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Abstract

This paper answers a question of Usuba [18], establishing the optimality of the large
cardinal assumption of his remarkable theorem that if there is an extendible cardinal,
there is a minimum inner model from which the universe of sets can be obtained as a
forcing extension.

1 Introduction

This paper studies the relationship between large cardinals and forcing from two perspec-
tives. The first perspective, the classical one initiated by Lévy–Solovay [12], concerns the
question: what impact does forcing have on large cardinals? The second perspective turns
the first on its head: what influence do large cardinals exert on the structure of forcing?
This second perspective can be traced back as far as the Martin-Solovay Σ1

3-absoluteness
theorem [13], but our approach is more closely aligned with Usuba’s [18].

Lévy and Solovay proved that measurable cardinals are neither created nor destroyed
by small forcings: that is, if κ is a cardinal and P is a partial order of cardinality less than
κ, then κ is measurable if and only if κ is measurable in the forcing extension obtained by
adjoining a generic subset of P to the universe of sets. This result has been generalized to
all of the standard large cardinal properties [10, Theorem 21.2]. The interesting question
that remains is the interaction between large cardinals and large forcings; that is, forcings
with no cardinality constraints. Of course, it is easy to destroy a large cardinal by a large
forcing: one can make it countable. A more subtle question is whether large cardinals can
be preserved by forcings of unrestricted cardinality. This turns out to be possible in many
situations, and often such preservation results are important aspects of consistency proofs;
for example, the proof of the consistency of the failure of the singular cardinals hypothesis
requires an analysis of the preservation of measurability under certain large forcings.

The work of Usuba, mentioned above, belongs to the field of set theoretic geology, a
subject introduced by Hamkins and Reitz [14]. Their idea was to study not only the forcing
extensions of the universe of sets, but also the ways in which the universe of sets itself can
be represented as a forcing extension of some inner model. An inner model M is said to
be a ground if there is a partial order P ∈ M and an M -generic filter G ⊆ P such that

∗This material is based on work supported by the National Science Foundation under Grant No. 1902884.
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M [G] = V . Laver and Woodin [11] proved independently that every ground is (uniformly)
definable from parameters over the universe of sets. This renders the existence of nontrivial
grounds a question in first-order set theory. The statement that the universe of sets has no
nontrivial grounds is the Hamkins-Reitz Ground Axiom [14].

On the one hand, the Ground Axiom holds in canonical inner models of set theory such
as L and L[U ], but on the other hand, it is consistent that it fails; indeed, the Ground Axiom
becomes false after one performs any nontrivial forcing. Since large cardinals are preserved
by small forcings, no large cardinal hypothesis can imply the Ground Axiom. Surprisingly,
however, assuming large cardinal hypotheses, Usuba established a bound on the number
of grounds; thus large cardinals imply a weak version of the Ground Axiom, which asserts
not that there are no nontrivial grounds whatsoever but instead that there are not too
many. Specifically, Usuba’s seminal result shows that if κ is an extendible cardinal, there

are at most 22
(κ+)

grounds. Despite the perhaps coarse appearance of this bound (especially
considering that κ itself is already enormous enough), the crucial conclusion is that there is
only a set of grounds, not a proper class.

After proving this theorem, Usuba posed the question: if κ is extendible and M is a
ground, is there a partial order P ∈M of cardinality less than κ and a generic filter G ⊆ P
such that V = M [G]? In this case, M is said to be a κ-ground of V . (Usuba’s proof shows

that there must be such a partial order P with cardinality at most 2(κ
+).) From the more

classical perspective on forcing, the question can be reformulated: if κ is extendible in a
forcing extension W of V , must V be a κ-ground of W?

A negative answer to Usuba’s question would demonstrate that the large cardinal hy-
pothesis of Usuba’s theorem is optimal. To see why, consider the situation where there is
an extendible cardinal κ and a ground M such that for all partial orders P ∈M ∩Vκ and all
M -generic filters G ⊆ P, V ̸= M [G]. Then Vκ is a model of ZFC containing a proper class of
grounds. (This is more fully explained in Corollary 3.2, but it follows from Usuba’s theorem
[18].) Since κ is extendible, Vκ satisfies all large cardinal hypotheses short of extendibility.
It follows that an extendible cardinal is the weakest large cardinal hypothesis that proves
that there is just a set of grounds.

The first result of this paper shows that it is consistent that Usuba’s question has a
positive answer, in that no large forcing preserves an extendible cardinal. This uses a
strengthening of Reitz’s Ground Axiom called the Local Ground Axiom, which states that
the Ground Axiom holds in Vλ whenever λ is a Beth fixed point. Reitz’s proof that one
can class force the Ground Axiom in fact shows that one can class force the Local Ground
Axiom; in particular, the Local Ground Axiom is consistent.

Theorem 2.4. Assume the Local Ground Axiom. Suppose W is a forcing extension of V
and κ is extendible in W . Then there is a partial order P ∈ V of cardinality less than κ and
a V -generic filter G ⊆ P such that W = V [G].

The key consequence of the Local Ground Axiom that is used in this theorem is that
it implies the local definability of the mantle, the inner model formed by intersecting all
grounds of V . Building on this, we connect Usuba’s question to the quantifier complexity
of the mantle:

Theorem 2.5. Suppose κ is extendible. Then the following are equivalent:

(1) The mantle is a κ-ground.

(2) The mantle is ∆2-definable from an ordinal less than κ.
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(3) The mantle is Π2-definable from parameters in Vκ.

The main result of this paper, however, is that it is consistent that the answer to Usuba’s
question is no. This requires a new argument for lifting extendibility to forcing extensions,
and Theorem 2.4 shows that any such argument requires a preliminary class forcing to
ensure that the Local Ground Axiom fails in the mantle.

The solution is related to a question posed by Woodin in the context of Solovay’s Σ2-
potentialism. If a is a set and φ is a Σ2-formula with one free variable, then φ(a) is a potential
formula if for every cardinal κ, there is a forcing extension W such that (Vκ)W = Vκ and
W satisfies φ(a). The Σ2-Potentialist Principle states that every potential formula is true.
Woodin posed the problem: is the Σ2-Potentialist Principle consistent?1 The author and
Eyal Kaplan [6] have recently proved that the answer to Woodin’s question is positive
assuming the consistency of a proper class of supercompact cardinals by combining the
techniques of this paper with ideas from Gitik’s theory of Prikry-type forcings.

