Embeddings of HOD

Cumulative hierarchy

- $V_{0}=\phi$
- $V_{\alpha+1}=P\left(V_{\alpha}\right)$
- $V_{\gamma}=\bigcup_{\alpha<\gamma} V_{\alpha}$

Universe of sets: $V=U(1)$
Problem. We don't know the axioms.
Question should we add $V=L$ as an axiom?

Constructible hierarchy

- $L_{0}=\varnothing$
- $L_{\alpha \mu}=\operatorname{def}\left(L_{\alpha}\right)$
- $L_{\gamma}=\bigcup_{\alpha<\gamma}^{\sim} L_{\alpha}(\operatorname{linit\gamma })$

Constructible universe $L=U L_{\text {read }}$
Principle " $V=L^{\prime \prime}$: Every Pet lies in some la,

$$
L F Z F C+V=L
$$

Definition. A cardinal x is measurable if there's a k-addifice $\mu: P(\mu) \longrightarrow\{0,1\}$.
[Measurables ae inaccessible]

Scott's theorem. If them is a measurable cardinal, then $V \neq L$.
Jensen covering lemma.
Exactly one of the following holds:
(1) L has the Jensen covering property:
for any uncountable set $A \subseteq L$,
thee is o $B \in L$ sit. $A \subseteq B$ \& $|A|=|B|$.
(2) There is an elementary embedding J: $L \rightarrow L$

Canonical inner models for large cardinals $M, N F Z F, j: M \rightarrow N$ elementary, Ord, Mod ${ }^{N} \pm$ Ord crit $(j)=\min \{\alpha: j(\alpha) \neq \alpha\}$
If $\exists j: L \rightarrow L$ wait $(j)=K$, there's a minimum j_{t}

Covering for $L\left[j_{k}\right]$. $i^{\prime}: L[j k] \rightarrow L\left[j_{k}\right]$.
Embeddings of $1 /$.
Scoff: k is able il $1 \alpha=$ crit c j) for $j: V \rightarrow M$

If $\mu_{0}, \mu_{1}: P(k) \rightarrow\{0,1\}$
$[[\mu]$ has a weaker
$L\left[\mu_{0}\right]=L\left[\mu_{1}\right] \vDash G C H$ covering lemma.
Q1 Which large cardinals have conemical models?

- So fer: Woodin cardinals, woodin limits of
- Open: - strongly compact Wooding
Q2 Is there an unconditioned covering lemma?

Ordinal defincurlity
Suppose $M \vDash Z F$.

- OD $=\operatorname{def}(M, \operatorname{Ord}) \cap M$
$\operatorname{def}(M) \cap M \notin \operatorname{def}(M)$
- OD $\in \operatorname{def}(M)$:
- If $\operatorname{def}(M) \cap M \subseteq A \in \operatorname{def}(M) \ldots \quad \cdot x \in O D \Leftrightarrow x \in O D^{1 / \alpha}$

A contains will ordinals for sone α

HOD: class of x s.t. Principle " $V=H O D$ ": if $x_{0} \in x_{1} \in \cdots \in x_{n}=x_{1}$, Every set is OD. then $x_{0} \in O D$.

- Hod is not canonical
- Known large cardinals compatible w/ $V=$ HOD

The HOD dichotomy

Jensen dichotomy.
One of the following holds:
(1) every singular cardinal λ is singular in L and $\lambda^{+L}=\lambda^{+}$
(2) every cardinal is inaccessible in L

HOD dichotomy (Woodin)
For extendible k, either
(1) every singular cardinal regular $\lambda \geq k$, λ is sinsuicu in ressicr $\lambda+2 \mathrm{~A}$ and $\lambda^{\text {th ion }}=\lambda^{+}$
(2) every, cardinal $\lambda=k$ is is measurcible in Nor

More general dichotomy.

- It is strongly compact if any k-additive measure $\mu: \Lambda \longrightarrow\{0,1\}$ on $\Omega \subseteq P(X)$ extends to a aruddifive measure on $P(x)$

$$
\alpha_{n} \in C \sup _{n<\omega} \alpha_{n} \in C
$$

1. $C \subseteq \delta$ is w-club if unbounded \& closed under countable supreme.

- $A \in C_{\delta, \omega}$ if a contains ω-club
- Ne is ω-cub amenable if for all $\delta \in O r d$, $e_{0, \omega} \cap N \in N$.
Theorem. If k is strongly compact and $N F Z F C$
is ω-club amenable, Os d ${ }^{N}=$ Ord either
(1) For all singular $+\lambda \geq \kappa$, λ is singular in N and $\lambda^{+N}=\lambda^{+}$
(2) All suffr large regular cardinals are mile in N.

Embeddings of HOD
key difference between dichotomies:

- no large cardinal uxiorn can refute $V=H O D$
- no structure ferry known (possible) in (2) of HOD dichotomy
HOD conjecture (Woodin). If there is a supercompact, (1) of HOD dichotomy holds.

