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Abstract

In the 1990s, Steel and Woodin showed that under large cardinal hypotheses, the
HOD of L(R) admits a fine-structural analysis. Although this theorem sheds light on
various problems in descriptive set theory, the fine-structural representations of many
fundamental objects of determinacy theory are still unknown. For example, Woodin
asked whether the ultrapower of HOD by the closed unbounded filter on ω1 is given
by an iteration tree on HOD according to its fine-structural extender sequence and
canonical iteration strategy. In this paper, we give a positive answer to Woodin’s
question, not only for the closed unbounded filter but for any ultrafilter on an ordinal.
The key tool that enables the solution of Woodin’s problem is a recent advance in
inner model theory: the Steel–Schlutzenberg theory of normalizing iteration trees,
which allows us to represent HOD and its ultrapowers as normal iterates of a single
countable mouse. Despite our results, the precise structure of the iteration trees that
lead from HOD into its ultrapowers remains a mystery.

1 Introduction

There is a large body of work exploring connections between determinacy and large cardinals.
This work began with Solovay’s discovery that the Axiom of Determinacy implies that the
club filter on ω1 is an ultrafilter. Of course, this ultrafilter is ordinal definable, so it follows
that ω1 is a measurable cardinal in HOD. This is typical of how one shows that some
large cardinal property is realized in HOD in the determinacy context: one produces an
ultrafilter U on an ordinal such that the ostensibly external embedding iU ↾ HOD witnesses
the appropriate large cardinal property. By a theorem of Kunen, any ultrafilter on an
ordinal is ordinal definable, so iU ↾ HOD is actually an internal elementary embedding of
HOD, and so it really does realize the desired large cardinal property. This method was
pushed further by Martin, Steel, and Woodin, culminating in Woodin’s result that in L(R)
under determinacy, Θ is a Woodin cardinal of HOD, the witnesses to Woodinness coming
from cleverly constructed ultrafilters on ordinals.

Connections between determinacy and inner model theory have provided a different kind
of understanding of the large cardinal structure of HOD in the determinacy context. Work
of Steel and Woodin, and subsequenlty Sargsyan, Trang, and others, have provided fine-
structural analyses of HOD in all known models of AD+V = L(P (R)); that is, they showed
that in all these various models of determinacy, HOD|Θ is a premouse (of some variety).
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Of course, this immediately implies that HOD|Θ has all of the nice properties that premice
have, for example GCH or the Ultrapower Axiom. But this also identifies a distinguished
sequence of extenders of HOD which can be used to form fine-structural iteration trees
(along with the resulting iterates and iteration maps).

In this paper we establish a close connection between ultrafilters on ordinals and this
fine-structural understanding of HOD in the determinacy context. We show that in many
of the known models of AD+ V = L(P (R)), for U an ultrafilter on an ordinal, iU (HOD) is
an iterate of HOD via an iteration tree coming from the distinguished extender sequence of
HOD and iU ↾ HOD is the corresponding iteration map. In particular, this holds in L(R)
under determinacy, answering a question of Woodin.

There are essentially two ingredients to our proofs: the analysis of HOD in determinacy
models, mentioned above, and full normalization, a more recent inner-model-theoretic tool
developed in [2] and [3]. While both of these ingredients are quite involved technically, we
will get to use both off the shelf, and our proofs are fairly short and simple by inner model
theory standards.

We will review what we need from the HOD analysis and full normalization in Section 2
before establishing our main results in two contexts: under ADR + V = L(P (R)) + HPC in
Section 3.1, and under AD + V = L(R) in Section 3.2.

2 Preliminaries

2.1 The HOD analysis

In this section we will collect some terminology and results about mouse pairs and the HOD
analysis in the contexts of interest. By a premouse we mean any one of three varieties:
an ms-indexed pure-extender premouse, a pfs pure-extender premouse, or a least branch
strategy premouse. A partial iteration strategy Σ for a premouse P is a partial strategy for
choosing cofinal well-founded branches through stacks of normal trees on P ; more precisely,
Σ is a partial function with domain some set D of stacks of normal trees S⃗ on P such that

1. lh(S⃗) is successor ordinal α + 1, lh(Sα) is a limit ordinal, and Σ(S⃗) is a cofinal well-
founded branch of Sα, and

2. for any α < lh(S⃗), and any limit λ < lh(Sα), S⃗ ↾ α⌢⟨Sα ↾ λ⟩ ∈ D and [0, λ)Sα
=

Σ(S⃗ ↾ α⌢⟨Sα ↾ λ⟩).

We say a stack S⃗ is by Σ if for all α < lh(S⃗), and limit λ < lh(Sα), S⃗ ↾ α⌢⟨Sα ↾ λ⟩ ∈ D

and [0, λ)Sα
= Σ(S⃗ ↾ α⌢⟨Sα ↾ λ⟩). We also say a stack of normal trees S⃗ on P is on (P,Σ)

if it is by Σ.
We will use a variation of the notion of mouse pair from [5, Section 9.2].

