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1 Introduction

Much of the theory of large cardinals beyond a measurable cardinal concerns the structure of
elementary embeddings of the universe of sets into inner models. This paper seeks to answer
the question of whether the inner model uniquely determines the elementary embedding.

The question cannot be answered assuming ZFC alone: in unpublished work, exposited
in Section 3, Woodin observed that it is consistent that there are distinct normal ultrafilters
with the same ultrapower. He proved, however, that definable embeddings of the universe
into the same model must agree on the ordinals, and under a strong version of the HOD
Conjecture, he proved the same result for arbitrary elementary embeddings. Woodin con-
jectured that the result can be proved in second-order set theory (NBG) with the Axiom of
Choice. The first theorem of this paper confirms his conjecture:

Theorem 3.5} Any two elementary embeddings from the universe into the same inner model
agree on the ordinals.

In Section[d], we prove stronger uniqueness properties of elementary embeddings assuming
global large cardinal axioms. To avoid repeating the same hypothesis over and over, we
introduce the following terminology:

Definition 1.1. If ¢ is an ordinal, we say the uniqueness of elementary embeddings holds
above 0 if for any inner model M, there is at most one elementary embedding from the
universe into M with critical point greater than §.

We say the uniqueness of elementary embeddings holds if it holds above 0. The uniqueness
of elementary embeddings is formulated in the language of second-order set theory.

It turns out that the uniqueness of elementary embeddings holds above sufficiently large
cardinals:

Theorem [4.20. The uniqueness of elementary embeddings holds above the least extendible
cardinal.
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The hypothesis of Theorem seems to be optimal: for example, Theorem shows
that it is consistent with a proper class of supercompact cardinals that the uniqueness of
elementary embeddings fails above every cardinal.

Our analysis also yields the uniqueness of elementary embeddings (above 0) from other
hypotheses. The independence results of [2] [§, [I2] are often taken to show that Reitz’s
Ground Axiom has no consequences. The following theorem indicates that this may not be
completely true:

Theorem (Ground Axiom). If there is a proper class of strongly compact cardinals,
then the uniqueness of elementary embeddings holds.

The conclusion of this result (that is, the outright uniqueness of elementary embeddings)
cannot be proved from any large cardinal axiom by the proof of Theorem [3.I] and the Lévy-
Solovay theorem [I1]. It is unclear whether the strongly compact cardinals are necessary,
though: it seems unlikely, but it could be that the Ground Axiom alone suffices to prove
the result. With this in mind, we conclude the section by proving a similar result from a
different hypothesis.

Theorem (Ground Axiom). If there is a proper class of strong cardinals, then the
uniqueness of ultrapower embeddings holds.

In Section |5, we consider the situation under the Ultrapower Axiom (UA), which turns
out to be quite simple:

Theorem (UA). The uniqueness of elementary embeddings holds.

Finally, we use Theorem [£.20] to analyze a principle called the Weak Ultrapower Axiom
(Weak UA) under the assumption of an extendible cardinal. Weak UA states that any two
ultrapowers of the universe of sets have a common internal ultrapower. Before this work, we
knew of no consequences of Weak UA. Here we sketch the proofs of some results indicating
that above an extendible cardinal, Weak UA is almost as powerful as UA:

Theorem (Weak UA). If k is extendible, then V is a generic extension of HOD by a
forcing in V.

The reader familiar with Vopénka’s theorem will note that this is just a fancy way of
saying that every set is ordinal definable from some fixed parameter z € V,. We also
show that UA holds in HOD for embeddings with critical point greater than or equal to .
(See Theorem for a precise statement.) We do not know how to show this is true in
V! Combining this with some proofs from [6] allows us to prove the GCH above the first
extendible cardinal under Weak UA.

Theorem (Weak UA). If s is extendible, then for all cardinals A > k, 2* = A%,
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2 Preliminaries

2.1 Ultrapower embeddings and extender embeddings

If P and @ are models of ZFC, i : P — @ is an elementary embedding, X € P is a set,
and a € i(X), then there is a minimum elementary substructure of @ containing i[P]U {a};
namely, the substructure

HO(i[P|u{a}) = {i(f)(a): f € P, f: X — P}

The fact that H?(i[P] U {a}) is an elementary substructure of Q is a consequence of the
Axiom of Choice and the Axiom of Collection, applied in P, and is really just a restatement
of L6s’s Theorem applied to the P-ultrafilter U ={AC X : A€ P,aci(A)}.

A similar argument shows that for any X € P and B C i(X),

HO(i[P)UB) = {i(f)(a) :a € [B]<“, f € P, f : [X]** = P}

is an elementary substructure of ). As a consequence of this, if 7 : P — Q is a cofinal
elementary embedding, in the sense that every a € @ belongs to i(X) for some X € P, then
for any B C Q,

HO(i[P)UB) = {i(f)(a) : a € [B]**, f € P}

is an elementary substructure of ). (Here f ranges over all functions in P such that

a € dom(i(f)).)

Definition 2.1. Suppose P and @) are models of set theory. An elementary embedding
i: P — Q is an ultrapower embedding of P if there is some X € P and some a € i(X) such
that Q = H?(i[P] U {a}).

An elementary embedding ¢ : P — @ is an ultrapower embedding if and only if there is
a P-ultrafilter U and an isomorphism k : Ult(P,U) — @ such that ko jy = .

Definition 2.2. An elementary embedding i : P — @ is an extender embedding if there is
a set A such that Q = HP(i[P] Ui(A)).

Again, an elementary embedding is an extender embedding if and only if it is isomorphic
to the ultrapower of P by a P-extender (using only functions in P).

A generator of an elementary embedding i : P — @ is an ordinal £ of @ such that £ ¢
HQR(i[P]UE). By the wellordering theorem, Q = H?(i[P] UOrd?), and if Q is wellfounded,
it follows easily that Q = H?(i[P]UG) where G is the class of generators of i. Thus a cofinal
elementary embedding is an extender embedding if and only if its generators are bounded
in Q.

Definition 2.3. Given an elementary embedding i : P — @ and a set a € Q, we let \;(a)
denote the least P-cardinality of a set X such that a € i(X).

Note that A;(a) may not be defined, either because there is no X such that a € i(X) or
because there is no minimum cardinality of such a set. We will be focused solely on cofinal
elementary embeddings of wellfounded models, in which case \;(a) will always be defined.

By the wellordering theorem, \;(a) (if infinite) is the least ordinal A of P such that
a € HR(i[P]Ui(\)). This immediately implies:

Lemma 2.4. Suppose i : P — @ is an elementary embedding, a is a point in @, and
A= A(a). If A > 1, then i(\) # supi[)]. O



3 The uniqueness of embeddings on the ordinals

3.1 Woodin’s results

Theorem 3.1 (Woodin). If it is consistent that there is a measurable cardinal, then it is
consistent that the uniqueness of elementary embeddings fails.

Proof. Suppose k is a measurable cardinal, and assume without loss of generality that
2% = gT. Let (Pag : < B < k) be the Easton support iteration where P, is trivial unless
« is an inaccessible non-Mahlo cardinal, in which case ]P’aa = Add(«, 1). Thus IE”OOC names a
partial order in V', which we denote by Py,

Let G C Py, be a V-generic filter, let Gy, C Py, be the restriction of G to Py,, let
Pog = (Pag)co., and let Gog € Pog be the V[Goq]-generic filter induced by G.

In V, let U be a normal ultrafilter on x. We claim that in V[G], there are distinct normal
ultrafilters Uy and U; extending U such that Ult(V[G], Up) = Ut(V[G],U;). Let j: V — M
be the ultrapower of V' by U. Let

(Pap:a < B <j(k)) =j((Pap : a < B < K))

Let Py j(x) = (Pﬁ,j(ﬁ))g. Then since M[G] is closed under s-sequences in V[G], Py, j(,)
is <k-closed. Moreover, the set of maximal antichains of P, ;) that belong to M[G] has
cardinality T in V[G]. Therefore working in V[G], one can construct an M [G]-generic filter
Gﬁ’j(ﬁ) - ]P)mj(,g). Note that j[Gox] C Gox *Gn)j(,{). Letting Hy = Gy *G,@j(,ﬁ), this implies
that j extends to an elementary embedding jo : V[G] — M[Hy] such that jo(G) = Hp.

