The Jackson analysis and the strongest hypotheses

Gabriel Goldberg

UC Berkeley

2021

Gabriel Goldberg The Jackson analysis and the strongest hypotheses

Outline

- ▶ Jackson's analysis of projective sets does not extend to $L(\mathbb{R})$.
 - Missing a "global" theory of ultrafilters on ordinals.
 - The Ultrapower Axiom serves this purpose in the inner models.
 - ▶ **Question:** Does *L*(ℝ) satisfy the Ultrapower Axiom?
- Analogy between determinacy and strongest large cardinals:
 - Example: $L(\mathbb{R})$ under $AD^{L(\mathbb{R})}$ vs. $L(V_{\lambda+1})$ under the axiom I_0 .
 - Mainly one understands $L(V_{\lambda+1})$ by analogy with $L(\mathbb{R})$.
 - Many properties of L(ℝ) (e.g., the perfect set property) generalize to L(V_{λ+1}) with completely different proofs.

• What's new: the analogy also makes predictions about $L(\mathbb{R})$.

- Some of these predictions can be verified.
- One prediction is: $L(\mathbb{R})$ satisfies the Ultrapower Axiom.
 - Some consequences of UA can be shown to hold in $L(\mathbb{R})$.

Background: a definable invariant of the continuum

- A structure *N* is *interpretable* in a structure *M* if there is a surjection *f* : *M^k* → *N* such that the *f*-preimage of a definable subset of *N* is definable over *M*.
- δ¹_ω denotes the minimum ordinal that is not interpretable in (ℝ, ℕ, +, ×); i.e., the sup of the definable prewellorders. Note that ω₁ ≤ |δ¹_ω| ≤ c.

Blanket assumption: The Axiom of Determinacy holds in $L(\mathbb{R})$.

Theorem (Jackson)

In $L(\mathbb{R})$, $\delta^1_\omega = \aleph_{\epsilon_0}$.

Here ϵ_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.

Therefore in actuality, $\delta^1_{\omega} = (\aleph_{\epsilon_0})^{\mathcal{L}(\mathbb{R})}$.

Background: ultrafilters under AD

The proof of Jackson's theorem requires a detailed analysis of the intricate cardinal structure of $L(\mathbb{R})$ below δ^1_{ω} . This ultimately reduces to a classification of the ultrafilters on ordinals below δ^1_{ω} .

Theorem

In $L(\mathbb{R})$, the following hold:

- Every ultrafilter is countably complete.
- ▶ (Solovay) \aleph_1 is measurable.
 - ► The club filter is the unique normal ultrafilter on ℵ₁.
- (Martin) \aleph_2 is measurable.
 - The ω-club filter and the ω₁-club filter are the only normal ultrafilters on ℵ₂.
- (Solovay) \aleph_n is singular for $3 \le n \le \omega$.
- (Kunen, Martin) $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ are measurable.
- (Jackson) $\aleph_{\omega \cdot 2+1}$ is measurable, but $\aleph_{\omega \cdot 3+1}$ is singular.

Ultrafilters in inner models

Two ultrafilters U and W are *equivalent* if there exist $A \in U$ and $B \in W$ such that $(A, U \cap P(A)) \cong (B, W \cap P(B))$.

Theorem (??)

In $L(\mathbb{R})$, every ultrafilter on \aleph_1 is equivalent to an iterated product of the closed unbounded filter.

This calls to mind:

Theorem (Kunen)

If U is a normal ultrafilter, then in the inner model L[U], every countably complete ultrafilter is isomorphic to an iterated product of $U \cap L[U]$.

Actually the first theorem can be proved using the second.

Ultrapower terminlogy

Suppose U is an ω_1 -complete ultrafilter

• M_U denotes the ultrapower of the universe by U

• $j_U: V \to M_U$ denotes the associated elementary embedding Since U is ω_1 -complete, M_U is wellfounded. So without loss of generality, M_U is transitive.

If P and Q are transitive models of ZFC, $j : P \to Q$ is an *ultrapower embedding* if there is some $U \in P$ such that $Q = (M_U)^P$ and $j = (j_U)^P$.

The Ultrapower Axiom (UA)

Ultrapower Axiom (UA)

For any ultrapower embeddings $j_0: V \to M_0$ and $j_1: V \to M_1$, there are ultrapower embeddings $i_0: M_0 \to N$ and $i_1: M_1 \to N$ such that $i_0 \circ j_0 = i_1 \circ j_1$.