Definition 2.1. A mouse pair with scope X is a pair (P,Σ) such that P is premouse and
Σ is a partial iteration strategy for P with domain D ⊆ X such that

1. (a) if S⃗ ∈ X is a stack of normal trees on P of successor length α+1 such that lh(Sα)

is a limit ordinal and S⃗ is by Σ, then S⃗ ∈ D,

(b) if S⃗ is a stack of normal trees on P by Σ of limit length, thenM S⃗
∞ is well-founded,

and
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(c) if S⃗ is a stack of normal trees on P by Σ and T a putative normal iteration tree

on M S⃗
∞ of successor length such that S⃗⌢⟨T ↾ α⟩ is by Σ for all α + 1 < lh(T ),

then MT
∞ is well-founded,

2. Σ is internally lift-consistent, push-forward consistent, fully normalizes well, and has
very strong hull condensation, and

3. if P is a least branch premouse, then (P,Σ) moves itself correctly.

The reader can find the several terms we have not defined in [5] and [3], but we believe
familiarity with these terms is not really necessary for understanding the paper. We only
need a few facts about mouse pairs which we will state and discuss in these preliminary
sections.

We have deviated from the definition of mouse pair in [5] in a couple of ways, mostly as a
matter of convenience. First, we have restricted our iteration strategies to stacks of normal
trees, whereas the iteration strategies in [5] act on a wider class of stacks of trees. Second,
we have replaced quasi-normalizing well and strong hull condensation with fully normalizing
well and very strong hull condensation. The main theorem of [3] is that if (P,Σ) is a mouse
pair the sense of [5] fully normalizing well and has very strong hull condensation, so that
(P, Σ̄) is a mouse pair in our sense, where Σ̄ is the restriction of Σ to stacks of normal trees.
(Moreover, it can be shown by the methods of [3] that mouse pairs in our sense extend
uniquely to mouse pairs in the sense of [5], but we will not use this.)

Definition 2.2. Let (P,Σ) be a mouse pair with scope HC. A normal iteration tree T on
P is by Σ+ if every countable weak hull of T is by Σ.

Note that for T a tree on P of limit length by Σ+, there is at most one branch b of T
such that T ⌢b is by Σ+. In this case, we define Σ+(T ) = b. Since Σ has very strong hull
condensation, if T is by Σ, it is also by Σ+. So Σ+ is a partial iteration strategy for P
extending Σ to certain iteration trees of uncountable length.

We also say that a stack of trees ⟨S, T ⟩ is by Σ+ if X(S, T ↾ ξ + 1) is by Σ+ for all
ξ < lh(T ). if S is by Σ+ with last model Q, we let Σ+

Q be the resulting tail strategy; that

is, T is by Σ+
Q if and only if ⟨S, T ⟩ is by Σ+.

Lemma 2.3 (Steel, [4]). Assume AD+. Let (P,Σ) be a least branch hod pair with scope
HC. Then Σ+ restricts to a total iteration strategy for normal trees of length less than Θ.
That is, whenever T is by Σ+ and has limit length less than Θ, Σ+(T ) is defined.

Therefore, under AD+, if (P,Σ) is a least branch hod pair with scope HC, then (P,Σ+ ↾
VΘ) is a least branch hod pair with scope VΘ.

In this paper the only determinacy models we will consider are L(R) and those satsifying
ADR + V = L(P (R)) + HPC. The HOD analysis has been carried out in both contexts. In
L(R), this is due to Steel and Woodin; under ADR + V = L(P (R)) + HPC, this is due to
Steel.

The following is the main theorem of [6, §7] (though not explicitly stated in this form).

Theorem 2.4 (Steel-Woodin, [6]). Assume AD + V = L(R). Then there is a ms-indexed
pure-extender premouse H such that VΘ∩HOD is the universe of H|Θ and there is a partial
iteration strategy Λ for H and HOD = L[H,Λ].

The following is one of the main theorems of [4].

3



Theorem 2.5 (Steel, [4]). Assume ADR + V = L(P (R)) + HPC. Then there is a least
branch premouse H such that VΘ ∩HOD is the universe of H and HOD = L[H].

Unfortunately, we won’t be able to simply quote these concise expressions of the HOD
analyses in our proofs. To prove our theorem in L(R), we will actually need the reflection
argument used in the proof of Theorem 2.4. To prove our theorem under ADR + V =
L(P (R)) + HPC, we will need a refinement of Theorem 2.5, which we will now state.