Notice that one obtains a second M [G]-generic filter G:,j(,{) C Py j(x) by flipping the
bits of each component of G j(.). Let Hy = Gox * G:,j(r»)' Obviously, M[Hy] = M[H,].
Moreover, j{G] C Hi, so j extends to an elementary embedding j; : V[G] — M[H;] such
that ji1(G) = Hy. Letting Uy and U; be the normal ultrafilters of V[G] derived from jg
and j; respectively, we have Ult(V[G],Uy) = M[Hy] = M[H;] = U(V[G],Uy). Since
Jo(G) # j1(G), Uo # Ul

In any case, jo : V|G] — M[Hy] and j; : V[G] — M[H;] witness the failure of the
uniqueness of elementary embeddings. O

Theorem 3.2. It is consistent that there exist distinct normal ultrafilters Uy and Uy with
the same ultrapower M such that ju,(Us) = ju, (Ur).

Proof. Let U be a normal ultrafilter on a measurable cardinal x and let j : V' — M denote
its ultrapower. Assume 2 = k. Let P be the Easton product []s., Add(d, 1) where I is
the set of inaccessible non-Mahlo cardinals less than «.

Let Q = j(P) and let Q/P denote the product []sc ;s\, Add(d,1) as computed in M.
Thus Q 2 P x (Q/P). Since k ¢ j(I), Q/P is <k-closed in M, and hence Q/P is <x-closed
and in V. Also Q/P is j(k)-cc in M, and so one can enumerate the maximal antichains
(Ay : a < k1) of Q/P that belong to M using that |j(k)| = 7.

Fix a wellorder < of Q/P, and let (p, : @ < k™) be a continuous descending sequence
in Q/P defined by letting po+1 be the =-least element of Q/P below p, and an element of
Aq. Then G = {p € Q/P: Jap, < p} is an M-generic filter.

We denote by o, the involution of P that flips the bits of the Cohen sets added to
cardinals above a. We overload notation by denoting the involution of Q that flips the bits
of the Cohen sets added to cardinals above « in exactly the same way.



Now we pass to a forcing extension: let H C P be a V-generic filter. In V[H|, we extend
j in two different ways. Let jo : V[H] — M[H X G] be the unique extension of j such
that jo(H) = H x G. Let j; : V[H] — M[H x G] be the unique extension of j such that
J1(H) =0.(H x G).

Let U; be the normal ultrafilter on s derived from j; using k. We claim Uy and Uy are
as desired. Note that j; = jy, since M U{H x G} C HMH*CI(5,[V[G]] U {x}), and hence
M[H x G] = HMEXCl(5,[V[G]] U {x}). Therefore Uy # Uy, since jo # j1. On the other
hand, to show jo(Uy) = j1(U1), it suffices to show that jo(jo) = j1(j1), and for this we just
need that that jo(jo) and j;1(j1) agree on H x G. This is a consequence of the following
computation:

J1()(H x G) = ji(j1)(ox(j1(H)))

o (j1(j1(H)))

ox(j1(ox(H X G)))
=000 (J1(H x G))

0k © 0j()(0x(H X G) X j1(G))
=0, 00 (0x(H x G) x jo(Q))
=0y 00,(H x G x jo(G))

Given this independence result, the following theorem is quite counterintuitive:

Theorem 3.3 (Woodin). Assume V' = HOD. Then the uniqueness of elementary embed-
dings holds.

It is worth pondering why one cannot refute this theorem by first forcing the failure of
the uniqueness of elementary embeddings as in Theorem and then forcing V = HOD by
some highly closed coding forcing. For definable elementary embeddings, Woodin proved
more:

Theorem 3.4 (Woodin). Suppose jo,j1 : V. — M are definable elementary embeddings
from the universe into the same inner model. Then for every ordinal «, jo(a) = j1(a).

Proof. Fix a number n (in the metatheory), and we will prove the theorem for X,,-definable
elementary embeddings. Towards a contradiction, let a be the least ordinal such that there
exist ¥,,-definable elementary embeddings jo,j1 : V' — M such that jo(a) # ji(a).

Notice that « is definable in V' without parameters. To see this, let U C V x V be a
universal Y,,-class. Note that « is the least ordinal such that there exist sets pg and p; such
that for n € {0,1}, the class j, = {a : (pn,a) € U} forms an ¥p-elementary embedding
from V to an inner model M,, = (Jran(j,), and My = My but jo(a) # j1(«). (Here we use
the fact that any Xg-elementary embedding from the universe of sets into an inner model
is in fact fully elementary; it is a first-order property of p, that j, is Yg-elementary since



the Yp-satisfaction predicate of V is definable. This is a result due to Gaifman; see [9]
Proposition 5.1].)

Therefore if ko, k1 : V — N are elementary embeddings, then ko(«) is the unique ordinal
defined in N by the formula defining « in V, and similarly for k1 («). Hence ko(a) = k1 (av),
contradicting the definition of «. O

3.2 Uniqueness of embeddings on the ordinals

Theorem [3.4|raises an interesting second-order question. Working in second-order set theory,
suppose jo,j1 : V — M are elementary embeddings. Must jy and j; agree on the ordinals?
Woodin conjectured that the answer is yes. Here we verify his conjecture.

Theorem 3.5. Any two embeddings from the universe of sets into the same inner model
agree on the ordinals.

Roughly speaking, we proceed by reducing the question to the case of definable embed-
dings (in fact, ultrapower embeddings).

Definition 3.6. An elementary embedding j : V' — M is almost an ultrapower embedding
if for every set B C M, there is some a € M such that B C HM (j[V] U {a}).

I am grateful to Moti Gitik and the anonymous referee for pointing out an error in the
proof of the following theorem as it appeared in an early draft of this paper, which has now
been corrected:

Theorem 3.7. Suppose jo,j1 : V. — M are elementary embeddings. Then there exist
elementary embeddings ig,i1 : V — N and an elementary embedding k : N — M such that
ig and i1 are almost ultrapower embeddings and jo = k oig and j3 = k oiy.

Proof. Suppose jo, j1 : V — M are elementary embeddings. Let X = HM (jo[V]U31[V]), let
N be the transitive collapse of X, and let k : N — M be the inverse of the transitive collapse
map. Let ig,i; : V — N be the collapses of jg, j1; that is ig = k' 0 jo and i1 = k1 0 j;.
We claim that for all sets A, there is a point g € i1 [V] such that i,[A] € HY (ig[V]U{g}).
To see this, let B be a set of cardinality |A| such that ig [ B = i1 [ B. Note that such a
set exists because iy and i1 have an w-closed unbounded class of common fixed points. Let
f: B — A be a surjection. Let g = i1(f). For all a € A, a = f(b) for some b € B, and so

i1(a) = i1 (f)(i1 (b)) = g(io(b)) € HY (io[V] U {g})

Thus i1[A] € HN (ig[V] U {g}).

We now show that i¢ is almost an ultrapower embedding. Fix B C N. Since N =
HN (ig[V]Ui1[V]), there is a set A such that B C H" (ip[V]Ui1[A]). The previous paragraph
yields g € i1[V] such that i1[A] € HM(ig[V] U {g}). Hence B C HN(ix[V] U {g}), as
desired. O

Under favorable cardinal arithmetic hypotheses, one can remove the word “almost” in
the statement of the previous theorem. We will say here that the eventual singular cardinals
hypothesis (eventual SCH) holds if for all sufficiently large strong limit cardinals A of cofi-
nality w, 2* = AT. (By Silver’s theorem, this also implies 2* = A\* for strong limit singular
cardinals of uncountable cofinality, but we will not need this, and this form will be more
convenient. Our eventual SCH is a bit weaker than the more natural version asserting that
for all sufficiently large singular A, \f}) = 2¢f(0) . \+ )



Lemma 3.8 (Eventual SCH). Any elementary embedding from the universe into an inner
model closed under w-sequences is an extender embedding.

Proof. Suppose not, and fix an elementary embedding j : V — M such that M is closed
under w-sequences but j is not an extender embedding. Then the class {\;(a): a € M} is
unbounded. (See Definition [2.3]) Otherwise, let ~ be its supremum. Then

M= HY(j[V]Uj(y))

contrary to the fact that j is not an extender embedding.

Let 1 be such that for all strong limit cardinals A > 7 of countable cofinality, 2* = \*.
By recursion, construct a sequence of points a,, € M such that X\;(ag) > 1, Aj(ant1) >
§(2Y(@n)). Let A\ = sup,, ., \j(an).

Note that A is a strong limit cardinal of countable cofinality, so 2* = A*. Moreover,
J[A] € A, and so since j(w) = w, j(A) = A. In particular, j is continuous at A. Also
J(AT) = (G(N)TM < A*. In particular, j is continuous at AT,

Let a = {(a, : n < w). Then a € M. In fact, since a € HM(G[V]U j(N), a €
HM@G[VIU§(¥XN)). So Aj(a) < A = At. On the other hand since (\;(a,) : n < w) is
cofinal in A\, Aj(a) > A. Thus \;(a) is either X\ or A™. Since j is continuous at A and A%,
this contradicts Lemma 2.4 O

Corollary 3.9 (Eventual SCH). If j : V — M 1is almost an ultrapower embedding, then j
is an ultrapower embedding.