Our main result here, which predates Goldberg–Kaplan’s work, hinges on a weaker
principle that we will prove is consistent. If a is a set and φ is a Σ2-formula with one
free variable, then φ(a) is a strongly potential formula if for every cardinal κ, there is a
κ-directed closed forcing extension W such that W satisfies φ(a). We will use the following
Weak Σ2-Potentialist Principle: every strongly potential formula is true.

The Weak Σ2-Potentialist Principle implies that the Ground Axiom holds but the Local
Ground Axiom fails. Using this principle, we get a negative answer to Usuba’s question:

Theorem 3.1. Assume the Weak Σ2-Potentialist Principle. Then for any extendible car-
dinal κ, there is a forcing extension W such that κ is extendible in W and W ̸= V [X] for
any X ⊆ V in W with |X| < κ.

Finally, we prove that the Weak Σ2-Potentialist Principle is consistent:

Theorem 3.7. There is a class forcing extension in which the Weak Σ2-Potentialist Prin-
ciple is true.

This shows that the Weak Σ2-Potentialist Principle is consistent relative to ZFC, but
for our purposes it is important to show that it is consistent with extendible cardinals.

Proposition 3.9. The forcing of Theorem 3.7 preserves extendible cardinals.

1.1 Preliminaries

A natural question in the theory of forcing is whether the universe of sets V is always a
definable subclass of its generic extensions. Of course, one must allow parameters, since it
is consistent that there is a real number that is ordinal definable in V but not in one of
its generic extensions; see [21, Example 3.1], which is due to McAloon. Moreover there are
various counterexamples in class forcing [7], so it makes sense to restrict attention to set
forcing.

The following theorem, proved independently by Laver and Woodin [11, 19] settles the
definability question positively:

Theorem 1.1 (Ground Model Definability Theorem). If P is a partial order of cardinality
κ and G ⊆ P is V -generic, then V is ∆2-definable over V [G] from P (κ) ∩ V .

1In fact, he asked about the parameter-free version of the principle.
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Theorem 1.1 is instrumental in ensuring that the statements of the theorems to follow
are in fact expressible in first-order set theory.

The now-standard proof of Theorem 1.1, which is due to Hamkins [4], proceeds by
establishing a more general statement. If M ⊆ N are models of ZFC, then M has the
κ-cover property in N if every subset of M of cardinality less than κ in N is included in a
set in M of cardinality less than κ in M (or equivalently in N). If X ∈M and A ⊆ X, then
A is κ-approximated by M if for all σ ⊆ X with σ ∈ M and |σ|M < κ, A ∩ σ ∈ M . We say
M has the κ-approximation property in N if every A ∈ N that is κ-approximated by M is
an element of M .

Theorem 1.2 (Hamkins). If M is an inner model that has the δ-approximation and cover
properties in N , then M is ∆2-definable over N from H(δ+) ∩M .

If P is a partial order of cardinality κ and G ⊆ P is V -generic, then V has the κ+-cover
and approximation properties in V [G] and H(κ++)∩V is definable in V [G] from P (κ)∩V ,
so Theorem 1.1 follows from Theorem 1.2 in the case δ = κ+.2

The following theorem of Usuba [17] proves the (Downwards Directedness of Grounds)
DDG conjecture of Fuchs-Hamkins-Reitz [4], establishing that the grounds have a more
intricate structure than one might at first expect:

Theorem 1.3 (Downwards Directedness of Grounds). If ⟨Mi⟩i∈I is a set of grounds, then
there is a ground N contained in

⋂
i∈I Mi.

We will actually make use of a sharper version of this theorem that follows from Usuba’s
proof:

Theorem 1.4 (Usuba). If κ is a cardinal and ⟨Mi : i < κ⟩ is a family of κ-cc grounds, then⋂
i<κMi is a κ+-cc ground.

The mantle, denoted by M, is the intersection of all the grounds. The DDG theorem has
the following consequence for the mantle:

Corollary 1.5 (Usuba). The mantle is an inner model of ZFC.

The mantle is the largest definable inner model of ZFC that is invariant under forcing.
There is little one can prove about the structure of this model, however:

Theorem 1.6 (Fuchs-Hamkins-Reitz [4]). Every model of ZFC is the mantle of another
model of ZFC.

Corollary 1.7. For any sentence φ in the language of set theory, ZFC proves that M ⊨ φ
if and only if ZFC proves φ.

Under large cardinal axioms, Usuba showed that more can be said about the structure
of the mantle. We will actually need a stronger form of Usuba’s theorem that also appears
in [18]. If κ is a cardinal, then an inner model M is a κ-ground if there is a partial order
P ∈M of cardinality less than κ such that V = M [G] for some M -generic filter G ⊆ P. The
κ-mantle, denoted by Mκ, is the intersection of all κ-grounds.

2To define H(κ++)∩V from P (κ)∩V in V [G], first note that H(κ+)V is definable from P (κ)∩V (since
the former is in fact interpretable in the latter). Then we use that H(κ+)V = H(κ+)∩V since V and V [G]
agree about κ+. One can now define P (κ+)∩V from H(κ+)∩V in V [G], because by the κ+-approximation
property, a set A ∈ P (κ+) ∩ V [G] belongs to P (κ+) ∩ V if and only if A ∩ α ∈ H(κ+) ∩ V for all α < κ+.
Finally, one can define H(κ++) ∩ V from P (κ+) ∩ V as before.
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Theorem 1.8 (Usuba [18]). If there is an extendible cardinal, then the mantle is a ground.
In fact, the mantle is equal to the intersection of all κ-grounds.

Corollary 1.9. If there is an extendible cardinal, then there is a set of grounds. More
precisely, there is a Σ2-formula φ with two free variables and a set I such that for any
ground M , there is some i ∈ I such that M = {x : φ(i, x)}.

Proof. Applying Theorem 1.8, let B be a complete Boolean algebra in the mantle such that
for some M-generic G ⊆ B, V = M[G]. By the intermediate model theorem ([10, Lemma
15.43]), every ground N of V is of the form V [G∩A] where A ⊆ B is a complete subalgebra
of B in M. This easily yields the conclusion of the corollary.

Corollary 1.10. If there is an extendible cardinal, then the mantle satisfies the Ground
Axiom.

2 The Local Ground Axiom

2.1 Extendibility over the mantle

Recall Usuba’s question: if κ is an extendible in an outer model W of V , must V be a
κ-ground of W? In this section, we show that it is consistent that the answer to Usuba’s
question is yes, and furthermore that the answer is yes in every set forcing extension. This
is straightforward, but the proof suggests the route to proving the much more interesting
negative consistency result by imposing two fundamental constraints on the structure of a
counterexample (Section 2.2).