Definition 2.6. For (P,Σ) and (Q,Λ) mouse pairs of the same type, we let (P,Σ)◁ (Q,Λ)
if P ◁Q and ΛP = Σ. We let (P,Σ)◁∗ (Q,Λ) if P is also a strong cutpoint initial segment
of Q; that is, P is passive Q has no extenders overlapping o(P ).

Theorem 2.7 (Steel, [4]). Assume ADR and HPC. Then there is a sequence ⟨(Hα,Σα) |
α < η⟩ of least branch hod pairs such that for every α < η,

1. the universe of Hα is HOD ∩ Vo(Hα) and o(Hα) is strongly inaccessible in HOD and
closed under ultrapowers in V ,

2. there is a countable least branch hod pair (P,Σ) with scope HC such (Hα,Σα) is an
iterate of (P,Σ+ ↾ VΘ) and Hα =M∞(P,Σ),

3. for every α < β < η, (Hα,Σα)◁∗ (Hβ ,Σβ),

Finally, letting H be the least branch premouse
⋃

α<ηHα, we have o(H) = Θ and L[H] =
HOD.

This analysis of HOD determines a natural partial iteration strategy for normal iteration
trees on HOD viewed as least branch premouse which we denote ΣHOD. A normal tree T is
by ΣHOD if for any limit ordinal λ < lh(T ), there is an α < η such that T ↾ λ is based on
Hα and [0, λ)T = Σα(T ↾ λ).

2.2 Full normalization

The full normalization of a stack of normal trees S⃗ on a mouse pair (P,Σ) is defined by
recursion using the normalization process for stacks of length two at successor stages and
taking direct limits at limit stages. One of the main theorems of [2] and [3] is that if (P,Σ)
is a mouse pair with very strong hull condensation, this process does not break down and
produces a single normal tree X(S⃗) on (P,Σ) with the same last model and main branch

embedding as S⃗ (in the case these are defined). We will only need to consider stacks of
length at most ω in this paper, so we briefly discuss the length two case and the direct limit
process for the special case of stacks of length ω.

First, given a stack of length two ⟨S, T ⟩ on (P,Σ) such that T has successor length, the
full normalization X = X(S, T ) is a single normal tree on (P,Σ) such that MX

∞ = MT
∞.

If T does not drop along its main branch, the normalization process also produces a weak
tree embedding Φ : S → X , a certain kind of system of embeddings which embeds the
iteration tree structure of S into that of X . The definition of this weak tree embedding is
quite involved but we will need very little about it, which we collect below. We refer the
reader to [2] and [3] for further details. If S also doesn’t drop along its main branch, then
we additionally have that iT0,∞ ◦ iS0,∞ = iX0,∞.

One component of the weak tree embedding Φ : S → X is the u-map uΦ, an injective
map from lh(S) into lh(X ). Roughly, the u-map keeps track of an association between the
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exit extenders of S and those of X , determined by the rest of Φ. We’ll only use a special
case of this association, recorded in the following lemma.

Lemma 2.8. Suppose ⟨S, T ⟩ is a stack of normal trees with a last model on a mouse
pair (P,Σ). Assume that T doesn’t drop along its main branch. Let X = X(S, T ) and
Φ : S → X be the associated weak tree embedding. Suppose that α+ 1 < lh(X ) is such that
lh(EX

α ) > lh(ET
ξ ) for all ξ+1 < lh(T ). Then α ∈ ran(uΦ). Moreover, letting ᾱ = (uΦ)−1(α),

iT0,∞ restricts to a cofinal elementary map from MS
ᾱ |lh(ES

ᾱ ) into M
X
α |lh(EX

α ).

If ⟨S, T ⟩ is a stack of normal trees with a last model on a least branch hod pair (P,Σ)
and T does drop along its main branch, then the exit extenders of T are used cofinally
in X = X(S, T ) so there can be no α + 1 < lh(X ) is such that lh(EX

α ) > lh(ET
ξ ) for all

ξ+1 < lh(T ). Therefore the assumption in Lemma 2.8 that T does not drop causes no real
loss of generality. (However this assumption is needed to ensure that there is a total weak
tree embedding from S into X .)

We need another basic fact about normalizing stacks of length two.

Lemma 2.9. Suppose ⟨S, T ⟩ is a stack of normal trees with a last model on a mouse pair
(P,Σ) and T does drop along its main branch. Let X = X(S, T ) and Φ : S → X be
the associated weak tree embedding. Then every exit extender of T appears in X and such
extenders appear cofinally in X . As a consequence, there can be no α + 1 < lh(X ) is such
that lh(EX

α ) > lh(ET
ξ ) for all ξ + 1 < lh(T ). Moreover, for all ξ + 1 < lh(T ), letting α+ 1

be such that EX
α = ET

ξ , α ̸∈ ran(uΦ).