Proof. 1t is easy to see that M is closed under w-sequences, and therefore Lemma [3.8|implies
that j is an extender embedding. Essentially by definition, an extender embedding that is
almost an ultrapower embedding is indeed an ultrapower embedding. O

Corollary 3.10 (Eventual SCH). If jo,j1 : V — M are elementary embeddings, then
jo r Ord = jl r Ord.

Proof. Apply Theorem [3.7]to reduce to the case that jo and j; are almost ultrapowers. Then
apply Corollary [3.9] to conclude that they are in fact ultrapower embeddings. Finally, since
ultrapower embeddings are definable, apply Woodin’s theorem (Theorem to conclude
the corollary. O

We now turn to the proof of the uniqueness of elementary embeddings on the ordinals
without SCH, for which it is convenient to introduce the notion of the tightness function of
an elementary embedding.

Definition 3.11. Suppose j : V — M is an elementary embedding and X is a set. Then
t;(X) denotes the minimum M-cardinality of a set A € M such that j[X] C A.

The tightness function turns out to depend only on the cardinality of its argument:

Lemma 3.12. Suppose j : V. — M s an elementary embedding. If |X| < |Y|, then
t5(X) <t;(Y).

Proof. Let f:Y — X be a surjection. For any A € M, if j[Y] C A, then j[X] C j(f)[A4].
As a consequence ¢;(X) < t;(Y). O



We therefore will focus on ¢;(\) where A is a cardinal.
We want to get into the situation where we can apply Corollary and for this we need
Solovay’s argument proving SCH above a strongly compact cardinal.

Lemma 3.13 (Solovay). Suppose A is a singular strong limit cardinal of countable cofinality

and there is an elementary embedding j : V — M such that j is discontinuous at \¥. Then
22 =\,

Sketch. We may assume that j is the ultrapower of the universe by an ultrafilter on A*.
Note that ¢;(At) = cf™ (sup j[A*]) < j(\); this follows from an argument due to Ketonen
[10], though this more specific case is given in the author’s thesis [4, Theorem 7.2.12]. Also
ti(A9) = (£;(A\)“ < (£;(A1))¥ < j(N). Assume towards a contradiction that A* > A*. Then
ti(ATT) <t;(A¥) < j(A). But this implies j is discontinuous at At which contradicts that
7 is the ultrapower of the universe by an ultrafilter on A\*. O

A more complete proof appears in [4, Lemma 7.2.18].

Proof of Theorem[3.5. We start with a simple observation. Suppose J is a regular cardinal
such that jo(d) < j1(d). Then j; is discontinuous at §. To see this, let X be a set of common
fixed points of jp and j; such that | X| = §. Then j;[X] = jo[X] is covered by jo(X), which
has size jo () in M. By Lemma/|3.12 5;[6] is covered by a set B € M such that |B|M = jy(9).
It follows that sup j;[0] # j1(0): otherwise cf™ (j1(8)) < jo(8), contradicting that j;(4) is
regular in M.

Assume towards a contradiction that there is an ordinal « such that jo(a) # ji(«).
Without loss of generality, assume jo(o) < j1 ().

Assume towards a contradiction that for cofinally many strong limit cardinals A of count-
able cofinality, 2* > A*. Let A be the a-th strong limit cardinal of countable cofinality for
which 2* > M. Then jo(A) is the jo(a)-th such cardinal in M, and j;()) is the ji(a)-th.
Hence jo(A) < j51(X). As a consequence, jo(A1) < j1(AT). So j; is discontinuous at AT by
the claim. It therefore follows by Lemma that 2% = AT, which is a contradiction.

Applying Corollary jo [ Ord = j; | Ord, contrary to assumption. O

4 The uniqueness of embeddings above large cardinals

Intuitively, an ultrafilter U on a set X is a “generalized element” of X. In this section,
we study the generalization of ordinal definability that arises from this intuition: namely,
definability from ultrafilters on ordinals. Since it turns out that every set is definable from
an ultrafilter on an ordinal (Proposition , it is natural in the context of large cardinals to
study the sets definable from increasingly complete such ultrafilters. After all, the ordinal
definable sets are precisely the sets definable from principal ultrafilters on ordinals, or in
other words, from ultrafilters that are k-complete for all cardinals k. The analysis of this
concept leads to a proof of the uniqueness of elementary embeddings above an extendible
cardinal.

4.1 Completely definable sets

Suppose k is an infinite cardinal. A set is k-completely definable if it is definable in the
structure (V, €) from a k-complete ultrafilter on an ordinal. A set is completely definable if



it is d-completely definable for all infinite cardinals §. The class of k-completely definable
sets is denoted by CD(k) and the class of completely definable sets by CD.

Proposition 4.1. Every set is w-completely definable.

Proof. We will prove the stronger statement that that every subset of an ordinal A belongs
to L[U] for some ultrafilter U on A. Since P,(\) C L and L F |P,()\)| = |A\| whenever X is
infinite, it suffices to show that every subset of S C X belongs to L[U] for some ultrafilter
U on P,(A).

The key is that there is a constructible independent family (A, )< of subsets of P, ()\);
namely, let A, = {0 € P,(\):a €0}

Now let F' be the filter on P,(\) generated by {As}acs U {X\ Aatags, and let U be
any ultrafilter on P, (\) extending F'. Then S € L[U] since

aelS << A,eU

and the sequence (A, )qa<x belongs to L[U], being constructible. O

Since the proof of the previous proposition turns on the strong compactness of w, one
might expect that under large cardinal axioms, for example if x > w is strongly compact,
every set is definable from a x-complete ultrafilter on an ordinal. But in fact, no matter
what large cardinal axioms one assumes, it is consistent that there is a set that is not
wi-completely definable. This is because if g is Cohen generic over V, then g is not ws-
completely definable in V]g]. Yet all known large cardinal axioms are upwards absolute
from V to V[g|.

For any set X, let UF (X)) be the set of k-complete ultrafilters on X. Let UF,(Ord) =
Uscora UFx(9). Note that any ordinal can be coded by a principal ultrafilter on an ordinal
and any finite sequence of ultrafilters on ordinals can be coded by a single ultrafilter on an
ordinal; namely, the Fubini product of the ultrafilters, which, using an (ordinal definable)
pairing function, can be viewed as an ultrafilter on an ordinal. As an immediate consequence,
we obtain a more familiar characterization of CD(k):

Proposition 4.2. For any cardinal k, CD(x) = ODyr, (0rd)- O

In a somewhat artificial sense, complete definability is just a quantifier-flip away from
ordinal definability: x is ordinal definable if x is definable from an ultrafilter on an ordinal
that is k-complete for all cardinals x; = is completely definable if for all cardinal k, z is
definable from a k-complete ultrafilter on an ordinal.

A k-completely definable set x is hereditarily k-completely definable (resp. hereditarily
completely definable) if every element of its transitive closure is also k-completely definable
(resp. completely definable). Thus the class HCD(k) of all hereditarily k-completely defin-
able sets is the largest transitive subclass of CD(k), and the class HCD of all hereditarily
completely definable sets is the largest transitive subclass of CD.

Proposition 4.3. For any cardinal k, HCD(k) is an inner model of ZF. In fact, HCD(k) =
HODuyr, (0rdq)-

Proof. That HCD(x) = HODyp, (orq) is immediate by Proposition The structure
HODuyp, (0ra) is @ model of ZF since UF(Ord) is itself definable from an ordinal. O



Let k. denote the supremum of the first o measurable cardinals. We have a decreasing
sequence of inner models:

V = HCD(w) 2 HCD(w;) = HCD(k1) D HCD(k2) 2 -+ D HCD(kq) 2 - -+ 2 HCD D HOD

One reason the k-completely definable sets are interesting is that for certain large car-
dinals k, HCD(k) is a model of ZFC.

Theorem 4.4. If k is a strongly compact cardinal, then HCD(k) is a model of ZFC.
For this we will use the following facts.

Lemma 4.5. A set x is k-completely definable if and only if there is an ultrapower embedding
j: V. — M with crit(j) > k such that x is definable in the structure (V,€,7) from ordinal
parameters.

Proof. For the forwards direction, note that any x-complete ultrafilter W on an ordinal is
definable in the structure (V, €, ji) from the ordinal [id]w; hence any set definable in V'
from W is definable from ordinal parameters in the structure (V, €, jw ).