If M is an inner model of ZFC, a cardinal κ is extendible over M if for all ordinals
λ ≥ κ, for some λ′ > λ and some elementary embedding j : Vλ+1 → Vλ′+1 such that
crit(j) = κ and j(κ) > λ, j ↾ VM

λ belongs to M , and j(VM
λ ) = VM

λ′ . This seems to be a
natural generalization to extendibility of Woodin’s concept of a weak extender model for
supercompactness [20]. A ground may be a weak extender model for the supercompactness
of κ without being a κ-ground, but the following proposition, based on Usuba’s original
proof of Theorem 1.8 under the hypothesis of a hyperhuge cardinal [17], shows that the
same cannot be said for this generalization.

Proposition 2.1. An extendible cardinal κ is extendible over a ground M if and only if M
is a κ-ground.

Proof. The reverse direction is clear: if κ is extendible and M is a κ-ground, then κ is
extendible over M by a generalization of the Lévy–Solovay theorem; for example, this follows
from Hamkins’s theorem that extensions with the approximation and cover properties have
no new large cardinals [9].

Assume instead that κ is extendible over a ground M , and we will show that M is a
κ-ground. Let Q ∈M be a partial order carrying a M -generic filter H such that V = M [H].

Suppose λ is a Beth fixed point larger than the rank of Q. Let j : Vλ+1 → Vλ′+1 be
an elementary embedding such that crit(j) = κ, j(κ) > λ, j ↾ VM

λ belongs to M , and
j(VM

λ ) = VM
λ′ . Since VM

λ′ [H] = Vλ′ , Vλ′ satisfies that there is a partial order P ∈ VM
j(κ)

carrying a VM
λ′ -generic filter G such that VM

λ′ [G] = Vλ′ . Therefore Vλ satisfies that there is
a partial order P ∈ VM

κ carrying a VM
λ -generic filter G such that VM

λ [G] = Vλ.
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By the pigeonhole principle, there is a partial order P ∈ VM
κ carrying a filter G such

that for a proper class of Beth fixed points λ, G is VM
λ -generic and Vλ = VM

λ [G]. It follows
that G is M -generic and V = M [G], which proves the proposition.

Corollary 2.2. If κ is the least extendible cardinal, the mantle M is a κ-ground if and only
if κ is extendible over M.

The Local Ground Axiom states that the Ground Axiom holds in Vλ whenever λ is a
Beth fixed point.

Proposition 2.3. If the mantle satisfies the Local Ground Axiom and κ is an extendible
cardinal, then κ is extendible over the mantle.

Proof. We claim that for all Beth fixed points λ > κ, V M
λ = MVλ . By Usuba’s theorem

(Theorem 1.8), MVλ ⊆ M; this is because the mantle is the intersection of all κ-grounds,
and MVλ is also contained in the intersection of all κ-grounds since λ ≥ κ.

Conversely, if P is a ground of Vλ, then since V M
λ and P are grounds of Vλ, they have a

common ground N , and since V M
λ satisfies the Ground Axiom, N = V M

λ , and so V M
λ ⊆ P .

Now suppose λ > κ is a Beth fixed point, and let j : Vλ+1 → Vλ′+1 be an elementary
embedding such that crit(j) = κ and j(κ) > λ. We must show that j ↾ V M

λ belongs to
M and j(V M

λ ) = V M
λ′ . That j ↾ V M

λ belongs to M is follows from Usuba’s theorem and
the Lévy–Solovay absoluteness of extendibility to κ-grounds. That is, by the Lévy–Solovay
absoluteness of extendibility to κ-grounds (which again follows from Hamkins’s theorem
[9]), j ↾ V M

λ belongs to every κ-ground. Since the mantle is the intersection of all κ-grounds,
j ↾ V M

λ belongs to M.
On the other hand, clearly λ′ is a Beth fixed point, and so

j(V M
λ ) = j(MVλ) = MVλ′ = V M

λ′

Theorem 2.4. Assume the mantle satisfies the Local Ground Axiom. Suppose W is a
forcing extension of V and κ is extendible in W . Then there is a partial order P ∈ V of
cardinality less than κ and a V -generic filter G ⊆ P such that W = V [G].

Proof. Applying Proposition 2.3 in W , κ is extendible over the mantle. Therefore by Corol-
lary 2.2, the mantle is a κ-ground of W . Since M ⊆ V ⊆W , the intermediate model theorem
[10, Lemma 15.43] implies that V is a κ-ground of W .

We now consider the connection between Usuba’s theorem and the definability of the
mantle. The mantle is Π3-definable: x ∈ M if and only if there are arbitrarily large Beth
fixed points λ such that x ∈ MVλ . If κ is extendible, then Usuba’s theorem proves that the
mantle is ∆2-definable using κ as a parameter, since it is equal to the κ-mantle. We now
show that if the mantle is Π2-definable from anything smaller than κ, then the mantle is a
ground.

Theorem 2.5. Suppose κ is extendible. Then the following are equivalent:

(1) The mantle is a κ-ground.

(2) The mantle is ∆2-definable from an ordinal less than κ.

(3) The mantle is Π2-definable from parameters in Vκ.
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Proof. To see that (1) implies (2), note that if the mantle is a κ-ground, then it is equal to
the γ-mantle for some γ < κ. The γ-mantle is ∆2-definable from γ by the ground model
definability theorem [11]. The implication from (2) to (3) is trivial.

Finally, the proof that (3) implies (1) is a generalization of the proof of Theorem 2.4.
Assume the mantle is Π2-definable from some p ∈ Vκ. We will show that κ is extendible
over the mantle and then appeal to Corollary 2.2 to conclude that the mantle is a κ-ground.

Fix a Π2 formula φ such that

M = {a ∈ V : φ(a, p)}

By the reflection theorem, there is a proper class of Beth fixed points λ > κ such that

Vλ ∩M = MVλ = {a ∈ Vλ : Vλ ⊨ φ(a, p)}

Let j : Vλ → Vλ′ be an elementary embedding such that crit(j) = κ and j(κ) > λ′. Then
j ↾ (Vλ ∩ M) ∈ M since M = Mκ. (The details appear in the second-to-last paragraph of
Proposition 2.3.)

By elementarity,

MVλ′ = {a ∈ Vλ′ : Vλ′ ⊨ φ(a, p)} ⊇ {a ∈ Vλ′ : φ(a, p)} = Vλ′ ∩M

since Π2 formulas are downwards absolute to any Beth fixed point level of the cumulative
hierarchy. Since j(Vλ ∩M) ∈ M, we must have MVλ′ ⊆ Vλ′ ∩M, and hence equality holds.
Therefore j witnesses that κ is λ-extendible over M.