If negation of HOD conj is
consistent, might be ven strong $\left[\begin{array}{l}\text { large cardinals } \\ \text { inconsistent } N / A C\end{array}\right]$
Suggests: develop structure on side (2) of Hel dichotomy

On embedding from HOD to HOD
Q. (Woodin) if there is an elementary $j: H O D \longrightarrow H O D$, must the HOD conj fail?
Reorem. Suppose there is a strongly compact cardinal and an elementary $j: H O D \rightarrow H O D$, then every suff large regular is cheasurchle in Hos.

- Woodin had shown: if k is extendible $\&$ covering holds for HOD, no $j: H O D-A D O($ crit $) \geq k$
- Simulate by replace $j: H O D \rightarrow H$, $\xrightarrow[7]{ } \rightarrow$ with

Jonsson cardinals and Hor
Definition. λ is definably
ω Jonsson of $\forall f:[\lambda] \stackrel{\omega}{\rightarrow} \lambda \quad f \in O D$ $\exists H \subset \lambda$ set. $\lceil H 1=\lambda$ and H is closed under f.

Proposition TFAE:

- hare is an ese $L \rightarrow L$
- all cardinals λ ? are constructibly Jonson
Theorem (Erdös-Hainal)
No cardinal is w-Jonsson.

Theorem (strong con pact) TFAE:

- HOD conjecture fails
- suff large cardinals are defincibly Jonson
- sufl large regular cardinals are definably w-Jonsson
- proper class regulars

Embeddings nto HOD.
Suppore λ is definibly w-Tonssan. Get $j: N \rightarrow H O D \cap V_{\lambda}$
s.t. j[ordl] is w-cliwb. l.e., j is cofinal and w. continuous: $j\left(\lim _{n \rightarrow \infty} \alpha_{n}\right)=\lim _{n \rightarrow \infty} j\left(\alpha_{n}\right)$

Theorem if A is strongly compact, TFAE
(1) HoD conj fails
(2) For arbitresily large reguler λ, these is a $j: N \rightarrow H O D \cap V_{\lambda}$ that's colinal
(3) For sufl large regular λ, \& ω-centinuous there is a N. w-eub amenable.

Large cardinels beyond choice.
Theorem (Erdios-Hajnal). There are no w-Jonsson cardinds.
Cor (Kuney). There is no etementary embedding eji $V \longrightarrow V_{.}, \lambda>$ witt j)
Proof If $j(\lambda)=\lambda, \lambda$ is ω-Tonsson:
fix $f:[\lambda]^{\omega} \rightarrow \lambda$. Ten $\underline{[j \lambda]}$ is closed under j(f). By elementer.ity jome $H \in$ ㅅ of ondertype λ is closed under f

$$
L(P(\text { ord } \overline{)}) \stackrel{?}{\ddagger} V
$$

Berkeley hypotheses

- e-Berkely hypothesis: $\quad \lambda \pi$ weakly Lowerheimfor all sull large structures $\mu \in \ell$, there is a $j: M \rightarrow M$ Skolem if for all $\eta>\lambda$ and $N \geq V_{\lambda}$, there is $M \in V_{\lambda}, \widehat{a} j: M \rightarrow N$ s.2. $\left(r_{i}+(j)>\eta\right.$.
woodin 1 Usuba: Assume ZF + proper class of weak Loverheim-Sholens
- There there is a class generic model of $Z F C$.
- Forcing preserves HOD-Berkeley hypothesis

The rank Berkeley hypothesis.
Rank Berkeley =

$$
=
$$

$$
=
$$

Theorem $(Z F+D C+R B H)$ Suppose α is an ordinal, λ limit of weak LS cardinals (1) $\Lambda \subseteq P(\alpha)$, λ-additive measure $\mu: \Lambda \rightarrow\{0,1\} w /$
(2) Eurey λ-additive $\mu: P(\alpha) \cap H O D \longrightarrow\{0,1\}$
D. main. $(7 F C)$ if k is extendible, TFAE:
mevern :
(1) HoD conjecture
(2) Every
a-additive $\mu: P(a) \cap H O D \rightarrow\{0,1\}$
bilongs to HOD.
Uniqueness of elementery embedidings.
Thm Suppore $j_{0}, j_{r}: V \rightarrow M$ are elementary. jo 1 HOD $=j_{i} \mid H O D$
Thm If k is extendiple, TFAE:
(1) HOP conjecture
(2) For all inaccessible $\delta \geq x$, all sufllarge α, \& all jo, $j_{1}: V_{\alpha} \rightarrow M$ s.t. $\left.j o(\delta)=j_{1}(\delta) \& \sup _{j} j_{0}(\partial]=\sup j_{1}[0]\right\}$, twon jo \mid HOD $\cap V_{k}=j, 1$ HOD $\cap V_{k}$