Finally, we need to look more closely at normalizing a stack of length two. To normalize
⟨S, T ⟩, we proceed by induction on lh(T ), forming the auxiliary normalizations of ⟨S, T ↾
ξ + 1⟩ and associated weak tree embeddings between these trees along the tree-order of
T . At limit stages of T , we take direct limits corresponding to the branch choices of T .
The following technical lemma shows that we can actually recover the branch choices of
T from the branches chosen in the direct limit tree (or, more importantly, in the final full
normalization of ⟨S, T ⟩).1

Proposition 2.10 (Steel [5, Section 6.6], Schlutzenberg [3]). Suppose ⟨S, T ⟩ is a stack of
normal trees on a premouse P and that T has limit length. For ξ < lh(T ), let Xξ = X(S, T ↾

ξ+1) and let αξ +1 < lh(Xξ) be such that E
Xξ
αξ = ET

ξ . Let X =
⋃

ξ<lh(T ) Xξ ↾ αξ +1. Then
for any cofinal wellfounded branch b of X , there is a unique cofinal branch c of T such that
X⌢b⊴X(S, T ⌢c).

Note that we do not assume that c is a wellfounded branch of T . If MT
c is illfounded,

then X(S, T ⌢c) is not an iteration tree (and may not even be a putative iteration tree).
The conclusion asserts that X(S, T ⌢c) ↾ supξ αξ + 1 is an iteration tree, however.

Next we consider normalizing a stack of length ω. Let S⃗ be a non-dropping length ω
stack of normal trees on a mouse pair (P,Σ). Let Xn = X(S0, . . . ,Sn). Then for n < m,

Xm = X(Xn, S⃗ ↾ (n,m]) and so there is a resulting weak tree embedding Φn,m : Xn → Xm.
We also set Φn,n to be the identity weak tree embedding from Xn to itself. One can show

that if l ≤ m ≤ n, then Φl,n = Φm,n ◦ Φl,m. The full normalization X(S⃗) is the direct
limit of the linear system ⟨Xn,Φn,m | n ≤ m < ω⟩. As mentioned above, one of the main

1In [5, Section 6.6], the analogous statement is established for embedding normalization, but the same
arguments work for full normalization.
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theorems of [3] and [2] gives that X(S⃗) is a normal tree on (P,Σ) with last model M S⃗
b

for b the unique cofinal branch of S⃗. Moreover, there are resulting direct limit weak tree

embeddings ΦS⃗
n,ω : Xn → X(S⃗).

We will only need to use a couple additional facts about this process. First, every node
in the full normalization X(S⃗) is in the range of the u-map of some direct limit weak tree
embedding.

Proposition 2.11. Let S⃗ be a non-dropping length ω stack of normal trees on a mouse pair
(P,Σ) with scope HC. For every α+1 < lh(X(S⃗)), there exist an n < ω and ᾱ+1 < lh(Xn)

such that uΦ
S⃗
n,ω (ᾱ) = α.

Second, a version of the commutativity of the associated weak tree embeddings passes
through limits.

Proposition 2.12. Let S⃗ be a non-dropping length ω stack of normal trees on a mouse
pair (P,Σ) with scope HC. For m ≤ n ≤ ω, let Xm,n = X(S⃗ ↾ [m,n)). Then X0,ω =

X(X0,n,Xn,ω) and ΦS⃗
n,ω is the weak tree embedding from X0,n into X(X0,n,Xn,ω) associated

to this normalization.

Finally, we mention a couple consequences of full normalization which we will use. First,
we note what is probably the most important consequence: positionality, another regularity
property for iteration strategies.

Lemma 2.13 (Positionality, Steel [5, Section 5.2]). Suppose S⃗0 and S⃗1 are non-dropping

stacks of normal trees on a mouse pair (P,Σ) with a common last model. Then iS⃗0
0,∞ = iS⃗1

0,∞.

This is actually an immediate consequence of full normalization and an essentially trivial
instance of positionality: non-dropping normal trees S0, S1 on a mouse pair (P,Σ) with a
common last model Q have the same iteration map because S0 = S1, as both are just the
result the normal tree on (P,Σ) obtained by comparing P and Q.

Remark 2.14. The fact just mentioned is totally general and will be used often: a normal
tree T of successor length on a mouse pair (P,Σ) is completely determined by its last model
and, in fact, T is the tree on (P,Σ) obtained by comparing P and MT

∞ by least extender
disagreements. (In particular, we never encounter strategy disagreements and MT

∞ doesn’t
move in this comparison.)

Second, we have a related directedness result for non-dropping iterates of a mouse pair.

