The HOD conjecture and the structure of elementary embeddings.

The question: Is every set definable from an ordinal? Does \(V = \text{HOD} \)? Independent of ZFC + large cardinals.

HOD conjecture: More tractable version of this question "is \(V \) close to \(\text{HOD} \)?" - Related to inner model theory.

Point of talk:
HOD conjecture’s relationship to large cardinals / constraints on large cardinals.

Jensen’s covering lemma.

Exactly one of the following holds:

1. Every uncountable set of ordinals is contained in a constructible set of the same cardinality.

 \[\Rightarrow \] If \(\lambda \) is a singular cardinal, \(\lambda \) is singular in \(L \), and \(\lambda^{+L} = \lambda^+ \).

2. There is an elementary \(j : L \rightarrow L \).

 \[\Rightarrow \] Every uncountable cardinal is inaccessible in \(L \).

 \[\Rightarrow \] Uncountable cardinals are
Beyond the constructible universe

Intuitively

1. means \(V \) is close to \(L \)
2. means \(V \) is very far from \(L \)

Large cardinal axioms imply 2.
All sufficiently strong theories imply 2.

Inner model program.
Construct analogs of \(L \) that approximate \(V \) better.

Analog of \(L \): canonical inner model of large cardinal axioms.

Current status: Woodin limit of Woodins, \(\psi \) is supercompact

The inner model problem

Are there canonical models for all large cardinal axioms?

- Any canonical model should be definably wellordered
 \(\Rightarrow \) contained in \(HOD \)
- Maybe \(HOD \) covers \(V \).

Test question. Is \(V \) close to \(HOD \)?
The HOD dichotomy

Suppose θ is extendible: for all $\lambda < \kappa$ there is $j: V_{\theta} \rightarrow V_{\lambda}$ s.t. $\kappa = \text{crit}(j)$, $j(\theta) > \lambda$.

Theorem (Woodin). Exactly one of the following holds:

1. Every set of ordinals of size $\geq \theta$ is contained in an OD set of the same size.
 \[\xrightarrow{\Rightarrow} \text{Every singular cardinal } \lambda \geq \theta \text{ is singular in } \text{HOD} \text{ and } \lambda^{+}_{\text{HOD}} = \lambda^{+} \]

2. Every regular $\geq \theta$ is measurable in HOD.

The HOD conjecture.

HOD hypothesis: There is a proper class of regular cardinals that are not measurable in HOD.

No large cardinal can refute it, i.e. no large cardinal axiom implies 2 because all large cardinals are consistent by $V = \text{HOD}$.

HOD conjecture (Woodin) The HOD
The hypothesis is provable from an extendible.

Choiceless Large Cardinals & HOD

Theorem (Kunen) There is no elementary embedding from V to V^*.

Question what if AC is dropped?

Under $ZF +$ large cardinals beyond choice, V has to be far from HOD.

Theorem (Woodin) If there is a $j : V \rightarrow V$ and a proper class of extendibles, then the HOD conjecture is false.

Sketch of Woodin’s theorem

1. If $j : V \rightarrow V$ & λ is a limit of extendibles, then λ^+ is measurable in HOD.

2. If there is a proper class of extendible cardinals, one can close force the Axiom of Choice, while preserving all the extendible cardinals.

The forcing is weakly homogeneous & definable so it shrinks HOD.

Remark: In the model, you have
j : HOD → HOD.

Embeddings of HOD.

Open Can there be an elementary embedding from HOD to HOD?

Fact. No such embedding is definable.
Sketch. If j : HOD → HOD is definable, then j ∈ HOD[α], and you can’t force j : V → V.

Theorem (HOD hypothesis) If there is a strongly compact cardinal, there is no j : HOD → HOD.

Embeddings of HOD, cont.

Could there be a full analog of Jensen’s covering lemma, above extendibles?

I.e. either HOD covers V or there is a j : HOD → HOD.
* not the right hypothesis
(4) Assume \(\kappa \) is regular and \(\text{HOD} \) is ill-founded. For \(\sigma \geq \kappa \), is there a \(j : \text{HOD}\cap V_{\kappa} \rightarrow \text{HOD}\cap V_{\kappa} \)?