It is consistent with ZFC that the mantle is not a ground and yet is Σ1-definable, so
the previous theorem requires a large cardinal hypothesis. (For example, if V is a proper
class Easton product forcing extension of L, then M = L, and L is Σ1-definable.) In
Corollary 3.10, we will show that it is consistent with an extendible cardinal that the mantle
is Σ2-definable but not a κ-ground, where κ is the least extendible; in fact, the model from
Theorem 3.1 (our a negative answer to Usuba’s question) will satisfy M = HOD. So the
definability hypotheses of Theorem 2.5 cannot be weakened.

Finally we note the connection between the definability of the mantle and the Local
Ground Axiom. If the mantle satisfies the Local Ground Axiom, then the mantle is ∆2-
definable since it is equal to the union over all Beth fixed points λ of the mantle of Vλ.
Conversely, if the mantle is ∆2-definable and satisfies the Ground Axiom, then a version of
the Local Ground Axiom must hold for the mantle. Namely, there is a ∆2-definable (over
V ) proper class of cardinals λ such that Vλ ∩ M satisfies the Ground Axiom. The Local
Ground Axiom is just the special case in which this class is the class of Beth fixed points.

2.2 Two constraints

Theorem 2.4 highlights two key constraints that guide the way to a counterexample to
Usuba’s question. The first constraint is that by Theorem 2.4, it is consistent that Usuba’s
question has a positive answer in all forcing extensions. This suggests that to find a coun-
terexample, one should start with a preparatory class forcing.

The second constraint is more subtle. By Corollary 2.2, if one is to preserve an extendible
cardinal by a set forcing that is not a small forcing, this preservation cannot be proved using
the standard lifting arguments for extendible cardinals. The reason is that if a cardinal κ

7



is shown to be extendible in a forcing extension W of V using these lifting arguments, then
W will satisfy that κ is extendible over V , and hence V is a κ-ground of W .

Since it is hard to see how to preserve extendible cardinals without a lifting argument,
answering Usuba’s question seems to require inventing a novel forcing notion along with an
entirely new preservation argument for extendible cardinals. The solution instead is simply
to reformulate extendibility in terms of normal fine ultrafilters (Lemma 3.4) and then to
employ the standard lifting arguments from the theory of supercompactness to show that,
thanks to our preliminary preparatory forcing, this reformulation is preserved by a forcing
notion that is about as far from novel as one can get: an Easton product of Cohen forcings.

3 The Weak Σ2-Potentialist Principle

3.1 The main theorem

In this section, we show that assuming the Weak Σ2-Potentialist Principle, the answer to
Usuba’s question is no.

Recall from the introduction that if a is a set and φ is a Σ2-formula with one free variable,
then φ(a) is a strongly potential formula if for every cardinal κ, there is a κ-directed closed
forcing extension W such that W satisfies φ(a). The Weak Σ2-Potentialist Principle states
that every strongly potential formula is true.

Theorem 3.1. Assume the Weak Σ2-Potentialist Principle. Then for any extendible car-
dinal κ, there is a forcing extension W such that κ is extendible in W and W ̸= V [X] for
any X ⊆ V in W with |X| < κ.

This theorem shows that the large cardinal hypothesis of Usuba’s theorem ([17] or The-
orem 1.8 above) is optimal in the following sense.

Corollary 3.2. If ZFC is consistent with the existence of an extendible cardinal, it is
consistent with the existence of an extendible cardinal κ such the conclusion of Usuba’s
theorem fails in Vκ.

If κ is extendible, then Vκ should satisfy every large cardinal hypothesis short of ex-
tendibility. For example, Vκ satisfies that there is a proper class of supercompact cardinals,
a proper class of supercompact limits of supercompact cardinals, a proper class of super-
compact cardinals that are ω-extendible, and so on. Therefore no large cardinal hypothesis
short of extendibility implies the conclusion of Usuba’s theorem.3

The Weak Σ2-Potentialist Principle turns out to be related to an indestructibility hy-
pothesis that is slightly easier to use. A cardinal λ is Σn-correct if Vλ is a Σn-elementary
substructure of V . A cardinal λ is indestructibly Σn-correct if Vλ is a Σn-elementary sub-
structure of V in any λ-directed closed forcing extension.

Proposition 3.3. The following are equivalent:

(1) The Weak Σ2-Potentialist Principle holds.

(2) There is a proper class of indestructibly Σ2-correct cardinals.

3Usuba observed that his theorem does not follow from a supercompact cardinal; see the remarks following
the statement of [17, Theorem 1.4]. This was extended to a proper class of supercompact cardinals by [3,
Theorem 3.8]. Corollary 3.2 is in a sense the ultimate extension of these results.
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Proof. That (2) implies (1) is immediate. For the other direction, assume the Weak Σ2-
Potentialist Principle and let λ be a Σ3-correct cardinal. We claim that λ is indestructibly
Σ2-correct.

To see this, fix a ∈ Vλ, and suppose that in some λ-directed closed forcing extension,
the Σ2-formula φ(a) is true. We will show that φ(a) holds in Vλ. Then in V , for all γ < λ,
there is a γ-directed closed forcing extension in which φ(a) holds, and since Vλ is Σ2-correct,
Vλ satisfies that there is a γ-directed closed forcing extension in which φ(a) holds. Now Vλ
satisfies that for all cardinals γ, there is a γ-directed closed forcing extension in which φ(a)
holds, and so since Vλ is Σ3-correct, this is true; that is, V satisfies that for all cardinals
γ, there is a γ-directed closed forcing extension in which φ(a) holds. Applying the Weak
Σ2-Potentialist Principle, it follows that φ(a) is true in V . Now since Vλ is Σ2-correct, φ(a)
is true in Vλ, as desired.

Theorem 3.7 shows that the existence of a proper class of indestructibly Σ2-correct
cardinals, and hence the hypothesis of Theorem 3.1, can be class forced over any model of
ZFC while preserving all extendible cardinals. Before turning to this, however, let us prove
Theorem 3.1.

The key to the proof of Theorem 3.1 is the following characterization of extendibility,
observed independently and earlier by Bagaria [1]. For any cardinal λ, let Tκ,λ (resp. T ∗

κ,λ)
denote the set of σ ∈ Pκ(λ) such that the ordertype of σ is Σ2-correct (resp. indestructibly
Σ2-correct) in Vκ. In most cases of interest, κ itself will be Σ2-correct, in which case a
cardinal is Σ2-correct in Vκ if and only if it is truly Σ2-correct. Similarly, if κ is Σ2-correct,
then a cardinal is indestructibly Σ2-correct in Vκ if and only if it is truly indestructibly
Σ2-correct.