Lemma 2.15. Let δ be a regular cardinal. Suppose (M,ΣM ) and (N,ΣN ) are non-dropping
<δ-iterates of a mouse pair (P,Σ) with scope Hδ. Let TM and TN be the padded normal
iteration trees on (M,ΣM ) and (N,ΣN ) obtained by comparison by least extender disagree-
ment. Then the length η of these trees is less than δ, no strategy disagreements occur, and
neither side drops along the main branch, so MTM

∞ =MTN
∞ and Σ

M
TM
∞

= Σ
M

TN
∞

. Moreover,

for all α+ 1 < η, either ETM
α or ETN

α is trivial.

3 Main theorems

3.1 ADR + V = L(P (R)) + HPC

In this section we’ll start by proving the our main theorem under ADR+V = L(P (R))+HPC.
We will also be able to generalize it, using a somewhat more complicated argument, to
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ultrafilters that are not on ordinals.

Lemma 3.1 (AD+ + V = L(P (R))). If U is an ultrafilter on X ≤∗ R, then iU ↾ HOD =
jHOD
E where E is an extender in HOD of support Θ.

Proof. We first claim that every set of ordinals S of size less than Θ is covered by a set
T ∈ HOD of size less than Θ. Since V = L(P (R)), S is definable from some set of reals A
by a formula φ; say S = {α ∈ HOD | φ(α,A)}. Let SB = {α ∈ HOD | φ(α,B)}. Let ξ be
the Wadge-rank of A. Let Z be the set of all sets of reals B of Wadge-rank ξ such SB has
the same ordertype as S. Let T = {α ∈ HOD | ∃B ∈ Z φ(α,B)}. It’s easy to show that T
has size less than Θ.

To prove the lemma, it suffices to show that for every ordinal ν there is a set T ∈ HOD
of size less than Θ such that ν ∈ iU (T ), since then the measures derived from iU ↾ HOD
concentrate on sets of size less than Θ. Fix f : X → Ord such that [f ]U = ν. Let S = ran(f)
and let T ∈ HOD be a set of size less than Θ covering S. For all x, f(x) ∈ S, so by the
definition of the ultrapower, ν ∈ iU (S). By elementarity of iU ↾ HODS , ν ∈ iU (T ), proving
the lemma.

Note that in the case that U is an ultrafilter on an ordinal, the extender E derived from
iU ↾ HOD with support Θ also has length Θ, since sup iU [Θ] = Θ in this case (since Θ is a
strong limit).

Theorem 3.2 (Goldberg [1]). If j0 and j1 are elementary embeddings from V into the same
inner model, then j0 ↾ Ord = j1 ↾ Ord.

Note that the statement of this theorem is not actually expressible in the language
of set theory. For our purposes, the result should be construed as a theorem of ZFC in
the language of set theory expanded by additional predicates for j0 and j1 (i.e. where
replacement is stated in this expanded language). We will apply this theorem to structures
of the form (Vκ,∈, j0, j1) for κ a strongly inaccesssible cardinal and j0 and j1 elementary
embeddings from Vκ into some transitive set M ⊆ Vκ. Such structures are easily seen to
satisfy ZFC in this expanded language.

Lemma 3.3. Suppose (M,ΣM ) and (N,ΣN ) are non-dropping iterates of a mouse pair
(P,Σ) such that P satisfies ZFC. If N ⊆M , then (N,ΣN ) is a normal non-dropping iterate
of (M,ΣM ).

Proof. Let TM , TN be the (padded) trees of the comparison of (M,ΣM ) with (N,ΣN ) by
least disagreement. By Lemma 2.15, TM , TN don’t drop and have a common last model
(Q,ΣQ). Let SM , SN , and SQ witness that M , N , and Q are normal iterates of (P,Σ). In
particular, SQ is the full normalization X(SM , TM ) = X(SN , TN ).

Towards a contradiction, suppose TN is non-trivial. Let ξ be least such that ETN

ξ is non-

trivial. Let E = ETN

ξ and α be least such that either α + 1 = lh(SN ) or lh(ESN
α ) > lh(E).

Also let X = X(SM , TM ↾ ξ + 1) (ignoring the padding of TM ).
Then X ↾ α + 1 = SN ↾ α + 1, since MX

∞ and N = MSN
∞ agree up to lh(E). Moreover,

E = EX
α since SN ↾ α + 1⌢⟨E⟩ is a normal tree by Σ whose last model agrees with the

last model of X strictly past lh(E). By Lemma 2.9, TM ↾ ξ + 1 cannot drop along its main
branch. Let Φ be the weak tree embedding from SM into X . By Lemma 2.8, α = uΦ(ᾱ) for
some ᾱ+1 < lh(SM ) and i = iTM

0,ξ restricts to a cofinal elementary map from MSM
ᾱ |lh(ESM

ᾱ )

into N |lh(E) =MX
α |lh(EX

α ).
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Since N ⊆ M and M is closed under its iteration strategy ΣM , TM ↾ ξ + 1 ∈ M . In
particular, i ↾ MSM

ᾱ ||lh(ESM
ᾱ ) is a member of M . But then ESM

ᾱ = i−1(E) is a member of
M , since E ∈ N ⊆M . So there is an MSM

ᾱ |lh(ESM
ᾱ )-definable surjection from λ(ESM

ᾱ ) onto
lh(ESM

ᾱ ), contradicting that lh(ESM
ᾱ ) is a cardinal of M , since ESM

ᾱ is used in the normal
iteration from P into M .