For the converse, note that if j : V' — M is an ultrapower embedding with crit(j) > &,
then (by the wellordering theorem) there is a k-complete ultrafilter W on an ordinal such
that j = ]W O

Theorem 4.6 (Kunen). Suppose U is a fine ultrafilter on P,(P(0)) and W is a k-complete
ultrafilter on 6. Then there is some a < jy(0) such that W ={A C 6 : My F o € ju(A)}.

Proof. Let o = [id]y. Since U is a fine ultrafilter on P, (P(9)), ju[P(8)] C o C ju(P(3))
and |o|Mv < jy(k). Let B = jyu (W) No, so that B € My, ju[W] € B C ju(W), and
|B|Mu < j14(k). Since W is k-complete, ji (W) is jy(k)-complete, and hence (B € jy (W),
and in particular, there is some o € (| B. Using that jy,[W] C B, it is easy to see that
WC{ACd: My Facejy(A)}, and so by the maximality of W, equality holds. O

Corollary 4.7. Suppose k < § are cardinals and r is 2°-strongly compact. Then there is a
k-completely definable wellorder of UF,(4).

Proof. Since k is 2°-strongly compact, there is a k-complete fine ultrafilter ¢/ on P, (P(J)).
Theorem permits us to define a function g : UF,(6) — ji(6) by setting g(W) equal to
the least o < jy(9) such that W = {A C § : o € jyy(A)}. Then g is an injection and g
is k-completely definable by Lemma Set Wy = Wy if g(Wy) < g(W1). Then <X is a
wellorder of UF, () since it order-embeds into the wellorder j;;(d), and =< is x-completely
definable since < is definable from g. O

Proof of Theorem[{.4 By Corollary for any ordinal 0, UF,(d) admits a k-completely
definable wellorder. As a consequence, the class ODyp, (5) admits a k-completely definable
wellorder. By Proposition CD(x) = ODur, (0rd) = Uscora OPuF, (5)-

Now fix an ordinal «, and we will show that there is a wellorder of HCD(k) NV, in
HCD(x). Since CD(k) is the increasing union of the classes ODyr, (5, the pigeonhole
principle implies that for any ordinal o, CD(x)NV, = ODuyp, (5)NV, for some cardinal § > «.
The restriction of any x-completely definable wellorder of ODyg, (5) to CD(x) NV, yields
a k-completely definable wellorder of the latter set. Restricting further, HCD(k) NV, C
CD(k)NV, admits a x-completely definable wellorder. This wellorder is trivially hereditarily
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k-completely definable (its transitive closure is equal to HCD(x) N'V,, at least if « is a limit
ordinal), and there is a wellorder of HCD(x) NV, in HCD(k), as claimed.

Since HCD(k) satisfies that for any o, HCD(k) NV, is wellorderable, HCD(k) satisfies
the Axiom of Choice. O

Note that while HCD(k) is an inner model of ZFC whenever & is strongly compact, it
is not provable in ZFC that the entire class HCD(k) can be definably wellordered from any
parameter whatsoever. (Indeed, by Theorem this holds if and only if V itself can be
definably wellordered from a parameter.)

We now show that when & is strongly compact, HCD(k) is a very large model. In fact,
HCD(k) is a ground of the universe, in the sense of set theoretic geology. Recall that if
N C M are models of set theory, N is said to be a ground of M if there is a partial order
P € N and an N-generic filter G C P in M such that M = N[G].

For any set z, let CD(k),, denote the class of sets that are x-completely definable from
x, and let HCD(k), denote the class of all sets hereditarily k-completely definable from z.

Proposition 4.8. If k is strongly compact and x is a set such that V,; C CD(k),, then
V =HCD(k),.

Proof. We first claim that for every strong limit cardinal A > & of cofinality at least x, there
is a k-independent family of A-many subsets of A that belongs to HCD(k),. To see this, let
j:V — M be an ultrapower embedding with crit(j) = x and j(k) > A. Then M is closed
under x-sequences. We claim that Vj(,,) N M C HCD(x),. By elementarity,

Vit N M C j(Vi) € §(CD(k)s) = CDY (ji(k)) j(x) € CDM (k)0

So it suffices to show that CDM(%)j(x) C CD(K)q.

Note that M and j(x) are definable over the structure (V,€,5) from z. Also every
ultrapower embedding i : M — N with crit(i) > & is definable over (V) €, j, k) from ordinal
parameters for some ultrapower embedding k : V' — N with crit(k) > . For this, take
k=1io0j,let « € Ord be aseed of j (so M = HM(j[V]U{a})), and let 8 = i(a). Then given
a € M, i(a) can be computed by choosing any f € V such that a = j(f)(a) and noting that

This defines 4 in the structure (V, €, j, k) from the ordinals « and .

Since M, j(z), and every ultrapower embedding of M are each ordinal definable from
x over a structure of the form (V, €, j, k) where j and k are ultrapower embeddings with
critical point at least x, a slight generalization of Lemmayields cpM (K)j(@) € CD(kK)e-

Since A is a strong limit cardinal of cofinality at least x, the same is true in M by
the downwards absoluteness of II; formulas. In particular, A<f* = X in M. Since M is a
model of ZFC, M satisfies that there is a x-independent family of A-many subsets of .
Since M is closed under <k-sequences, this family of sets really is k-independent. Since
Vit N M C HCD(k),, and X < j(k), this x-independent family belongs to HCD( ).

Finally, fix a set of ordinals A. We will prove that A € HCD(k),. Fix A > sup A such
that A<% = X, and let (S, : @ < A\) € HCD(k), be a k-independent family of subsets of A.
Let F be the x-complete filter on A generated by

B={Sy:a€ A}U{A\ S, :a ¢ A}

11



Since k is strongly compact, there is a x-complete ultrafilter U extending F. Let W =
U NHCD(k),. Since U is a k-complete ultrafilter on an ordinal, W € HCD(k),. Now
A={a:S5, € W}, and so A € HCD(k).

Since we have shown that every set of ordinals belongs to HCD(k),, the Axiom of Choice
yields that V = HCD(k),. O

We thank the referee for pointing out an error in the original proof of the above theorem.

Theorem 4.9 (Vopenka). Suppose C' is a class such that for all ordinals «, there is a
wellorder of CNV,, in OD¢. Then for any set of ordinals x, HOD¢ is a ground of HOD 41 -

Sketch. Suppose z C . By our assumption, there is some ordinal v such that there is
an OD¢ bijection f : v — PPPc(P(j3)). Let B be the Boolean algebra on v induced by
the Boolean algebra structure on POP¢(P(3)). Then B is a complete Boolean algebra in
HOD¢. Let U C POP¢(P(B)) be the principal ultrafilter on P(j3) concentrated at z; that
is,

U={XecPOP(PB):zecX}

Let G = f~!{U]. Then G C B is a HOD¢-generic ultrafilter. Moreover, one can check that
HODcuyyzy = HOD¢[G]. O

Theorem 4.10. If x is strongly compact, then HCD(k) is a ground of V.

Proof. The hypotheses of Theorem hold for C = UF,(Ord) by Corollary Fix
x C &k such that V,; C L[z]. Then HCD(k) is a ground of HCD(k), by Theorem and
V = HCD(k), by Proposition so HCD(k) is a ground of V. O

The next proposition follows from the proof of Theorem [£.9]

Proposition 4.11. Suppose r is strongly compact, and let § = (22°)T. Then HCD(k) is a
ground of V' for a forcing in HCD(k) of cardinality less than ¢. O

This yields a new consequence of the Ground Axiom:

Theorem 4.12 (Ground Axiom). Assume there is a proper class of strongly compact car-
dinals. Then V = HCD. O

One can also use Theorem to prove that large cardinals are downwards absolute to
HCD(k). We will use [4]

Theorem 4.13. Suppose k is strongly compact and M is an inner model with the k-cover
property. Then M has the k-approzimation property if and only if every k-complete ultra-
filter on an ordinal is amenable to M . ]

An inner model M is a weak extender model for the supercompactness of k if for all A > k,
there is a normal fine ultrafilter & on P, () such that P,(A)NM e andUNM € M.

Theorem 4.14. If k is strongly compact, then HCD(k) has the k-approzimation and cover
properties. Moreover, if k is supercompact, then HCD(k) is a weak extender model for the
supercompactness of k.
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Proof. Tt suffices to show the k-cover property by Theorem We proceed by showing
that for all cardinals A > k, there is a k-complete fine ultrafilter on P, (\) concentrating on
HCD(k). It follows that HCD(k) has the cover property for subsets of A: if 0 € Py ()), then
since U is fine, {7 € P,(\) : 0 C 7} € U and hence intersects the U-large set P,(A\)NHCD(k);
in other words, for some 7 € HCD(k), o C 7.