Embeddings of HOD, cont.

Def. \(j : M \rightarrow N \) is \(\kappa \)-elementary if for all \(\sigma \in \mathcal{P}_\kappa(M) \), \(M[\sigma] = \emptyset \iff N[j[\sigma]] = \emptyset \).

\[
\begin{array}{ccc}
M[\sigma] & \longrightarrow & N[j[\sigma]] \\
\cup l & \downarrow & \cup l \\
M & \longrightarrow & N
\end{array}
\]

Theorem. If \(\kappa \) is supercompact, either:

1. HOD hypothesis
2. For all regular \(\sigma \geq \kappa \), there is a \(\kappa \)-elementary \(j : N \rightarrow \text{HOD} \cap V_{\kappa} \)

Constructively Jonsson Cardinals

Def. \(\lambda \) is Jonsson if for any \(f : [\lambda]^{<\omega} \rightarrow \lambda \) there is some \(A \subseteq \lambda \) with \(|A| = \lambda \) and \(f''[A]^{<\omega} \subseteq A \).

Fact. \(L \) has no Jonsson cardinals.

Def. \(\lambda \) is constructively Jonsson if for any constructible \(f : [\lambda]^{<\omega} \rightarrow \lambda \) there is some \(A \subseteq \lambda \) with \(|A| = \lambda \) and \(f''[A]^{<\omega} \subseteq A \).

Fact. There is \(j : L \rightarrow L \) if and only if there
is a constructibly Jonsson. If every cardinal is constructibly Jonsson.

Definably Jonsson Cardinals

Def. λ is ω-Jonsson if $f : [\kappa]^{\omega} \rightarrow \lambda$, there is some $A \subseteq \lambda$, $|A| = \lambda$, $f''[A]^{\omega} \subseteq A$.

Theorem (Erdős-Hejhal) There are no ω-Jonsson cardinals.

Def. λ is **definably ω-Jonsson** if for all OD $f : [\kappa]^{\omega} \rightarrow \lambda$, there is some $A \subseteq \lambda$, $|A| = \lambda$, $f''[A]^{\omega} \subseteq A$.

Theorem Suppose κ is strongly compact. The HD hypothesis fails \iff every regular \aleph_ω is definably ω-Jonsson.

Uniqueness of definable embeddings

Theorem (Woodin) Suppose $j_0, j_1 : V \rightarrow M$ are definable. $j_0(\alpha) = j_1(\alpha)$ for all ordinals α.

Proof Assume j_0, j_1 are Σ_0 counterexamples. Let α be the least ordinal s.t. there are Σ_0-definable $j_0, j_1 : V \rightarrow N$ s.t. $j_0(\alpha) \neq j_1(\alpha)$. α is definable without parameters. So $j_0(\alpha) = j_1(\alpha)$.
Uniqueness of undefinable embeddings

What about undefinable embeddings?

Proving this requires giving another proof of Kunen.

Woodin: if the HOD hypothesis holds, then if \(j, j_1 : V \rightarrow M \), \(j(\alpha) = j_1(\alpha) \) for all \(\alpha \).

Theorem. If \(j, j_1 : V \rightarrow M \), then \(j_0(\alpha) = j_1(\alpha) \) for all \(\alpha \in \text{Ord} \).

Local uniqueness.

There can exist \(j, j_1 : V_\lambda \rightarrow M \) s.t.

\(j_0 \upharpoonright \lambda \neq j_1 \upharpoonright \lambda \).

Def \(\xi \geq \delta \) is regular and \(\lambda > \delta \), \(j, j_1 : V_\lambda \rightarrow M \) are \(\delta \)-similar if \(j_0(\delta) = j_1(\delta) \) and

\(\sup \xi j_0(\alpha) : \alpha < \delta \bar{\xi} = \sup \xi j_1(\alpha) : \alpha < \delta \bar{\xi} \).