Lemma 3.4. A cardinal κ is extendible if and only if for arbitrarily large cardinals λ, there
is a normal fine κ-complete ultrafilter on Tκ,λ.

To keep the paper self-contained, we recall the definition of a normal fine ultrafilter. A
family of sets C is a cover of a set X if

⋃
A∈C A = X. An ultrafilter U on a cover C of X is

fine if every set in U covers X and normal if every choice function on C is constant on a set
in U .4 We will mostly deal with the elementary embedding characterization of normality
and fineness [5, Lemma 4.4.9]:

Lemma 3.5. An ultrafilter U on a cover C of X is normal and fine if and only if there is
an elementary embedding j : V →M such that U is the ultrafilter on C derived from j using
j[X], or in other words, U = {A ⊆ C : j[X] ∈ j(A)}.

Proof of Lemma 3.4. For the forwards direction, suppose λ is Σ2-correct and there is an
elementary embedding j : Vλ+1 → Vλ′+1 with crit(j) = κ and j(κ) > λ. We will show that
there is a normal fine κ-complete ultrafilter on Tκ,λ. Since λ is Σ2-correct, λ is Σ2-correct
in Vj(κ), and so j[λ] ∈ Tj(κ),j(λ). It follows that there is a normal fine κ-complete ultrafilter
on Tκ,λ; namely, the ultrafilter derived from j using j[λ].

Now we show that if there is a normal fine κ-complete ultrafilter U on Tκ,λ, then κ is
γ-extendible for all γ < λ. In particular, this implies the reverse direction of the lemma.
Let j : V →M be the ultrapower embedding associated to U .

4Note that if κ is a limit ordinal, then κ is a cover of itself; a fine ultrafilter on κ is just an ultrafilter that
does not concentrate on a bounded subset of κ; and a normal fine ultrafilter on κ is just a normal ultrafilter
on κ in the usual sense. Similarly, a normal fine κ-complete ultrafilter on Pκ(λ) is a supercompactness
measure, and a normal fine κ-complete ultrafilter on [λ]κ is a huge measure.
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We first show that λ is Σ2-correct in VM
j(λ). By  Loś’s theorem, since Tκ,λ ∈ U and

[id]U = j[λ], clearly λ = ot(j[λ]) is Σ2-correct in VM
j(κ). But κ is Σ2-correct in Vλ since U

witnesses that κ is λ-supercompact. Therefore by the elementarity of j, j(κ) is Σ2-correct
in VM

j(λ). Now Vλ ⪯Σ2
VM
j(κ) ⪯Σ2

VM
j(λ), which implies that λ is Σ2-correct in VM

j(λ).

For all γ < λ, j ↾ Vγ belongs to VM
j(λ), and in VM

j(λ), j ↾ Vγ is an elementary embedding

from Vγ to Vj(γ). Therefore VM
j(λ) satisfies that κ is γ-extendible for all γ < λ. Since λ is Σ2-

correct in VM
j(λ), Vλ satisfies that κ is γ-extendible for all γ < λ, and since the γ-extendibility

of κ is expressed by a Σ2-formula, this is upwards absolute to V . Hence κ is is γ-extendible
for all γ < λ, as claimed.

The proof of Lemma 3.4 yields:

Lemma 3.6. If κ is extendible and λ is indestructibly Σ2-correct, then there is a normal
fine κ-complete ultrafilter on T ∗

κ,λ.

Given this, we turn to the proof of Theorem 3.1

Proof of Theorem 3.1. We begin by defining a partial function f : κ→ κ with the following
Laver-like property: for any indestructibly Σ2-correct cardinal λ ≥ κ, there is a normal
fine κ-complete ultrafilter U on T ∗

κ,λ such that jU (f)(κ) = λ. The function f is defined
by recursion: if f ↾ α has been defined, let f(α) be the least indestructibly Σ2-correct
cardinal γ ≥ α such that there is no normal fine α-complete ultrafilter W on T ∗

α,λ such that
jW(f ↾ α)(α) = γ. If no such γ exists, then f(α) is left undefined. Note that if f is defined
at α, then f(α) < κ because κ is Σ3-correct.

Suppose towards a contradiction that f is not as desired, and let λ be the least indestruc-
tibly Σ2-correct cardinal above κ such that there is no normal fine κ-complete ultrafilter
W on T ∗

κ,λ such that jW(f)(κ) = λ. By Lemma 3.6, let U be any normal fine κ-complete
ultrafilter on T ∗

κ,λ, and we will show that jU (f)(κ) = λ, contrary to the definition of λ.
Let j : V →M be the ultrapower embedding associated to U , and note that crit(j) = κ,

j(κ) > λ, Mλ ⊆M , and λ is indestructibly Σ2-correct in M . (To see that λ is indestructibly
Σ2-correct in M , note that λ is indestructibly Σ2-correct in VM

j(κ) by  Loś’s theorem and

VM
j(κ) ⪯Σ3

M by elementarity and the Σ3-correctness of κ. Indestructible Σ2-correctness is

a Π2 property, and therefore λ is indestructibly Σ2-correct in M .)
Since Vλ+1 ⊆M , λ is the least indestructibly Σ2-correct cardinal of M such that λ ≥ κ

and there is no normal fine κ-complete ultrafilter W on T ∗
κ,λ such that jW(f)(κ) = λ. Since

f is a function from κ to κ and κ is the critical point of j, j(f) ↾ κ = f . Therefore by
elementarity and the definition of f , j(f)(κ) is the least indestructibly Σ2-correct cardinal
γ of M such that γ ≥ κ and there is no normal fine κ-complete ultrafilter W on T ∗

κ,λ such
that jW(f)(κ) = γ; in other words, j(f)(κ) = λ. Thus the ultrafilter U contradicts the
definition of λ.

For α < κ, define an increasing continuous sequence of ordinals γα by setting γ0 = 0 and
γα+1 = f(γα)+. For η0 ≤ η1 ≤ κ, let

Pη0,η1
=

∏
η0≤α<η1

Add(γα+1, 1)

be the Easton support product. Let G ⊆ P0,κ be a V -generic filter, and note that for each
η0 ≤ η1 ≤ κ,

Gη0,η1
= {p ↾ [η0, η1) : p ∈ G}
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is a V -generic filter on Pη0,η1 . By Easton’s Lemma [10, Lemma 15.19], for any X ⊆ V in
V [G] with |X| < κ, X ∈ V [G0,η] where η < κ is least such that γη+1 > |X|. Therefore
V [X] ̸= V [G].