It suffices to find such an ultrafilter for all regular A\ large enough that HCD(k) is
stationary correct at A. For such a ), there is a stationary partition (S, : @ < A) of S that
belongs to HCD(k). Let j : V' — M be an elementary embedding such that crit(j) = x and
cf (sup j[A]) < j(k). Let (T, : @ < j(\)) = j({(Saq : @ < \)), and in M, let o be the set of
a < A such that T, reflects to sup j[A].

Then j[A] C o since j[Sa] C j(Sa) and j[S,] is truly stationary in sup j[A]. Moreover,
lo|M < j(k). To see this, fix a closed cofinal set C' C sup j[\] in M of ordertype less than
j(k). Define f: 0 — C by f(a) = minC NT,. Then f is injective since (T, : v < j(A)) is
a partition. Hence |o|M < |C|M < j(k).

Let U be the ultrafilter on P, (\) derived from j using o. Then since j[A\] C o, U is a
k-complete fine ultrafilter. Since o € j(HCD(x)), P.(A\) NHCD(x) € Y.

If k is supercompact, we could have assumed j[A\] € M, in which case, one can prove
o = j[A]. Then U is a normal fine ultrafilter on P,(A). Note that U is definable from j,
so U € CD(k) and hence Y N HCD(k) belongs to HCD(k). This suffices to conclude that
HCD(k) is a weak extender model for the supercompactness of . O

This has a number of surprising corollaries. For example, if F is an HCD(k)-extender
with crit(jg) > « and jg(A) N [length(E)]<“ € HCD(k) for all A C [length(E)]<*, then
by a theorem of Woodin, E actually belongs to HCD(x), despite the fact that HCD(k) is
defined in terms of ultrafilters and not extenders. Is there a direct proof of this fact?

We turn now to the structure of HCD itself under large cardinal assumptions. The proof
is based on the proof of Usuba’s theorem [13], although the result does not literally follow
from his theorem.

Theorem 4.15. Suppose k is an extendible cardinal. Then HCD(x) = HCD.

Proof. Suppose A is a k-completely definable set of ordinals. We will show that for any car-
dinal v > k, A is y-completely definable. For this, fix a regular cardinal § > max{~, sup(4)}
and a cardinal A > § such that A € (HCD(k))". Let j : Vaqy1 — Vj(n)41 be an elementary
embedding with crit(j) = x and j(x) > A. Note that (HCD(j(k)))"i» C HCD(4). But j(A)
and j | § belong to (HCD(j(k)))"i®, the latter by the stationary splitting argument from
Theorem [4.14] Tt follows that A = j~![j(A)] € (HCD(j(x)))"5» C HCD(§) C HCD(v). O

4.2 Embeddings above an extendible cardinal

We will need the following consequence of Kunen’s commuting ultrapowers lemma:

Theorem 4.16 (Kunen). Suppose j : V. — M is the ultrapower embedding associated to
an extender in Vs and i : V. — N is an ultrapower embedding with crit(i) > §. Then
ji)=14 M. O

For a proof, see Lemma below.

Lemma 4.17. If jo,j1 : V — M are elementary embeddings associated to extenders in Vy,
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Proof. Suppose z € CD(0). By Lemma x is definable from finitely many ordinal
parameters & in the structure (V,€,i) for some ultrapower embedding i : V — N with
crit(i) > 6. By Theorem [3.4] jo(d@) = j1(&@), and by Theorem jo(i) =i | M = j1(i).
Hence jo(x) = ji(x). O

Theorem 4.18. Suppose there is a proper class of strongly compact cardinals. Then any
two elementary embeddings from the universe into the same inner model agree on a ground.

Proof. Fix elementary embeddings jo,71 : V — M. By Theorem and Corollary
there are ultrapower embeddings ¢p,%; : V — N and an elementary embedding k : N — M
such that jo = koig and j; = koiy. Let 6 be a strongly compact cardinal such that ig and
i1 are the embeddings associated to ultrafilters in V5. By Lemma ip and i1 agree on
CD(0), and hence jo and j; agree on CD(4). Hence jo and j; agree on HCD(J), which is a
ground by Theorem [4.10 O

Theorem 4.19. Assume the Ground Azxiom and a proper class of strongly compact cardi-
nals. Then the uniqueness of elementary embeddings holds. UJ

Theorem 4.20. The uniqueness of elementary embeddings holds above the least extendible
cardinal.

Proof. By Theorem Corollary and the fact that the eventual singular cardinals
hypothesis holds (Lemma, it suffices to prove the uniqueness of elementary embeddings
for ultrapower embeddings jo, j1 : V — M whose critical points lie above the least extendible
cardinal k. By Lemma [4.17] jo [ HCD = j; | HCD. By Theorem HCD(x) = HCD.
Hence jo and j; agree on HCD(k). Let ¢ be their common restriction to HCD(k), and
note that i is definable over HCD(k) by the downwards Lévy-Solovay theorem, using that
by Proposition V is a generic extension of HCD(k) by a forcing of size less than the
critical point of i. Hence i extends uniquely to any forcing extension of HCD(k) by a forcing
of size less than crit(i). But by Proposition[d.11] V is such a forcing extension. Thus jo = ji,
since each extends i. O

It would be interesting to know whether there is a combinatorial proof of this theorem
avoiding the use forcing and ordinal definability.

We say the uniqueness of elementary embeddings fails cofinally if it fails above every
cardinal.

Theorem 4.21. It is (relatively) consistent with a proper class of supercompact cardinals
that the uniqueness of elementary embeddings fails cofinally.

Sketch. First class force to make every supercompact cardinal x indestructible by x-directed
closed forcing. Let P the (class) Easton product of the forcings adding a Cohen subset of
every inaccessible non Mahlo cardinal x. This preserves the supercompacts by standard
arguments. Moreover, for each x of Mitchell order 1, one can factor P as Py o X Py, and
run a essentially the same argument as Theorem in VPre to prove the uniqueness of
elementary embeddings fails at & in VF. O

Note that a model with a proper class of strongly compact cardinals in which the unique-
ness of elementary embeddings fails cofinally must have a proper class of grounds by Theo-

rem T8
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4.3 Application: the Kunen inconsistency for ultrapowers
This section concerns the following open question.

Question 4.22. Suppose j : V — M is an elementary embedding such that M is closed
under w-sequences. Can there be a nontrivial elementary embedding k : M — M?

Note that the requirement that M be closed under w-sequences is necessary since given
any elementary embedding j, one can construct an iterated ultrapower jg, : V — M, such
that j restricts to an elementary embedding from M, to itself.

Definition 4.23. The Rudin-Keisler order is defined on extenders E and F by setting
FE <grk F if there is a nontrivial elementary embedding k : Mgy — Mp such that kojg = jp.

Combinatorially, E <gk F if there is a nonidentity function g : length(F) — length(F')
such that E, = Fy[,).

The Rudin-Keisler order is a preorder, and it is well-known that if F is the extender of
an ultrafilter then F £rk E. In other words, if j : V — M is an ultrapower embedding,
then there is no nontrivial elementary embedding & : M — M such that koj = j. In fact, a
theorem of Solovay states that the Rudin-Keisler order is wellfounded on countably complete
ultrafilters. We will generalize this to extenders. The issue, however, is that the Rudin-
Keisler order is not wellfounded, or even irreflexive, on arbitrary (wellfounded) extenders.
(See the remarks following Question [4.22])

Definition 4.24. An extender F is said to be countably closed if its associated ultrapower
Mg is closed under w-sequences.

Theorem 4.25. The Rudin-Keisler order is wellfounded on countably closed extenders.

Actually, in the spirit of this paper, we prove a slightly stronger second-order theorem
(Theorem [4.28]), although Lemma suggests that this extra strength is an illusion.

Definition 4.26. Suppose P and @ are models of ZF and j : P — @ is a cofinal elementary
embedding. For a,b € @, set a <; b if there is a structure M € P such that b € j(M) and
a is definable in j(M) using b as a parameter. For any a € @, let vj(a) denote the least
ordinal v such that a <; v.

By reflection, one can prove the schema: if a is definable in @ from b and parameters in
J[P], then a <; b. If P and @ are models of ZFC, one can prove that v;(a) is defined for all
a € @ using the Wellordering Theorem. Using Los’s Theorem, one can show that for any
be Q, the set X, = {a € Q:a <; b} is an elementary substructure of Q.

The following remarkable fact about elementary embeddings of transitive models of ZFC
may be due to Solovay. In any case, it is closely related to his proof of the wellfoundedness
of the Rudin-Keisler order on countably complete ultrafilters.

Lemma 4.27 (Folklore). Suppose P and Q are wellfounded models of ZFC and j: P — Q
is an elementary embedding. Then <; is wellfounded and has rank bounded by Ord N Q.