Why UA?

- The Ultrapower Axiom is an instance of the central Comparison Lemma of inner model theory, yet it can be stated without reference to fine structure.
- As a consequence, UA holds in all known canonical inner models of ZFC, and arguably in any inner model built by anything like the current methodology.
 - If there is a canonical inner model with a supercompact cardinal, then UA should be consistent with a supercompact cardinal.
 - The existence of a supercompact cardinal implies the existence of a vast array of ultrapowers, and combined with UA, provides a rich structure theory for the upper reaches of the universe of sets.
- ► UA is equivalent to several natural combinatorial principles.
- Seems to yield an "optimal" theory of ω₁-complete ultrafilters (in the context of the Axiom of Choice).

The Rudin-Frolík order

- ▶ *U* lies below *W* in the *Rudin-Frolík order*, denoted $U \leq_{RF} W$, if $j_W = k \circ j_U$ for some ultrapower embedding $k : M_U \to M_W$.
- By definition, UA holds iff the restriction of the Rudin-Frolik order to ω₁-complete ultrafilters is directed.
- A nonprincipal ultrafilter W is *irreducible* if any nonprincipal $U \leq_{\mathsf{RF}} W$ is equivalent to W (in that $j_U = j_W$).

Theorem (UA)

• Every ω_1 -complete ultrafilter W factors as an iteration:

$$V = M_0 \xrightarrow{j_{U_0}} M_1 \xrightarrow{j_{U_1}} \cdots \xrightarrow{j_{U_n}} M_{n+1} = M_W$$

where for all $k \leq n$, U_k is an irreducible ultrafilter of M_k .

 In fact, an ω₁-complete ultrafilter can have only finitely many Rudin-Frolík predecessors up to equivalence.

Some irreducible ultrafilters

An ultrafilter U on a family of nonempty sets \mathcal{F} is *normal* if every choice function on \mathcal{F} is constant on a set in U. If U is normal and $\lambda = \min_{A \in U} |A|$, then M_U is closed under λ -sequences.

Proposition

Normal ultrafilters are irreducible.

A uniform ultrafilter U on a cardinal κ is *Dodd sound* if the map $i : P(\kappa) \to M_U$ given by $i(A) = j_U(A) \cap [id]_U$ belongs to M_U .

Proposition

Dodd sound ultrafilters are irreducible.

Theorem (UA)

Normal ultrafilters and Dodd sound ultrafilters are wellordered by the Mitchell order.

Irreducible ultrafilters and UA

Theorem (UA)

Suppose U is an irreducible ultrafilter and $\lambda = \min_{A \in U} |A|$.

- M_U is closed under λ -sequences unless λ is inaccessible.
- ▶ If λ is inaccessible, then $(M_U)^{<\lambda} \subseteq M_U$ and every $A \subseteq M_U$ with $|A| \leq \lambda$ is covered by a set $B \in M_U$ with $|B|^{M_U} \leq \lambda$.

Remark. The inaccessible case obviously raises some questions...

Corollary (UA)

A cardinal is strongly compact if and only if it is supercompact or a measurable limit of supercompacts.

By a theorem of Menas, the least measurable limit of supercompact cardinals is strongly compact but not supercompact, so the corollary cannot be improved.

The Lipschitz order

Suppose δ is an ordinal.

- A function $f : P(\delta) \to P(\delta)$ is *Lipschitz* if for all $x, y \subseteq \delta$ and $\alpha \leq \delta$, if $x \cap \alpha = y \cap \alpha$, then $f(x) \cap \alpha = f(y) \cap \alpha$.
- For A, B ⊆ P(δ), set A ≤_L B if A is Lipschitz reducible to B; i.e., there is a Lipschitz f : P(δ) → P(δ) with f⁻¹[B] = A.

Theorem

The following hold in $L(\mathbb{R})$:

- (Wadge) The subsets of P(ω) i.e., "sets of reals" are semi-linearly ordered by Lipschitz reducibility: if A, B ⊆ ℝ, either A is reducible to B or B is reducible to P(ω) \ A.
- (Martin-Monk) \leq_L is wellfounded on subsets of $P(\omega)$.

Ketonen reducibility

Let $\beta_{\kappa}(X)$ denote the set of κ -complete ultrafilters on X.

Theorem (UA)

For any ordinal δ , $(\beta_{\omega_1}(\delta), \leq_L)$ is a wellorder.