The result is proved by taking W = V [G] as soon as we show that κ is extendible in
V [G]. To prove this, we will verify the criterion of Lemma 3.4.

Note that the class of indestructibly Σ2-correct cardinals is closed, and by our hypothesis
it is unbounded (Proposition 3.3). Therefore there is a proper class of indestructibly Σ2-
correct singular cardinals λ > κ. Such a cardinal λ has the property that 2λ = λ+ by
Solovay’s theorem [15] that the singular cardinals hypothesis holds above a supercompact
cardinal. Suppose λ > κ is an indestructibly Σ2-correct cardinal such that 2λ = λ+. We
claim that V [G] satisfies that there is a normal fine κ-complete ultrafilter on (Tκ,λ)V [G].

Working in V , let U be a κ-complete normal fine ultrafilter on T ∗
κ,λ such that jU (f)(κ) =

λ. Let j : V →M be the ultrapower embedding, so j = jU .
The forcing j(P0,κ) is isomorphic to the product P0,κ × (Pκ,j(κ))

M . Note that Q =
(Pκ,j(κ))

M is λ+-directed closed in M since

M ⊨ Q =
∏

κ≤α<j(κ)

Add(γα+1, 1)

and γα > λ for κ ≤ α < j(κ). (Here we extend the sequence γα to values of α greater than
or equal to κ by setting γα = j(γ⃗)α where γ⃗ = ⟨γα⟩α<κ.)

Since M is closed under λ-sequences, Q really is λ+-directed closed. In addition,
|PM (Q)|M ≤ j(2κ) < j(λ) < (2λ)+ = λ++. The final bound follows from the fact that
2λ = λ+. Therefore in V , |PM (Q)| ≤ λ+ and Q is λ+-closed, and so one can build an
M -generic filter H ⊆ Q with H ∈ V .

The closure of Q implies that M [H] contains no new dense subsets of P0,κ, and so G is
an M [H]-generic filter on P0,κ. By standard results on mutual genericity, this means that
G×H is an M -generic filter on P0,κ ×Q. The cardinal λ is Σ2-correct in M [H] since λ is
indestructibly Σ2-correct in M . (Small forcing preserves Σ2-correct cardinals by the usual
Lévy–Solovay argument.) Since G is M [H]-generic for a forcing in (Vλ)M [H], λ is Σ2-correct
in M [H ×G].

Finally, identifying j(P0,κ) with P0,κ ×Q in the natural way, j[G] = G× {1} ⊆ G×H,
and so the embedding j : V → M lifts uniquely to an elementary embedding j∗ : V [G] →
M [G×H] such that j(G) = G×H. Since λ is Σ2-correct in M [G×H], the set j[λ] belongs
to Tj(κ),j(λ) as computed in M [G×H]. As a consequence, working in V [G], the ultrafilter

D = {A ⊆ Tκ,λ : j[λ] ∈ j(A)}

derived from j using j[λ] is a normal fine κ-complete ultrafilter on Tκ,λ.

3.2 Forcing the Weak Σ2-Potentialist Principle

In this section, we show that the hypotheses of Theorem 3.1 are consistent relative to an
extendible cardinal.

Theorem 3.7. There is a class forcing Q such that the Weak Σ2-Potentialist Principle
holds in V Q.

The idea of the proof is to build an iterated forcing that makes each strongly potential
formula true one by one, in such a way that once a formula is made true, it remains true
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in the final extension. The only subtlety is that it is not clear that the strongly potential
formulas of the final extension are strongly potential in the intermediate stages, so we will
instead proceed by forcing formulas that are potential in a more local sense.

Turning to the details, we define an iterated forcing ⟨Qα, Ṗα : α ∈ Ord⟩ by recursion as
follows. The forcing will be an Easton support iteration, so all that must be specified is Q0

and the forcing Ṗα to be used at stage α. In order to use Hamkins’s gap forcing theorem [8]
later on (Theorem 3.8), we let Q0 be the Cohen forcing, Add(ω, 1). Now suppose Qα has
been defined. Let Gα ⊆ Qα be V -generic. Working in V [Gα], we will define a forcing Pα

for which Ṗα will be the canonical Qα-name.
Let γ = |Qα|+. For each y ∈ H(γ)V [Gα] and each Σ2-formula φ, say that φ(y) is an

α-potential formula if in V [Gα], there is a γ-directed closed partial order that forces φ(y).
For each α-potential formula φ(y) and each Beth fixed point λ > γ, let Sφ,y,λ be the set of
partial orders P in V [Gα]λ such that the following hold in V [Gα]:

• P is a γ-directed closed partial order.

• If H ⊆ P is V [Gα]-generic, then φ(y) is true in V [Gα][H]λ.

Let Sφ,y = Sφ,y,λ for the least λ such that Sφ,y,λ ̸= ∅. Let Pα be the lottery sum of all
forcings P such that P ∈ Sφ,y for some α-potential formula.

Let Q denote the class direct limit of the forcings Qα, and let G be a V -generic filter
on Q. Let Gα be the restriction of G to Qα. (The class forcing Q preserves ZFC for fairly
standard reasons: for every cardinal λ, Q is isomorphic to the two-step iteration Qλ ∗ Q̇λ,∞
where Qλ is a set forcing and Q̇λ,∞ is λ-closed. This ensures that the powerset of λ exists
in V [G] and there is no unbounded function from λ to the ordinals definable over V [G].)
Let Pα = (Ṗα)Gα , and let Hα be the V [Gα]-generic filter on Pα induced by G.

Proof of Theorem 3.7. Assume towards a contradiction that in V [G], there is a strongly
potential Σ2-formula φ(y) that is false.

Suppose α is an ordinal such that y ∈ H(γ)V [G] where γ = |Qα|+. We claim that φ(y)
is an α-potential formula, meaning that there is a γ-directed closed partial order in V [Gα]
that forces φ(y). Since φ(y) is strongly potential in V [G], there is a γ-directed closed partial
order S in V [G] such that S forces φ(y). Let α′ be large enough that S ∈ V [Gα′ ] and S forces
φ(y) in V [Gα′ ]. Let Qα,α′ ∈ V [Gα] denote the factor forcing from V [Gα] to V [Gα′ ], so that
G induces a V [Gα] generic filter Gα,α′ such that V [Gα′ ] = V [Gα][Gα,α′ ]. Then Qα,α′ is

γ-directed closed in V [Gα]. Let Ṡ be a Qα,α′ -name for S in V [Gα]; so ṠGα,α′ = S and Qα,α′

forces Ṡ to be γ-closed. Then Qα,α′ ∗ Ṡ is a γ-directed closed forcing in V [Gα] that forces
φ(y), so φ(y) is an α-potential formula.