Proof. Let v = vj(a). We first show that v <; a. Let D be the P-ultrafilter derived from
j using a, let k : M5 — @ be the canonical factor embedding, and let @ = k~'(a). Let
v = vj,(a). Thus @ <;, 7 and moreover ¥ <;, a since this is true of every z € ME. Tt
follows that k(7) <; a and a <; k(7). The latter fact implies k(7) > v. Assume towards a
contradiction that k(7) > v. Fix a structure M € P such that v € j(M) and a is definable
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from v in j(M). Then Q satisfies that there is an ordinal ¢ < k(7) such that a is definable
from ¢ in j(M). By elementarity, ML satisfies that there is an ordinal ¢ < ¥ such that a is
definable from ¢ in jp(M). This contradicts that 7 = v, (a).

It follows that the function v; : Q — Ord? ranks the preorder < j- Indeed, suppose a <; b
(in the sense that a <; b but b £; a). Obviously v;(a) < v;(b) (since <; is transitive). But
vi(a) # vj(b) or else b <; v;(b) = v;(a) <; a. Thus v;(a) < v;(b). O

Theorem 4.28. Suppose (j, : n < w) is a sequence of elementary embeddings j, : V — M,
where M, is closed under w-sequences. Suppose (inm @ m < n < w) is a sequence of
elementary embeddings such that for all ¢ < m <n < w,

im,é o Z.n,m = in,[
in,m o jn = jm
Then for all sufficiently large m <n < w, My, = M,, and i,, ,, is the identity.

Proof. For each n < w, let Ky, = crit(iny1.,). Consider the sequence s = (in o(kpn) : 1 < w).
For each n < w, let s,, = s | [n,w). Since M, is closed under w-sequences, s, € My for all
n <w.

Clearly sp4+1 <j, Sn. We claim that s,, £, sp4+1. Note that s,41 € ip41,0[Mp+1]. Since
Jo[V] C int1,0[Mpt1] and iy,41,0[My41] is definably closed, iy,41,0[My+1] is downwards closed
under <. Now iy, 0(kn) € %n+1,0[Mn41] since

ir_z,%J(in,O(“n)) = Kin & tnt1,n[Mpta] = i;,lo [in+1,0[Mn+1]]

But in,0(kn) = sn(n) <j, sp. Hence s, & tp41,0[Mp41]. In particular, s, £;; spi1.
Thus for all n < w, sp41 <j, Sn, and this contradicts Lemma [£.27} O

This yields Theorem
Proof of Theorem[].25. Take ultrapowers and apply Theorem O

Corollary 4.29. Suppose M is an inner model closed under w-sequences and j : V. — M
and k: M — M are elementary embeddings such that ko j = j. Then k is the identity.

Proof. Apply Theorem O

Theorem 4.30. Suppose § is extendible, M is an inner model closed under w-sequences,
and j : V. — M is an elementary embedding with critical point above 6. Then there is no
nontrivial elementary embedding from M to M.

Proof. Suppose k : M — M is an elementary embedding. Note that k o j and j agree on
the ordinals by Theorem and therefore crit(k o j) > ¢. The theorem now follows from
Theorem {201 O
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4.4 Weaker hypotheses

The models HCD(k) of the previous section are particularly interesting, being models of the
Axiom of Choice, but in fact certain applications of these models can be carried out under
hypotheses of lower consistency strength than a strongly compact cardinal. Here we will
show:

Theorem 4.31. Assume there is a proper class of strong cardinals. Then any pair of
ultrapower embeddings from the universe into an inner model agree on a ground of V.

We immediately obtain a proof of the uniqueness of elementary embeddings from the
Ground Axiom under (consistency-wise) weaker hypotheses:

Corollary 4.32. Assume the Ground Axziom and a proper class of strong cardinals. Then
the uniqueness of ultrapower embeddings holds. ]

By Theorem [3.7 the uniqueness of ultrapower embeddings implies the uniqueness of
extender embeddings. In the context of the eventual SCH, one can improve this to arbitrary
elementary embeddings using Corollary

We begin by defining a ZF-ground of V' on which the embeddings agree.

Definition 4.33. Suppose k is a cardinal. A set is k-extender definable if it is ordinal
definable over (V,jo,...,jn—1) for finitely many extender embeddings j; : V' — M; such
that crit(j;) > s and M" C M;. We denote the class of r-extender definable sets by
ED(k). The class of hereditarily k-extender definable sets, denoted by HED(x), is the largest
transitive subclass of ED(k).

Everything we prove about ED(k) can also be proven about the conceivably smaller class
of sets ordinal definable from short strong extenders, or in other words from elementary
embeddings j : V. — M such that crit(j) = &, j(k) > A\, VA € M, M<* C M, and
M = HM(§[V]U V). The relationship between the two notions is unclear.

The proof uses a generalization of Kunen’s commuting ultrapowers lemma:

Lemma 4.34. Suppose i :V — M and j : V — N are elementary embeddings such that
i(j) =7 I M and i(v) = j(i)(v) for all generators v of j. Then j(i) =1 | N.

Proof. In general given elementary embeddings ¢ : V — M and 7 : V — N, one has
10j =1i(j) ot because i(j(x)) = i(j)(i(x)). But note that in our case, i o j = j(i) o j since
toj=1i(j)oi=joi=j()oj. In particular, i(N) = j(i)(N) since N = j(V'). Therefore
i,7(#) : N = i(N) are elementary embeddings with the same target model.

Note that i | j[V] = j(i) | j[V], since this is just another way of saying that ioj = j(i)oj.
Our hypothesis states that ¢ [ G = j(i) | G where G is the class of generators of j. Now
N = HY(j[V]UG), and i and j(i) coincide on j[V] U G. Hence i | N = j(i). O

Corollary 4.35. Suppose X is a cardinal and jo,71 : V — M are extender embeddings such
that M = HM (j,[V] U V), for some a < X. Then jo and ji agree on ED(X). O

The following theorem, generalizing Theorem [£.10] is the key:

Theorem 4.36. Suppose k is strong. Then HED(k) is a ZF-ground.
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The theorem cannot be proved in exactly the same way as Theorem since Vopénka’s
theorem does not seem to go through. But one can instead use Bukovsky’s Theorem.
Suppose 6 is a cardinal. An inner model M is said to have the 0-uniform cover property if
for all X € M and f: X — M, there is a function F': X — M in M such that f(x) € F(z)
for all x € X and F(z) does not surject onto 6.

The following proposition is a version of Bukovsky’s theorem which follows the proof
from [I] in order to deal with ZF-grounds. Our situation is nominally different, since our
definition of the #-uniform cover property is somewhat weaker than the one employed there.

Proposition 4.37. Suppose M is an inner model of ZF with the 6-uniform cover property
for some cardinal 8. Then every set of ordinals is generic over M.

Proof. Let v be an ordinal and A a subset of v. We will show A is generic over M.

Let £ denote the class of infinitary propositional formulae with v indeterminates (x,, :
a < 7). Let Lny = LN M. Let A > v be a Beth fixed point of cofinality at least 6. Let
Ly = Ly NVy. Let f: PM(L)) — Ly assign to each ' € PM (L)) such that A F \/T
some ¢ € I such that A F ¢. Let F : PM(L£,) — PM(L)) be a function in M witnessing
the #-uniform cover property for f. Note that our assumption that cf(\) > 0 yields that
VFI) e Ly forall T C L.

Let T be the theory consisting of formulae of the form \/T' — \/ F(T") for nonempty
I' € L. Note that A £ T. Let P be the set of ¢ € £y such that T' does not prove —¢
(using any valid proof system for infinitary logic that is definable in M and suffices for
the argument in the final paragraph of the proof of this proposition). Partially order P by
setting o <Y if T F ¢ — .

Let G C PP be the set of ¢ € P such that A F ¢. We claim G is an M-generic filter. We
leave the verification that G is a filter to the reader. (See [I].)

Suppose D C P is a dense set that lies in M. We claim A E\/ D. Otherwise T does not
prove \/ D. Since F(D) C D, it follows that T" does not prove \/ F'(D). Let ¢ = \/ F(D).
Then —¢p € P. By density, fix v € D such that ¢» < —p. By contraposition, T proves
—¢ implies = (\/ D). Therefore since T+ ¢ — —¢, T F ¢ — =(\/ D). Since ¢ € D,
T+ =(\/ D) —» =, and therefore T + ¢ — —). As a consequence, T+ —), contradicting
that ¢ € P. O

Relativizing extender definability gives rise to the classes ED 4 and HED 4 for every set
parameter A.

Proposition 4.38. Suppose k is strong and A C k is such that V, € HODy4. Then
V =HED(k)a4.