Theorem. If \(\kappa \) is extendible & \(\delta \geq \kappa \) is regular, the HOD hypothesis holds if & only for all
suff large \(\lambda \geq \delta \), if so, \(j_0, j_1 : V \rightarrow M \) are \(S \)-similar, then \(j_0(\alpha) = j_1(\alpha) \) for \(\alpha < \delta \).

Below extendibles.

\(N \) is \underline{w-club amenable} if the w-club filter \(F \) on any ordinal satisfies \(\text{FINEN} \).

Theorem. Suppose \(x \) is strongly compact and \(N \) is \(w \)-club amenable. Either

1. **All** \(N \)-regular \(S \subseteq x \) satisfy \(\text{cf}(S) = |S| \).

 \(\implies \) if \(\lambda \) is singular cardinal, \(x \) is singular in \(N \) and \(\lambda^{+N} = \lambda^{+} \)

2. All suff large \(\Delta \) regular cardinals are \underline{measurable} in \(N \).

The covering question

Suppose \(x \) is strongly compact and the \(\text{HOD} \) hypothesis holds. Does \(\text{HOD} \) cover \(V \)?

Def. \(M \) has the \(\lambda \)-cover property if whenever \(A \) is a set of ordinals of size \(< \lambda \), \(A \) is covered by a set of ordinals in \(M \) of size \(< \lambda \).

Theorem. (\(\text{HOD} \) hypothesis) \underline{For all strong...}
Large cardinals in HOD

If κ is extendible & HOD hypothesis holds, then large cardinals $\lambda \leq \kappa$ are downwards absolute to HOD.

In fact, HOD is a weak extender model of κ is supercompact. For all $\lambda \leq \kappa$, there is a normal κ-complete ultrafilter on $\text{P}_{\kappa}\lambda$, say \mathcal{U}, i.e.

$\forall \lambda \in \text{HOD} \cap \text{HOD} \quad \text{and} \quad \text{P}_{\kappa}\lambda \in \text{HOD} \subseteq \mathcal{U}$

Smaller large cardinals.

Theorem (Cheong-Friedman-Hemachandra). It's consistent that κ is supercompact but not weakly compact in HOD.

Def. κ is **distributively supercompact** if for all $\lambda \leq \kappa$, there is a forcing extension with no new κ-sequences in which κ is λ-supercompact.
Thm. [HOD hypothesis]. \(\text{If } \kappa \text{ is supercompact, then } \kappa \text{ is traditionally supercompact in } \text{HOD.} \)

On weak extender models

Def. An inner model \(M \) is supercompact at \(\kappa \) if for all \(\mathcal{U} \), there is a normal fine \(\kappa \)-complete \(\mathcal{U} \)-ultrafilter \(P \) on \(\mathcal{P}(\kappa) \) s.t. \(P \mathcal{U} \cap M \in \mathcal{U} \).

\(\text{HOD hypothesis } \implies \text{HOD is supercompact} \)

Theorem. TFAE

- \(M \) is supercompact
- \(M \) extends to a u.w.m. with no new \(\kappa \)-sequences.

Back to unique embeddings

Theorem. Suppose \(\kappa \) is supercompact.

TFAE:

1. HOD hypothesis.
2. For all regular \(S \subset \kappa \), for suff \(\varepsilon \gg \kappa \), for \(X_0, X_1 \) second-order elementary in \(V_\varepsilon \).
Remark. If R is a wellorder of V_α
(2) holds for substructures of (V_α, R).

Definability of ultrafilters

Ultrapower Axiom:

Theorem (UA)

Theorem (AD)

Theorem (TOD hypothesis)

Theorem (NBG)

Definability from ultrafilters

Def. $CD(\alpha) =

$HCD(\alpha) =

Theorem. Suppose α is strongly compact.
On the first-order theory of "HOD"

Theorem (HOD hypothesis). Suppose it is supercompact.

Conclusions.

* HOD conjecture is equivalent to local version of true features of embeddings provable in ZFC

* Negation of HOD conjecture is
equivalent to weak versions of $j : \text{HOD} \rightarrow \text{HOD}$, traces of large cardinals beyond ZFC

Next time. Proof of:
1. Uniqueness of elementary embeddings
2. $\text{HOD} \cong j$, j implies local uniqueness of embeddings