Fix an ordinal α large enough that y ∈ H(γ)V [G] where γ = |Qα|+. Note that y ∈ V [Gα]
since V [Gα]γ ∩ V [G] ⊆ V [Gα]. Let ẏ be a Qα-name such that (ẏ)Gα

= y. Let p ∈ G be a
condition forcing that φ(ẏ) is strongly potential (identifying ẏ with a Q-name in the natural
way). We claim that the set of conditions in Q forcing φ(ẏ) is dense below p. Let q ≤ p be
any condition. Let β ≥ α be large enough that q ∈ Qβ . As a condition in Qβ , q forces that
φ(ẏ) is β-potential by the previous paragraph. Let γ′ = |Qβ+1|+. Since q forces that φ(ẏ) is
β-potential, there is a condition r ∈ Qβ+1 extending q such that for some Beth fixed point

λ < γ′, r forces that V
Qβ+1

λ satisfies φ(ẏ). Since V Qβ+1 and V Q have the same γ′-sequences,

when viewed as a condition in Q, r still forces φ(ẏ) to hold in V Q
λ , and so r is a condition

in Q forcing φ(ẏ).
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Since the set of conditions in Q forcing φ(ẏ) is dense below p, there is some q ∈ G forcing
φ(ẏ). Therefore V [G] satisfies φ(y), contrary to our assumption.

Theorem 3.8. For all ordinals λ, the following are equivalent:

(1) λ is Σ2-correct in V .

(2) λ is indestructibly Σ2-correct in V [Gλ].

(3) λ is indestructibly Σ2-correct in V [Gα] for all α ≥ λ.

(4) λ is indestructibly Σ2-correct in V [G].

(5) λ is Σ2-correct in V [G].

Proof. The key observation is that if λ is a Σ2-correct cardinal, then ⟨Qα, Ṗα : α < λ⟩
is contained in Vλ. This is because Ṗα is Σ2-definable using H(γ) as a parameter, where
γ = |Qα|+.

We first show that (1) implies (2). Fix a set y ∈ V [Gλ]λ and a Σ2-formula φ such that
φ(y) can be forced by a λ-directed closed forcing in V [Gλ]. An argument similar to the
proof of Theorem 3.7 shows that φ(y) is α-potential for all sufficiently large α < λ, and
that the set of conditions in Qλ forcing φ(y) is dense below any condition that forces the
existence of a λ-directed closed partial order S such that S forces φ(y). It follows that φ(y)
is true in V [Gλ].

To see that (2) implies (3), note that an indestructibly Σ2-correct cardinal λ remains
indestructibly Σ2-correct in any λ-directed closed set forcing extension.

Now assume (3), and let us show (4). The issue is that while V [G] is a λ-directed closed
forcing extension of V [Gλ], it is not a set forcing extension. But suppose that y ∈ V [G]λ and
in V [G], φ(y) holds in a λ-directed closed forcing extension. Let η be a Beth fixed point of
V [G] that is large enough that V [G]η satisfies that φ(y) holds in a λ-directed closed forcing
extension. Let α be large enough that V [Gα]η = V [G]η. Then φ(y) holds in a λ-directed
closed set forcing extension of V [Gα]η, and hence in a λ-directed closed set forcing extension
of V [Gα]. Since λ is indestructibly Σ2-correct in V [Gα], φ(y) holds in V [Gα]λ = V [G]λ.
This verifies that λ is indestructibly Σ2-correct in V [G].

(4) trivially implies (5). The proof that (5) implies (1) uses Hamkins’s gap forcing
theorem [8]. This theorem implies that V has the ω1-approximation and cover properties
in V [G]. (The reason is that the forcing factors as an atomless countable forcing (namely,
Cohen forcing) followed by a countably strategically closed forcing. The gap forcing theorem
implies that any forcing of this form has the ω1-approximation and cover properties.)

Now assuming (5), λ > ω1 and so V is ∆2-definable over V [G] from a parameter p ∈ Vλ.
This is because of the generalization of the ground model definability theorem to inner
models with the approximation and cover properties (Theorem 1.2).

Let ψ0 and ψ1 be Σ2 and Π2-formulas respectively defining V from p in V [G]. Suppose
that y ∈ Vλ and φ is a Σ2-formula such that there is some α such that Vα ⊨ φ(y). Note that
for some Beth fixed point γ > α, there is a transitive set N ∈ V [G]γ such that for i = 0, 1,

N = {x ∈ V [G]α : V [G]γ ⊨ ψi(x, p)}

and N ⊨ φ(y). (Choose any sufficiently large Beth fixed point γ and let N = Vα.) The
statement “there is some level of the cumulative hierarchy containing a transitive set N
defined by ψ0 and ψ1 from p and satisfying φ(y)” is Σ2-expressible in terms of y and p.
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Therefore this statement reflects into V [G]λ. This implies that for some ᾱ < γ̄ < λ, there
is a transitive set N̄ such that y ∈ N̄ ,

N̄ = {x ∈ V [G]ᾱ : V [G]γ̄ ⊨ ψi(x, p)}

and N̄ ⊨ φ(y). It follows that N̄ = Vᾱ, and hence Vᾱ ⊨ φ(y). This proves that λ is
Σ2-reflecting in V .

The proofs of all of the previous theorems of this section can be carried out if we weaken
directed closure everywhere to strategic closure. This yields a variant of the Σ2-Potentialist
Principle for strategically potential formulas, which are Σ2-formulas (with parameters) that
can be forced by arbitrarily strategically closed forcings. The restriction to directed closed
forcing is necessary in the master condition arguments used to establish the preservation of
large cardinals under the forcing Q.

Proposition 3.9. The forcing Q preserves extendible cardinals.

Proof. The standard preservation arguments for extendible cardinals under Easton support
iterations of increasingly directed closed forcings can be used to establish this proposition; for
example, see [2]. For variety, however, we will show how the characterization of extendibility
from Lemma 3.4 can be used to prove the preservation result using the standard lifting
arguments for supercompact cardinals.