Lemma 3.4. Assume AD++V = L(P (R)). Let (P,Σ) be a mouse pair with scope HC and
T be a normal tree by Σ+. (See Definition 2.2.) Let U be an ultrafilter on a set X ≤∗ R
such that Ult(Ord, U) is well-founded. Then iU (T ) is by Σ+.

Proof. We need to show that every countable weak hull of iU (T ) is by Σ. So fix T̄ a
countable weak hull of iU (T ). We’ll show that T̄ is a weak hull of T . Fix x ∈ R such that
T̄ ∈ HCHODx and let H = HODx,T . Then iU restricts to an elementary embedding from

H into iU (H). Note that iU (T̄ ) = T̄ ∈ HCiU (H) and iU (T ) ∈ iU (H). By the absoluteness
of well-foundedness, iU (H) satisfies that T̄ is a weak hull of iU (T ). The elementarity of
iU ↾ H implies H satisfies that T̄ is a weak hull of T . This is Σ1 so T̄ really is a weak hull
of T .

The following is our main theorem.

Theorem 3.5. Assume ADR+V = L(P (R))+HPC. Let U be an ultrafilter on an ordinal.
Then there is a normal non-dropping ordinal definable iteration tree T of length Θ on HOD
by ΣHOD with a unique cofinal branch b such that MT

b = iU (HOD) and iTb = iU ↾ HOD.

The notation ΣHOD is defined in the remarks following Theorem 2.7.

Proof. Fix ⟨(Hα,Σα) | α < η⟩ as in Theorem 2.7. Fix α < η. Also fix a countable least
branch hod pair (P,Σ) with scope HC and a normal non-dropping iteration tree S on P
such that (Hα,Σα) is an iterate of (P,Σ+ ↾ VΘ) via S. (See Definition 2.2.) By Lemma 3.4,
iU (S) is by Σ+ so iU (Hα) is a non-dropping iterate of (P,Σ+ ↾ VΘ).

Since o(Hα) is closed under ultrapowers in V and the universe of Hα is a rank initial
segment of HOD, iU (Hα) ⊆ Hα. By Lemma 3.3, (iU (Hα), (Σ

+ ↾ VΘ)iU (Hα)) is a normal
non-dropping iterate of (Hα,Σα). Let Tα be the unique normal tree witnessing this. We
claim that the main branch embedding j of Tα is equal to iU ↾ Hα. By Lemma 2.13,

j ◦ iS0,∞ = i
iU (S)
0,∞ . Note that iU ◦ iS0,∞ = i

iU (S)
0,∞ and therefore j ↾ iS0,∞[P ] = iU ↾ iS0,∞[P ].

Since o(Hα) is an inaccessible cardinal in HOD and j and iU ↾ Hα are both in HOD,
(Hα, j, iU ↾ Hα) satisfies ZFC. Applying Theorem 3.2 in this model, j ↾ o(Hα) = iU ↾ o(Hα).
Since Hα = HullHα(iS0,∞[P ] ∪ o(Hα)), it follows that j = iU ↾ Hα, as claimed.

For α < β < η, since (Hα,Σα)◁∗ (Hβ ,Σβ) we can view Tα as a non-dropping normal tree
on (Hβ ,Σβ) with the same exit extenders and tree order. By the uniqueness of normal trees
(Remark 2.14), since (Hα,Σα)◁ (Hβ ,Σβ) and iU (Hα)◁ iU (Hβ), Tβ is an extension of Tα,
viewed in this way. Let (H,Λ) =

⋃
α<η(Hα,Σα). Let T =

⋃
Tα, viewed as a tree on H by Λ.

Note that T has length Θ and so does not have a last model. However, since Hα ◁∗Hβ for
α < β < η, T is essentially a stack of normal trees ⟨Uα | α < η⟩ on H: Uα consists of the exit
extenders of T with length between supβ<α o(Hβ) and o(Hα). It follows that T has a unique
cofinal branch b, obtained by concatenating the main branches in the stack ⟨Uα | α < η⟩.
Moreover, MT

b =
⋃

α<ηM
Tα
∞ =

⋃
α<η iU (Hα). Also, iTb ↾ Hα = iTα

0,∞ = iU ↾ Hα. Therefore

iTb = iU ↾ H. Here we just mean that iTb (x) = iU (x) for all x ∈ H; iU (H) may be different
from MT

b , in general, since it is possible that iU (Θ) > Θ when Θ is singular. (In any case,
MT

b = iU (H)|Θ.)
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Let E be the extender of iTb . Since i
T
b = iU ↾ H, E is equal to the extender of length Θ

derived from iU ↾ HOD. From now on let us consider T as a tree on HOD = L[H]. Note
that MT

b = Ult(HOD, E) which is equal to iU (HOD) by Lemma 3.1. Finally, iTb = iHOD
E =

iU ↾ HOD, again by Lemma 3.1.

