structure of HOD.
- All known large cardinal axioms are consistent with V = HOD.

Covering for HOD

Canonical models of ZFC are ordinal definable. Therefore if V is covered by a canonical inner model, it is covered by HOD.

Is there an unconditional covering lemma for HOD? The answer is consistently no, but the following possibility remains:

Question

Do large cardinal axioms imply that HOD covers V?

Extendible cardinals

If $j: M \to N$ is a nontrivial elementary embedding between models of ZFC, then there must be an ordinal $\alpha \in M$ such that $j(\alpha) \neq \alpha$. The *critical point* of j is the least such ordinal.

Definition

A cardinal κ is *extendible* if for all $\alpha \geq \kappa$, for some $\beta \geq \alpha$, there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with critical point κ .

Extendible cardinals are very large. For example, every extendible cardinal is a limit of inaccessible cardinals and strongly compact cardinals.

Woodin's HOD dichotomy

Theorem (Woodin)

Assume κ is extendible. Then exactly one of the following holds:

- (1) For all $\lambda \geq \kappa$, HOD has the λ -cover property.
- (2) Every regular cardinal $\lambda \geq \kappa$ is inaccessible in HOD.

Looks just like the situation with L. Except no large cardinal axiom can imply (2)?

Conjecture (Woodin)

If there is an extendible cardinal, then (1) holds.

This is a version of the HOD conjecture.

A case against the HOD conjecture

The HOD conjecture is counterintuitive: given the Jensen covering lemma, almost no one conjectures that L (provably) covers V.

To argue against the HOD conjecture, one might try to strengthen the analogy with Jensen's covering lemma.

- Is the failure of the HOD conjecture equivalent to the existence of large cardinals and "canonical structures" beyond HOD?
- If so, can one present a compelling case that these large cardinals are consistent?

Embeddings into HOD

Question

Can one show the failure of the HOD conjecture is equivalent to the existence of a nontrivial elementary embedding from HOD to HOD?

Theorem

Assume κ is extendible. Then the following are equivalent:

- The HOD conjecture fails.
- For all ordinals α ≥ κ⁺, there is a model of set theory containing α that elementarily embeds into HOD ∩ V_α.

Constructibly Ramsey cardinals

The failure of Jensen covering for L is equivalent to a partition property of constructible functions.

A cardinal λ is *Ramsey* if for any function $f : [\lambda]^{<\omega} \to \{0, 1\}$, there is a set $H \subseteq \lambda$ of cardinality λ such that $f \upharpoonright [H]^n$ is constant for all $n < \omega$.

Theorem (Gloede)

The following are equivalent:

- There is an elementary embedding from L to L.
- For all cardinals λ ≥ ω₁, if f : [λ]^{<ω} → {0,1} is constructible, there is a set H ⊆ λ of cardinality λ such that f ↾ [H]ⁿ is constant for all n < ω.</p>

Definably Jónsson cardinals

The failure of the HOD conjecture turns out to be equivalent to an infinitary partition property of *ordinal definable* functions.

A cardinal λ is ω -Jónsson if for every $f : [\lambda]^{\omega} \to \lambda$, there is a proper subset H of λ of cardinality λ that is closed under f: i.e., if s is a subset of H of ordertype ω , then $f(s) \in H$.

Theorem

Assume κ is strongly compact. Then the following are equivalent:

- ► The HOD conjecture fails.
- For all cardinals λ ≥ κ⁺, if f : [λ]^ω → λ is ordinal definable, there is a proper subset of λ of cardinality λ that is closed under f.

The Kunen inconsistency theorem

"Disanalogy" between Ramsey and $\omega\textsc{-Jonsson}$ properties:

Theorem (Erdös-Hajnal)

There are no ω -Jónsson cardinals.

Closely related to the Kunen inconsistency theorem:

Theorem (Kunen)

There is no elementary embedding from V to V.

The existence of ω -Jónsson cardinals *is* consistent if the Axiom of Choice (AC) is dropped.

What about elementary embeddings from V to V?

Large cardinals beyond choice

In the analogy between HOD dichotomy and Jensen covering, could embeddings from V to V play role of embeddings from L to L?

Theorem (Woodin)

If it is consistent that there is an elementary embedding from V to V and a proper class of extendible cardinals, then the HOD conjecture is false.

Are large cardinals beyond choice a reason to believe the HOD conjecture is false? Or vice versa?

Structure theory for large cardinals beyond choice

Theorem (G., Schlutzenberg)

An elementary embedding $j : V_{\alpha} \rightarrow V_{\alpha}$ is definable from parameters over V_{α} if and only if α is odd.

Let θ_{α} denote the least ordinal that is not the surjective image of V_{β} for any $\beta < \alpha$.