Proof. Fix A > k, and we will show V), C HED(k)4. For this, let j : V — M be an
extender embedding such that crit(j) = &, j(k) > A, VA € M, and M<" C M. Then
j(A) € HED(k)4 and Vi € HOD}(,) € HED(k) 4. O

Proof of Theorem[{.36] Fix a set A C k such that V,, C HOD 4. By Proposition [£.37] and
Proposition it suffices to prove that HED(x) has the #-uniform cover property inside
HED(x)4 for some 6. Let 6 = (2%)*.

Suppose f : X — HED(k) is ED(k)4, and we will find F : X — HED(k) in HED(k)
witnessing the f-uniform cover property. Fix an extender E and a formula ¢ such that
f(x) =y if and only if ¢(x,y, A, F) holds. Define F' : X — HED(k) by setting

F(QS) = {y :dB C ,mp(z,y,B,E)}
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Clearly F is ED(k), and so F € HED(x). In V| F(z) is the surjective image of P(k), and
so in HED(k), F(z) does not surject onto (27)*. Since f(x) € F(x) for all z € X, F is as
desired. O

Corollary 4.39. If k is a strong cardinal, then HED(k) contains a ground.
Proof. A theorem of Usuba [I4] shows (in ZFC) that every ZF-ground contains a ground. [

Proof of Theorem[{.31, The theorem is now immediate from Corollary and Corol-
lary O

5 Ultrapower axioms

The Ultrapower Axiom is a combinatorial principle that clarifies the theory of countably
complete ultrafilters. Here we will show it implies the uniqueness of elementary embed-
dings. We will also consider a slight weakening of the Ultrapower Axiom called the Weak
Ultrapower Axiom, which until this work was not known to have any consequences at all.

An elementary embedding i : P — Q is close if for all A € Q, i~'[A] € P. If i is an
ultrapower embedding, we say in this case that i is internal, since for ultrapower embeddings,
closeness is equivalent to the existence of an ultrafilter U € P and an isomorphism k :
Ult(P,U) — @ such that ko jy =i.

Definition 5.1. The Ultrapower Aziom (UA) states that for any inner models Py and Py
admitting internal ultrapower embeddings jo : V' — Py and j; : V — Py, there exists an
inner model N admitting internal ultrapower embeddings kg : Py — N and k1 : P, — N
such that kg o jo = k1 0 j1.

Although it is not immediate from our formulation here, UA is a first-order statement.
In fact, it is equivalent to a Il>-sentence.

5.1 The Ultrapower Axiom
In this subsection, we show that UA implies the uniqueness of elementary embeddings.
Theorem 5.2. UA implies the uniqueness of elementary embeddings.

Typically, UA is only really useful for analyzing ultrapower embeddings. The generality
of this theorem may therefore seem surprising, though not perhaps to the dutiful reader
of this paper. What makes Theorem possible are Theorem [3.7] and Lemma [3.8] which
show that under cardinal arithmetic assumptions, the uniqueness of elementary embeddings
reduces to the uniqueness of ultrapower embeddings.

The uniqueness of ultrapower embeddings is one of the oldest structural consequences
of UA, proved during the author’s dissertation work:

Lemma 5.3 (UA). Suppose jo,j1: V — M are ultrapower embeddings. Then jo = j1.

Proof. Let (ko,k1) : M — N be an internal ultrapower comparison of (jg,j1). Note that
ko o jo = ki1 o j1 by the definition of a comparison and kg and k; agree on the ordinals by
Theorem Since every set is constructible from a set of ordinals, it suffices to show that
for all sets of ordinals A, jo(A) = j1(A4). But

Jo(A) = kg ' [ko(io(A)] = kg ' (k1 (j1(A)] = k1 k1 (71 (A)] = j1(A) 0
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Using Lemma [5.3] and Theorem one can now show that UA plus SCH implies the
uniqueness of elementary embeddings. Once again, we will eliminate the SCH hypothesis
by proving that the conclusion of Lemma [3:§] follows from UA without appealing to SCH.

Lemma 5.4 (UA). Suppose M is a countably closed inner model and j : V. — M is an
elementary embedding. Then j is an extender embedding.

Proof. Suppose not. Then there is a strong limit cardinal A of cofinality w that is closed

under j and a limit of generators of j. Since j is continuous at ordinals of cofinality w,

j(A) = A. Let (v, : n < w) be an increasing sequence of generators of j whose limit is A.
Let U be the ultrafilter on A derived from j using (v, : n < w). Let

Ay =min{|4]: A€ U} = X\, ([id]p)

Then A < Ay < M. Let v be the least cardinal greater than A\ that carries a countably
complete uniform ultrafilter. Clearly v < Ay < A¥.

We claim v = AT. The proof requires some ideas from the theory of UA. A cardinal
is Fréchet if it carries a countably complete uniform ultrafilter. A cardinal is isolated if it
is a Fréchet limit cardinal that is not a limit of Fréchet cardinals. (It is an open question
whether it is provable from UA that all isolated cardinals are measurable.) Assuming
towards a contradiction that v # AT, then v is an isolated cardinal by [4, Corollary 7.4.6].
Letting d- be the strict supremum of the Fréchet cardinals below 7, we have that 6, = A
since A is closed under j and a limit of generators of j. Since v < A“, v is not measurable,
and so [, Proposition 7.5.22] implies that ¢, is regular, which is a contradiction.

Since AT carries a countably complete uniform ultrafilter, Lemma implies 2 = \*.
It follows that Ay = AT, but jy(AT) < j(AT) = AT, which is a contradiction. O

Proof of Theorem[5.4 By Theorem [3.7] one can reduce to proving the uniqueness of em-
beddings that are almost ultrapowers, but by Lemma if an embedding is almost an
ultrapower, it actually is an ultrapower. By Lemma the uniqueness of ultrapower
embeddings is a consequence of UA. O

5.2 The Weak Ultrapower Axiom

A model @ is an internal ultrapower of a model P if there is an internal ultrapower embed-
ding from P to @. In slogan form, the Ultrapower Axiom states: any two ultrapowers of the
universe have a common internal ultrapower. Like so many slogans, this is not completely
accurate, since the Ultrapower Axiom contains an additional requirement amounting to the
commutativity of a certain diagram of ultrapowers. This discrepancy raises a number of
questions.

Definition 5.5. The Weak Ultrapower Aziom (Weak UA) states that any two ultrapowers
of the universe have a common internal ultrapower.

By ultrapower, we here mean wellfounded ultrapower. In 2018, Hugh Woodin raised the
question: can any of the consequences of UA be proved from the Weak UA? Or does the
commutativity requirement in the Ultrapower Axiom somehow contain some trace of the
assumption that V' = HOD that cannot be recovered from Weak UA?

Does the Weak Ultrapower Axiom imply the Ultrapower Axiom? Assuming the unique-
ness of elementary embeddings, the answer is obviously yes.
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Proposition 5.6. UA is equivalent to the conjunction of Weak UA and the uniqueness of
ultrapower embeddings. ]

Using the results of this paper, one can prove some of the consequences of UA assuming
just Weak UA by increasing the large cardinal hypotheses. We only sketch the proofs.

Definition 5.7. If My and M; are inner models and ag and «; are ordinals, we write
(Mo, ag) ~ (My, ) if there exist elementary embeddings ko : My — N and ky : My — N
to a common inner model N such that ko(ag) = k1 (o).

It is unclear whether this relation is first-order definable, but this will not be an issue.

Theorem 5.8. Suppose k is an extendible cardinal and Uy and Uy are k™ -complete ultra-
filters on ordinals such that (My,, [id|y,) ~ (My,,[id]y,). Then Uy = Uy.

Proof. For n =0,1, let j, : V — M, be the ultrapower embedding associated to U,, and let
ap, = [id]y,, . Let N be a model of set theory admitting elementary embeddings ko : My — N
and ky : My — N such that ko(ag) = k1(a1). Note that kg o jo and kq o j; agree on HCD
by Lemma As a consequence, Uy N HCD = U; N HCD:

AcUy <= ag € jo(A)
<= ko(ag) € ko(jo(A))
<~ ki(an) € k1(51(A4))
— Ac U1

Let W = Uy N HCD. Since W is kT-complete and HCD = HCD(x), W € HCD. Since
V is a generic extension of HCD for a forcing of size less than the completeness of W
(Proposition , the upwards Lévy-Solovay theorem [II] implies that Uj is the filter
generated by W. Similarly, U; is the filter generated by W, so Uy = U;. O

Theorem enables us to define a wellorder of the k™-complete ultrafilters.

Definition 5.9. If My and M; are inner models and g and «; are ordinals, then
(Mo, ap) <i (M, 1)

if there is an inner model N admitting an elementary embedding kg : My — N and an
internal ultrapower embedding k1 : M; — N with ko(ao) < ki(aq). The weak Keto-
nen order is defined on countably complete ultrafilters Uy and U; by setting Uy <j Uy if
(Mu,, [id]v,) <x (Mu,, [id]u, ).