We can use a variation of this argument to prove a stronger result, Theorem 3.9, which
generalizes Theorem 3.5 to ultrafilters that are not on ordinals, important objects of study
in determinacy (the Martin measure and strong partition measures are such ultrafilters,
for example). This will involve replacing the appeal to Theorem 3.2 with a more detailed
analysis of how the models Hα are obtained as direct limits.

We need the following result due to Schlutzenberg (essentially [2, Lemma 5.2]) and
Siskind, independently.

Theorem 3.6 (Schlutzenberg [2], Siskind). Let D be a countable directed set of non-
dropping iterates of a least branch hod pair (P,Σ) with scope HC. Let M∞ be the direct
limit of D. Then M∞ is the least common iterate of all Q ∈ D. More precisely, M∞ is a
non-dropping ΣQ-iterate of every Q ∈ D, and for any N which is a non-dropping ΣQ-iterate
of every Q ∈ D, N is a non-dropping ΣM∞-iterate of M∞.

Proof. Let S⃗ be a length ω stack of countable normal trees on (P,Σ) such that {Pn | n < ω}
is cofinal in D, where Pn = MSn

0 . In particular, the direct limit M∞ is equal to M S⃗
b for b

the unique cofinal branch of S⃗. For m ≤ n ≤ ω, let Xm,n = X(S⃗ ↾ [m,n)).
Fix N a common iterate of all Q ∈ D. Let U and V be the padded normal trees of the

comparison of N and M∞. By Lemma 2.15, the trees U and V are non-dropping and have
a common final model. So it suffices to show that U is trivial.

Towards a contradiction, suppose E = EU
ξ is the least non-trivial extender used in U .

Let X = X(X0,ω,V ↾ ξ + 1) and Ψ : X0,ω → X the associated weak tree embedding. As in
the proof of Lemma 3.3, using that N is an iterate of (P,Σ), we get that E must have been
used in X and that V ↾ ξ+1 doesn’t drop along its main branch. Let α+1 < lh(X ) be such
that EX

α = E. Since lh(E) > lh(EV
η ) for all η+ 1 < ξ, Lemma 2.8 implies α ∈ ran(uΨ). Let

ᾱ = (uΨ)−1(α). Lemma 2.8 also implies that iV0,ξ restricts to a cofinal elementary map from

M
X0,ω

ᾱ |lh(EX0,ω

ᾱ ) into MX
α |lh(E). In particular, E

X0,ω

ᾱ = (iV0,ξ)
−1(E).

Now, by Proposition 2.11, we may let n < ω be such that ᾱ ∈ ran(uΦ
S⃗
n,ω ). Let Y =

X(Xn,ω,V ↾ ξ + 1) and let Φ : Xn,ω → Y be the associated weak tree embedding. Again,
as in the proof of Lemma 3.3, but now using that N is an iterate of Pn, we get that

E = EY
β for some β ∈ ran(uΦ), and letting β̄ = (uΦ)−1(β), E

Xn,ω

β̄
= (iV0,ξ)

−1(E). Therefore,

E
Xn,ω

β̄
= E

X0,ω

ᾱ . We also have that X0,ω = X(X0,n,Xn,ω) and that ΦS⃗
n,ω is actually the weak

tree embedding arising from this normalization, by Proposition 2.12. So the “moreover”

clause of Lemma 2.9 gives that ᾱ ̸∈ ran(uΦ
S⃗
n,ω ), contradicting our choice of n.

A reflection argument lets us extend this theorem to arbitrary directed sets D of non-
dropping iterates of a least branch hod pair (P,Σ) with scope HC. The direct limit of such
a set D may be uncountable, and so cannot be a Σ-iterate of P , but it will be a Σ+-iterate
of P and will still have an analogous minimality property.

Corollary 3.7 (DCR). Let D be a directed set of non-dropping iterates of a least branch
hod pair (P,Σ) with scope HC. Let M∞ be the direct limit of D. Then M∞ is a Σ+

Q-iterate
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of all Q ∈ D and for any N which is a Σ+
Q-iterate of all Q ∈ D, N is a Σ+

M∞
-iterate of

M∞.2

Proof. Fix N a Σ+
Q-iterate of all Q ∈ D. Let TQ be the unique non-dropping normal tree

on Q by Σ+
Q with last model N . By passing to L(R,Σ, Q 7→ TQ), we may assume DC.