Theorem

Assume α is even and there is an elementary $j: V_{\alpha+2} \rightarrow V_{\alpha+2}$ with critical point κ .

- There are fewer than κ regular cardinals between θ_{α} and $\theta_{\alpha+1}$.
- (κ-DC) There are more than κ regular cardinals between θ_{α+1} and θ_{α+2}.

Consistency of large cardinals beyond choice

There is a first-order sharpening of Kunen's theorem:

Theorem (Kunen)

For any ordinal $\lambda,$ there is no elementary embedding from $V_{\lambda+2}$ to $V_{\lambda+2}.$

Theorem (Schlutzenberg)

Assuming very large cardinals, it is consistent with ZF that for some ordinal λ there is an elementary embedding from $V_{\lambda+2}$ to $V_{\lambda+2}$.

How far can Schlutzenberg's theorem be extended?

A case for the HOD conjecture

Woodin's approach to the HOD conjecture: assuming large cardinals, build a canonical model satisfying an unconditional covering theorem.

- If this is possible, the HOD conjecture is true.
- It is plausible that there are canonical models for all large cardinal axioms.
- Woodin argues that if there is a canonical model with a supercompact, it must be the "ultimate inner model," containing all large cardinals. In particular, it must cover V.

We discuss a more direct approach.

The uniqueness of elementary embeddings

Suppose δ is a regular cardinal and $\alpha < \beta$ are ordinals above δ .

Question

If $j_0, j_1 : V_{\alpha} \to V_{\beta}$ are elementary embeddings such that sup $j_0[\delta] = \sup j_1[\delta]$ and $j_0(\delta) = j_1(\delta)$, must $j_0 \upharpoonright \delta = j_1 \upharpoonright \delta$?

If so, say embeddings from V_{α} to V_{β} are unique on δ .

If embeddings from V_{α} to V_{β} are unique on δ , then for any $j: V_{\alpha} \to V_{\beta}$, $j \upharpoonright \delta$ is ordinal definable.

The uniqueness of elementary embeddings, continued

Theorem

Suppose κ is extendible. Then the following are equivalent:

- For all regular δ ≥ κ, for all sufficiently large ordinals α < β, embeddings from V_α to V_β are unique on δ.
- ► The HOD conjecture holds.

Uniqueness problem looks (sort of) tractable.

The uniqueness of elementary embeddings, continued

Most large cardinal properties (including extendibility) can be formulated in terms of elementary embeddings $j : V \to M$ where $M \subseteq V$ is a transitive model of ZFC.

Assuming the HOD Conjecture, Woodin proved that if $j_0, j_1 : V \to M$ are elementary embeddings with the same target model, then $j_0 \upharpoonright \text{Ord} = j_1 \upharpoonright \text{Ord}$.

Very recently:

Theorem

If $j_0, j_1 : V \to M$ are elementary embeddings with the same target model, then $j_0 \upharpoonright \text{Ord} = j_1 \upharpoonright \text{Ord}$.

HOD dichotomy from strongly compact cardinals

Cardinals significantly smaller than extendibles suffice for a version of the HOD dichotomy.

Theorem

Suppose κ is strongly compact. Then one of the following holds:

- ► All sufficiently large regular cardinals are inaccessible in HOD.
- For all strong limit cardinals λ ≥ κ, HOD has the λ-cover property.

In the second case, every singular strong limit cardinal $\lambda \ge \kappa$ is singular in HOD and $(\lambda^+)^{\text{HOD}} = \lambda^+$.

Definability from ultrafilters

Connection between strongly compact cardinals and HOD dichotomy suggests a closer look at the definability theory of κ -complete ultrafilters.

Definition

A set is κ -completely definable if it is definable in (V, \in) allowing κ -complete ultrafilters on ordinals as parameters.

The class HCD(κ) of *hereditarily* κ -completely definable sets is a model of ZF.

Theorem

If κ is strongly compact, then HCD(κ) satisfies ZFC and HCD(κ) covers V.

Actually V is a forcing extension of $HCD(\kappa)$.

Definability from ultrafilters, continued

Definition

Let $HCD = \bigcap_{\kappa \in Ord} HCD(\kappa)$.

Building on work of Usuba:

Theorem

If κ is extendible, then HCD(κ) = HCD.

For any embeddings $j_0, j_1 : V \to M$, $j_0 \upharpoonright HCD = j_1 \upharpoonright HCD$.

Theorem

If $j_0, j_1 : V \to M$ are elementary embeddings with critical point above the least extendible cardinal, then $j_0 = j_1$.

A guess

Maybe... embeddings from V to V are consistent, but not with very large cardinals.

Maybe the HOD conjecture consistently fails, but is provable from strong enough large cardinal axioms.

Thanks!