- A Lipschitz $f : P(\delta) \to P(\delta)$ is *Ketonen* if for all $W \in \beta_{\omega_1}(\delta)$, $f^{-1}[W] \in \beta_{\omega_1}(\delta)$.
- ▶ U is Ketonen reducible to $W \in \beta_{\omega_1}(\delta)$, denoted $U \leq_{\Bbbk} W$, if there is a Ketonen $f : P(\delta) \to P(\delta)$ with $U = f^{-1}[W]$.

Theorem

For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is wellfounded.

Theorem

UA holds if and only if for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.

Ordinal definable ultrafilters

The linearity of Ketonen reducibility immediately yields:

Theorem (UA)

Every ω_1 -complete ultrafilter on an ordinal is ordinal definable.

By a strange coincidence, it is also possible to definably wellorder the ultrafilters of $L(\mathbb{R})$, although it is not clear whether Ketonen reducibility works:

Theorem (Kunen)

In $L(\mathbb{R})$, every ultrafilter on an ordinal is ordinal definable.

The Ultrapower Axiom without choice

Question

Does the Ultrapower Axiom hold in $L(\mathbb{R})$?

To make sense of the question, one needs an ultrapower-free formulation of the Ultrapower Axiom.

UA₁. For all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_k)$ is a wellorder.

Set U ≤_{RF} W if for some ultrafilters (W_x)_{x∈X} with pairwise disjoint underlying sets, W = {⋃_{x∈X} A_x : ∀^Ux A_x ∈ W_x}.

UA₂. The Rudin-Frolík order is directed on $\bigcup_{\delta \in \text{Ord}} \beta_{\omega_1}(\delta)$.

Theorem (ZF + DC)

 UA_1 and UA_2 are equivalent.

The Kunen inconsistency

- ► The best evidence that L(R) satisfies UA comes from one of the strongest theories known to man.
- Reinhardt proposed the principle: there is a nontrivial elementary embedding from the universe of sets to itself.

Theorem (Kunen)

There is no elementary embedding from V to V except the identity.

Kunen's proof shows that for any ordinal α , there is no elementary $j: V_{\alpha+2} \rightarrow V_{\alpha+2}$. So if $j: V_{\beta} \rightarrow V_{\beta}$ is elementary with critical point κ , $\beta < \lambda + 2$ where

$$\lambda = \sup\{\kappa, j(\kappa), j^2(\kappa), j^3(\kappa), \dots\}$$

because $j(\lambda) = \sup\{j(\kappa), j^2(\kappa), j^3(\kappa), \dots\} = \lambda$.

Strategies and embeddings

The descriptive set theory of $V_{\lambda+1}$ assuming the existence of various embeddings $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$ bears a striking and unexplained resemblance to classical descriptive set theory under determinacy axioms.

Determinacy	Elementary embeddings
$Det(\Delta^1_1)$	$j:V_\lambda o V_\lambda$
$Det(\Pi_1^1)$	Σ_1 -elementary $j: V_{\lambda+1} o V_{\lambda+1}$
Det(Projective)	Σ_n -elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$ for all n
$Det(L(\mathbb{R}))$	$j: {\it L}(V_{\lambda+1}) ightarrow {\it L}(V_{\lambda+1})$ with ${\sf crit}(j) < \lambda$

The final embedding principle above is Woodin's axiom I_0 .

Going forward: λ denotes an I_0 -cardinal, meaning there is an elementary $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

The inner model $L(V_{\lambda+1})$

Theorem

In $L(V_{\lambda+1})$, the following hold:

- (Woodin) λ^+ is measurable.
 - (Cramer) There is a unique normal ultrafilter on λ⁺ concentrating on ordinals of countable cofinality.

• (Cramer) Every subset of $V_{\lambda+1}$ has the perfect set property.

 $\Theta^{L(\mathbb{R})}$ denotes the least ordinal not of the form $\{f(x) : x \in \mathbb{R}\}$ where $f \in L(\mathbb{R})$. To get $\Theta^{L(V_{\lambda+1})}$, replace \mathbb{R} s with $V_{\lambda+1}$ s.

Theorem

- (Moschovakis) $\Theta^{L(\mathbb{R})}$ is weakly inaccessible in $L(\mathbb{R})$.
- (Woodin) $\Theta^{L(V_{\lambda+1})}$ is weakly inaccessible in $L(V_{\lambda+1})$.