Since we did not require that kg is an ultrapower embedding, it is unclear whether the
weak Ketonen order is first-order definable, but under the large cardinal hypotheses we are
assuming (or simply the eventual SCH), Corollaryimplies that kg must be an ultrapower
embedding. Actually, under Weak UA with no cardinal arithmetic hypothesis, one can
show that the weak Ketonen order is always witnessed by a pair of internal ultrapower
embeddings. In either context, it follows from [0, Theorem 3.5.8] that the weak Ketonen
order is wellfounded. By Theorem this yields:

1Here we use Theoremto derive almost ultrapower embeddings ig,71 : V — Q from koo jo and k1 0j1
and an elementary £ : Q — N such that kg o jo = £oig and k1 0 j; = £oi;. Then we argue that 79 and i1
are ultrapower embeddings by Corollary @ Now we are in a position to apply Lemmamto 10 and 41,
which implies that igp and i; agree on HCD, and hence so do kg o jo and k1 o j;.
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Corollary 5.10 (Weak UA). If s is an extendible cardinal, the class of k™ -complete ultra-
filters on ordinals is wellordered by the weak Ketonen order. ]

Corollary 5.11 (Weak UA). If  is an extendible cardinal, every k™ -complete ultrafilter is
ordinal definable. ]

Theorem 5.12 (Weak UA). If there is an extendible cardinal, then V is a generic extension
of HOD.

Proof. Since there is an extendible cardinal, V' is a generic extension of HCD by Theo-
rem [4.10] and Theorem By Corollary HCD = HOD. O

We now bound the size of the forcing taking HOD to V. Somewhat surprisingly, one can
show that it is strictly smaller than the least extendible.

Theorem 5.13 (Weak UA). Suppose there is an extendible cardinal. Then V is a generic
extension of HOD by a forcing in Vs where § is the least X3-reflecting cardinal.

Note that if (My,, [id]y,) ~ (My,, [id]v,), then Uy " HOD = U; N HOD. Combining
this with the fact that the weak Ketonen order is a prewellorder whose induced equivalence
relation extends ~, one obtains:

Lemma 5.14 (Weak UA). Suppose U is a countably complete ultrafilter on an ordinal.
Then U NHOD € HOD. O

Since HOD satisfies the Axiom of Choice, it follows that if U is a countably complete
ultrafilter on a set X € HOD, then UNHOD € HOD: just fix an OD bijection f : X — Ord,
and note that f,(U) N HOD € HOD by Lemma and so U NHOD € HOD.

We will use this to show that HOD has the k-approximation and cover properties at
the least strongly compact cardinal. This in turn yields that HOD is locally definable from
parameters.

Theorem 5.15 (Weak UA). Assume there is an extendible cardinal and let k be a strongly
compact cardinal. Then HOD has the k-approximation and cover properties. If k is super-
compact, then HOD is a weak extender model for the supercompactness of k.

Proof. By the strongly compact version of the HOD dichotomy theorem [7], since HOD com-
putes sufficiently large successor cardinals, HOD has the s-cover property. By Lemma
every countably complete ultrafilter on an ordinal is amenable to HOD. Therefore by The-
orem HOD has the k-approximation and cover properties. The second part of the
theorem is similar to Theorem [£.141 O

Given Theorem [5.15 one obtains Theorem [5.13] simply by counting quantifiers.

Proof of Theorem[5.13 Let r be the least strongly compact cardinal, so k < 4d. Let
H = HOD N H(x*"). By Hamkins’s pseudoground model definability theorem [2], HOD
is uniformly definable from H in H(v) for any strong limit cardinal v > /{E| Therefore the
statement that V is a generic extension of HOD is X3 in the parameter H, and so it reflects
to V5. Then taking a generic G € V; such that Vs = (HOD N Vy)[G], the correctness of Vj
implies that in fact, V' = HOD[G]. O

2This follows from the proof of the theorem, which does not require that xt be correctly computed by
HOD.
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Now repeating the proofs, we can state slightly nicer theorems:

Theorem 5.16 (Weak UA). If k is an extendible cardinal, the class of k-complete ultrafil-
ters on ordinals is wellordered by the weak Ketonen order. In particular, every k-complete
ultrafilter is ordinal definable. ]

Definition 5.17. We say the Ultrapower Axiom holds for a pair of ultrapower embeddings
Jo: V. — My and j; : V — M if there is an inner model N admitting internal ultrapower
embeddings ko : My — N and ki : M; — N such that kg o jo = k1 0 j1.

Theorem 5.18 (Weak UA). Suppose k is an extendible cardinal. Then in HOD, the Ul-
trapower Axiom holds for any pair of ultrapower embeddings with critical point at least k.

Proof. Fix ultrapower embeddings jo : HOD — My and j; : HOD — M; with critical point
at least k. Since V is a forcing extension of HOD for a forcing in V,, these ultrapower
embeddings lift to j; : V — Mg and ji : V — M7. Applying Lemma[5.14] every countably
complete ultrafilter is amenable to HOD, so by elementarity, every countably complete
ultrafilter of M (resp. M;) is amenable to My (resp. M;). In particular, any internal
ultrapower embedding of M (resp. M7) restricts to a close embedding of My (resp. My).
Applying the Weak Ultrapower Axiom, fix an inner model N* and elementary embed-
dings kg : My — N* and ki : M7 — N*. Letting ko = k5 | Mo and ky = kT | My, the
amenability of countably complete ultrafilters to HOD implies kg and k; are close to My and
M;. Also Theorem [3.4]implies koo jo = ki1 0j1. Let X = HN (ko[Mo]Uki[Mi]), let H be the
transitive collapse of X, let h: H — N be the inverse of the transitive collapse embedding,
and let 49 : My — H and i1 : M1 — H be given by io = h ' okg and i1 = h ' o ky. It is
then easy to show that ip and i, are internal ultrapower embeddings of My and M;. O

Proposition 5.19. Suppose k is supercompact and the Ultrapower Aziom holds for embed-
dings with critical point at least k. Then for all cardinals X > k, 2 = \*.

Proof. This follows from the proof of the main theorem of [6]. O
Theorem 5.20 (Weak UA). If k is extendible, then for all cardinals X > K, 2* = \*.

Proof. By Theorem and Proposition in HOD, the Generalized Continuum Hy-
pothesis holds at all cardinals greater than or equal to the least extendible cardinal. By
Theorem [5.13] V is a generic extension of HOD for a forcing of size less than the least ex-
tendible cardinal, and so the Generalized Continuum Hypothesis holds in V' at all cardinals
greater than or equal to the least extendible cardinal. O

A uniform ultrafilter U on a cardinal A is Dodd sound if the function E : P(\) — My
defined by E(A) = jy(A) N [id]y belongs to My. At least in the context of GCH, one can
think of Dodd soundness as a generalization of supercompactness: if 2<* = X\ and U is a
normal fine ultrafilter on P()), then there is a unique Dodd sound ultrafilter Rudin-Keisler
equivalent to U. (Not every Dodd sound ultrafilter is equivalent to a normal fine ultrafilter.)

Proposition 5.21. Suppose k is a cardinal such that the Ultrapower Axziom holds for em-
beddings with critical point at least k. Then the Mitchell order is linear on k-complete Dodd
sound ultrafilters.
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Sketch. A similar theorem is proved in [4, Theorem 4.3.29] under the stronger assumption
of full UA; the point is that the proof only needs a comparison of the two Dodd sound
ultrafilters one is trying to show are comparable in the Mitchell order, and so if we are
considering x-complete Dodd sound ultrafilters, UA for embeddings with critical point at
least k suffices for the argument. O

Let A4 (\) be the set of k-complete normal fine ultrafilters on Pyq(A), and let A =
U)\ECard ‘/VN()‘)

Theorem 5.22 (Weak UA). If k is extendible, then the Mitchell order is linear on k-
complete Dodd sound ultrafilters. In particular, the Mitchell order is linear on Ay,.

Proof. Theorem and Proposition yield the linearity of the Mitchell order on k-
complete Dodd sound ultrafilters in HOD. By Theorem V' is a generic extension of
HOD for a forcing of size less than the least extendible cardinal, which implies the linearity
of the Mitchell order on x-complete Dodd sound ultrafilters in V. The fact that the linearity
of the Mitchell order on Dodd sound ultrafilters implies the linearity of the Mitchell order
on normal fine ultrafilters is a result from [3]. The result there only applies to normal fine
ultrafilters on Phq(A) if 2<* = A, which is true by Theorem O
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