In V , let λ ≥ κ be a singular Σ2-reflecting cardinal and let U be a normal fine ultrafilter on
Tκ,λ, which exists by Lemma 3.4. Let j : V →M be the ultrapower embedding. By Solovay’s
theorem that SCH holds above a strongly compact cardinal [15], 2λ = λ+, and so a standard
master condition argument argument allows us to extend j to an elementary embedding
j∗ : V [Gλ] → M [Gλ][H] where H ∈ V [Gλ] is an M [Gλ]-generic filter on (Q̇λ,j(λ))

M
Gλ

The
ultrafilter U∗ derived from j using j[λ] is a normal fine ultrafilter in V [Gλ]. By Theorem 3.8,
λ remains Σ2-correct in M [Gλ][H], and so j[λ] ∈ j∗((Tκ,λ)V [Gλ]). Let U∗ be the V [Gλ]-
ultrafilter on (Tκ,λ)V [Gλ] derived from j∗ using j[λ]. Then U∗ remains an ultrafilter in V [G],
and since V [G]λ = V [Gλ]λ, (Tκ,λ)V [Gλ] = (Tκ,λ)V [G].

Therefore for every singular Σ2-correct cardinal of V , there is in V [G] a normal fine
κ-complete ultrafilter on (Tκ,λ)V [G]. Since there are arbitrarily large singular Σ2-correct
cardinals in V , Lemma 3.4 implies that κ is extendible in V [G].

The following corollary shows that Theorem 2.5 cannot be improved:

Corollary 3.10. It is consistent that the mantle is Σ2-definable without parameters but is
not a κ-ground where κ is the least extendible cardinal.

For the proof, we will need the following simple lemma which involves Reitz’s Continuum
Coding Axiom [14]:

Lemma 3.11. The Weak Σ2-Potentialist Principle implies the Continuum Coding Axiom.

Proof. For any set of ordinals A, the statement that A is coded into the continuum function
is a strongly potential Σ2-formula, and therefore by the Weak Σ2-Potentialist Principle, it
is true.
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Proof of Corollary 3.10. Let W be the model constructed in the proof of Theorem 3.1. We
claim that MW = HODW . Since V is a model of the Weak Σ2-Potentialist Principle, V
satisfies Reitz’s Continuum Coding Axiom [14]. Therefore V satisfies the Ground Axiom,
and hence V is the mantle of W . Moreover the Continuum Coding Axiom implies that
V ⊆ HODW . On the other hand, HODW ⊆ V since W is obtained from V via a forcing
that is ordinal definable and homogeneous in V . Here it is important to note that the
function f used in the proof of Theorem 3.1 is ordinal definable in V .

Finally, let us prove Corollary 3.2 on the optimality of Usuba’s theorem.

Proof of Corollary 3.2. Let κ be extendible. By Theorem 3.7, we may assume the Weak Σ2-
Potentialist Principle. Let W be the forcing extension of Theorem 3.1. Let Wκ = (Vκ)W .
We will show that in Wκ, the conclusion of Usuba’s theorem fails, meaning that the set of
grounds of Wκ has cardinality κ.

Recall that the mantle is Π3-definable; see the comments before Theorem 2.5. Also recall
that extendible cardinals are Σ3-correct [16, Proposition 23.10].

Assume towards a contradiction that the set of grounds of Wκ has cardinality less than
κ. Then in particular, there are fewer than κ-many κ-grounds of W , since if N is a κ-ground
of W , then N ∩Wκ is a ground of Wκ. By Usuba’s downward directed grounds theorem
[17], the intersection Mκ of all κ-grounds is a κ-ground of W . But by Usuba’s theorem
Theorem 1.8, Mκ is equal to the mantle of W , and hence the mantle is a κ-ground of W .
Since M ⊆ V ⊆ W , the intermediate model theorem implies that V is a κ-ground of W ,
contrary to our choice of W .

4 Questions

This work leaves several variants of Usuba’s question open.

Question 4.1. Suppose κ is extendible. Must the mantle be a κ+-ground? Must the mantle
be a ground for κ-cc forcing?

Usuba’s proof of the Downwards Directed Grounds Hypothesis does show that the κ-
mantle is a ground for κ+-cc forcing, and therefore so is the mantle assuming κ is extendible.

Question 4.2. Suppose κ is extendible. Must κ be extendible in the mantle? Must κ be
strongly compact in the mantle?

We close the paper with two results connected to this question.

Proposition 4.3. If κ is extendible, then in the mantle, every κ+-complete filter extends
to a κ-complete ultrafilter.

Proof. Note that if U is a κ-complete ultrafilter, then U∩M ∈ M. This is because U∩N ∈ N
for every κ-ground N by the Lévy–Solovay theorem [12], and M is equal to the intersection
of all κ-grounds by Usuba’s theorem.

Suppose F is a κ+-complete filter in the mantle. Since V is a κ+-cc extension of M, F
generates a κ+-complete filter F ′ in V . Since κ is strongly compact in V , F ′ extends to a
κ-complete ultrafilter U . But U ∩M ∈ M, so F extends to a κ-complete ultrafilter in M.

Proposition 4.4. If κ is extendible and the mantle is Σ3-definable from parameters in Vκ,
then κ is a strong cardinal in the mantle.

15



Proof. Fix a set p ∈ Vκ and a formula φ such that x ∈ M if and only if for all sufficiently
large ordinals α, Vα ⊨ φ(x, p). By the reflection theorem, there are arbitrarily large cardinals
λ such that MVλ = M ∩ Vλ and x ∈ Vλ ∩M if and only if for all sufficiently large ordinals
α < λ, Vα ⊨ φ(x, p).

Fix any such cardinal λ, and let ν be large enough such that for all x ∈ Vλ ∩ M,
for all β ≥ ν, Vβ ⊨ φ(x, p). Since κ is extendible, for some ordinal λ′ > ν there is an
elementary j : Vλ → Vλ′ with crit(j) = κ and j(κ) > λ. Since the mantle is equal to
the κ-mantle, j ↾ (Vλ ∩ M) ∈ M. (Again, we are using the Lévy-Solovay theorem to get
j ↾ (Vλ ∩ M) into every κ-ground; this version of Lévy-Solovay follows from Hamkins’s
results in [9].) Since λ′ ≥ ν, for all x ∈ Vλ ∩M, Vλ′ ⊨ φ(x, p). Since (Vλ′ , p) is elementarily
equivalent to (Vλ, p), for all x ∈ Vλ′ such that Vλ′ ⊨ φ(x, p), Vλ′ ⊨ x ∈ M. In particular,
Vλ ∩M ⊆ MVλ′ = j(Vλ ∩M). Therefore j ↾ (Vλ ∩M) witnesses that κ is λ-strong in M.

Our final questions are basic definability questions in set-theoretic geology:

Question 4.5. Can the mantle be Σ3-definable but not Σ2-definable? Can the mantle be
Π3-definable but not Σ3-definable?
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