Small cardinals in $L(V_{\lambda+1})$

The local theory of $L(V_{\lambda+1})$ remains a mystery in basic ways; an analysis parallel to Jackson's seems completely out of reach.

Question

In $L(V_{\lambda+1})$, do the following hold?

- \triangleright λ^{++} is measurable.
- λ^{+++} is singular.
- $\blacktriangleright \ \lambda^+ \to (\lambda^+)^{\omega}.$
- Any definable binary relation on $V_{\lambda+1}$ is uniformizable.
- Every subset of λ^+ is definable over $H(\lambda^+)$ from parameters.

The global theory of $L(V_{\lambda+1})$

Theorem (Kunen)

In $L(\mathbb{R})$, every ω_1 -complete filter on an ordinal below $\Theta^{L(\mathbb{R})}$ extends to an ω_1 -complete ultrafilter.

The proof uses that in $L(\mathbb{R})$ there is an ω_1 -complete fine ultrafilter on $P_{\omega_1}(\mathbb{R})$ induced by the Martin measure on the Turing degrees. Although no analog of this is known for $L(V_{\lambda+1})$, one can prove:

Theorem

In $L(V_{\lambda+1})$, every λ^+ -complete filter on an ordinal below $\Theta^{L(V_{\lambda+1})}$ extends to a λ^+ -complete ultrafilter.

The proof is by induction on $\lambda^+\text{-}\mathrm{complete}$ filters ordered by Ketonen reducibility.

The global theory of $L(V_{\lambda+1})$, continued

An *atom* of a filter F is a set S such that $F \cup \{S\}$ generates an ultrafilter; F is *atomic* if every F-positive set contains an atom.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin)

If κ is a strong partition cardinal, the club filter on κ is atomic.

Extending this to arbitrary regular cardinals in $L(\mathbb{R})$ is open, arguably a reasonable test question for Jackson's analysis.

Theorem

In $L(V_{\lambda+1})$, the club filter on any regular cardinal below $\Theta^{L(V_{\lambda+1})}$ is atomic.

The Ultrapower Axiom and $L(V_{\lambda+1})$

- The α-th level of a wellfounded partial order ℙ is the set of all x ∈ ℙ such that rank_ℙ(x) = α.
- \blacktriangleright \mathbb{P} is linear iff each level of \mathbb{P} has cardinality 1.

Theorem

In $L(V_{\lambda+1})$, for all ordinals δ , $(\beta_{\omega_1}(\delta), \leq_{\Bbbk})$ is almost linear: each of its levels has cardinality less than λ .

- As a corollary, in L(V_{λ+1}), every ω₁-complete ultrafilter on an ordinal is *almost* ordinal definable in that it belongs to an ordinal definable set of cardinality less than λ.
- Ketonen reducibility is not linear in L(V_{λ+1}): e.g., the normal ultrafilter extending the ω-club filter is incomparable with any normal ultrafilter extending the ω₁-club filter.

Conjecture

In L(\mathbb{R}), for all ordinals δ , every level of $(\beta_{\omega_1}(\delta), \leq_{\Bbbk})$ is finite.

The Rudin-Keisler order and $L(V_{\lambda+1})$

The *Rudin-Keisler order* is defined on ultrafilters U and W on sets X and Y by setting $U \leq_{\mathsf{RK}} W$ if there is a partition $(Y_x)_{x \in X}$ of Y such that $U = \{B \subseteq X : \bigcup_{x \in B} Y_x \in W\}$.

Theorem

In $L(V_{\lambda+1})$, no ω_1 -complete ultrafilter on an ordinal has λ -many Rudin-Keisler predecessors.

- ► The Rudin-Keisler order extends the Rudin-Frolík order.
- Recall: under UA, no ω₁-complete ultrafilter has infinitely many Rudin-Frolík predecessors.

Conjecture

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors.

From $L(V_{\lambda+1})$ to $L(\mathbb{R})$

Until now, our insight into $L(V_{\lambda+1})$ has come from knowledge of $L(\mathbb{R})$, never the other way.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has infinitely many Rudin-Frolík predecessors.

- An ultrafilter on a regular cardinal is *seminormal* if it extends the closed unbounded filter.
- The structure of seminormal ultrafilters is a central question in extending the Jackson analysis.

Theorem

In $L(\mathbb{R})$, no ultrafilter on an ordinal has has infinitely many seminormal Rudin-Keisler predecessors.

Proofs use Steel's fine-structural analysis of HOD^{$L(\mathbb{R})$} below $\Theta^{L(\mathbb{R})}$.

Products of ultrafilters

If U and W are ultrafilters on X and Y, there are at least three natural candidates for their product:

Cartesian product: $U \times W$ is the filter on $X \times Y$ generated by sets of the form $A \times B$ where $A \in U$ and $B \in W$. **Tensor product:** for $C \subseteq X \times Y$,

$$C \in U \ltimes W \iff \forall^U x \forall^W y (x, y) \in C.$$

$$C \in U \rtimes W \iff \forall^W y \forall^U x (x, y) \in C.$$

- ▶ Note: $U \times W$ is contained in both $U \ltimes W$ and $U \rtimes W$.
- ▶ Usually, $U \times W$ is not an ultrafilter and $U \ltimes W \neq U \rtimes W$, so all three products are distinct.

Products of ultrafilters, continued

In certain very special cases, however, $U \times W$ is an ultrafilter.

Theorem (Blass)

If W is |U|-complete, $U \times W$ is an ultrafilter

Since $U \times W$ is contained in $U \ltimes W$ and $U \rtimes W$, if $U \times W$ is an ultrafilter (i.e., is maximal), then $U \ltimes W = U \times W = U \rtimes W$.

Question

Suppose $U \ltimes W = U \rtimes W$. Must $U \times W$ be an ultrafilter?

• $U \ltimes W = U \rtimes W$ iff the ultrafilter quantifiers commute:

$$\forall^{U} x \forall^{W} y R(x, y) \iff \forall^{W} y \forall^{U} x R(x, y)$$

Products and embeddings

From an elementary embeddings perspective:

• The ultrafilters Z extending $U \times W$ represent amalgamations

$$M_U \xrightarrow{k_U} M_Z \xleftarrow{k_W} M_W$$

such that $k_U \circ j_U = k_W \circ j_W$.

The tensor products correspond to the amalgamations

$$M_{U} \xrightarrow{j_{U}(j_{W})} M_{U \ltimes W} \xleftarrow{j_{U} \upharpoonright M_{W}} M_{W}$$
$$M_{U} \xrightarrow{j_{W} \upharpoonright M_{U}} M_{U \rtimes W} \xleftarrow{j_{W}(j_{U})} M_{W}$$

Quantifiers commute iff the associated ultrapowers do:

$$U \ltimes W = U \rtimes W \iff j_U(j_W) = j_W \upharpoonright M_U$$
$$\iff j_W(j_U) = j_U \upharpoonright M_W$$

Products of ultrafilters, continued

Theorem (UA)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Since this is such a "combinatorial" statement, it feels like the theorem must be provable in ZFC.

Theorem (GCH)

 $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

In ZF, one can prove $U \times U$ is never an ultrafilter, whereas Elliot Glazer pointed out that in $L(\mathbb{R})$, there is an ultrafilter U such that $U \ltimes U = U \rtimes U$. So the equivalence fails in $L(\mathbb{R})$. Still...

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Products of ultrafilters, continued

Theorem

In $L(\mathbb{R})$, if U and W are ultrafilters on ordinals, $U \times W$ is an ultrafilter iff $U \ltimes W = U \rtimes W$.

Proof.

- Fix U and W on δ with $U \ltimes W = U \rtimes W$.
 - Fix $A \subseteq \delta \times \delta$. Must show $U \times W$ measures A.
 - For some $x \in \mathbb{R}$, $A \in HOD_x$.
 - $\overline{U} = U \cap HOD_x$ and $\overline{W} = W \cap HOD_x$ are in HOD_x .
- ln HOD_x:

$$\blacktriangleright \ \bar{U} \ltimes \bar{W} = \bar{U} \rtimes \bar{W}.$$

- (Steel) GCH holds! UA holds!
- By either of the previous theorems, $\bar{U} \times \bar{W}$ is an ultrafilter.
- So $\overline{U} \times \overline{W}$ measures A.

• This implies $U \times W$ measures A.

Conclusion

- The analogy between $L(\mathbb{R})$ and $L(V_{\lambda+1})$ cuts both ways.
- There is evidence that UA holds in $L(\mathbb{R})$.

Conjecture

The following hold in $L(\mathbb{R})$:

- The club filter on any regular cardinal $\delta < \Theta^{L(\mathbb{R})}$ is atomic.
- Every level of the Ketonen order is finite.
- No ultrafilter on an ordinal has infinitely many Rudin-Keisler predecessors.

Thanks

Thanks!