Let Y be a countable elementary substructure of a sufficiently large Vγ such that P ,
Σ, D, and N are all in Y . Let π : H → Y be the inverse of the transitive collapse. Let
Σ̄ = π−1(Σ), D̄ = π−1(D), N̄ = π−1(N). Then Σ̄ = Σ ∩ HCH by strong hull condensation
and D̄ = D∩HCH , so D̄ is a countable directed set of non-dropping iterates of (P,Σ). Also,
N̄ is a common non-dropping (Σ+

Q)
H -iterate of all Q ∈ D̄. For Q ∈ D̄, let T̄Q ∈ H be the

unique normal tree on Q by (Σ+
Q)

H witnessing that N̄ is a non-dropping iterate of Q. Then

π(T̄Q) = TQ, by the elementarity of π. So T̄Q is a countable weak hull of TQ, which implies
that T̄Q is by ΣQ, since TQ is by Σ+

Q. Therefore N̄ is a non-dropping ΣQ iterate of every

Q ∈ D̄.
Let M̄∞ denote the direct limit of D̄. Let S be the countable non-dropping tree on (P,Σ)

with last model M̄∞. Note that S ∈ H since by elementarity H satisfies that M̄∞ is a Σ+-
iterate of P . By Theorem 3.6, there is a countable non-dropping tree V on (M̄∞,ΣM̄∞) with
last model N̄ . We claim that V ∈ H. We’ll show by induction that every initial segment of
V is in H. Since V arises from the comparison of M̄∞ and N̄ by least extender disagreement
and these models are in H, we just need to show that if λ is a limit ordinal and V ↾ λ ∈ H,
then the branch ΣM̄∞(V ↾ λ) is in H. (The issue here is that λ may not be countable in
H and we cannot assume that H is closed under Σ. If H were closed under Σ we could
conclude that Σ+ is defined on all trees in Vγ , which will not be true in the case of interest.)

Let X = X(S,V ↾ λ+ 1) and let ν be the supremum of the stages where exit extenders
of V ↾ λ are used in X . That is, for ξ < λ, let αξ + 1 < lh(X ) be such that EX

αξ
= EV

ξ and

ν = supξ<λ αξ. Since X(S,V) = T̄P and X ↾ ν = X(S,V) ↾ ν, X ↾ ν is an initial segment

of T̄P . Let b = Σ(X ↾ ν). By Proposition 2.10, Σ(V ↾ λ) is the unique cofinal branch c
of V ↾ λ such that (X ↾ ν)⌢b ⊴ X(S, (V ↾ λ)⌢c). Now by an absoluteness argument, it
follows from this characterization that Σ(V ↾ λ) is in H. Namely, let G ⊆ Col(ω, λ) be an
H-generic filter. In H[G] by Σ1

1-absoluteness there is a cofinal branch c of V ↾ λ such that
(X ↾ ν)⌢b⊴X(S, (V ↾ λ)⌢c). By uniqueness c = Σ(V ↾ λ). Since Σ(V ↾ λ) belongs to every
Col(ω, λ)-generic extension of H, Σ(V ↾ λ) belongs to H, as desired.

This proves that V is in H. Therefore, by very strong hull condensation for ΣM̄∞ and
full normalization for Σ, H satisfies that V is by Σ+

M̄∞
. So in H, N̄ is a non-dropping

Σ+
M̄∞

-iterate of M̄∞, and so by elementarity, N is a Σ+
M∞

-iterate of M∞.

Next we state a refinement of Theorem 2.7.

Theorem 3.8 (Steel, [4]). Assume ADR and HPC. Then there is a sequence ⟨(Hα,Σα) |
α < η⟩ of least branch hod pairs such that for every α < η,

1. the universe of Hα is HOD ∩ Vo(Hα) and o(Hα) is strongly inaccessible in HOD and
closed under ultrapowers in V ,

2. there is a countable least branch hod pair (P,Σ) with scope HC such (Hα,Σα) is an
iterate of (P,Σ+ ↾ VΘ)

3. for every α < β < η, (Hα,Σα)◁∗ (Hβ ,Σβ),

2Σ+
M∞

is defined in the discussion following Definition 2.2.
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Finally, letting H be the least branch premouse
⋃

α<ηHα, we have o(H) = Θ and L[H] =
HOD.

As in the remarks following Theorem 2.7, we let ΣHOD denote the partial iteration
strategy for HOD coming from Theorem 3.8.

Our generalization of Theorem 3.5 is the following.

Theorem 3.9. Assume ADR+V = L(P (R))+HPC. Let U be an ultrafilter on a set X ≤∗ R
such that Ult(Ord, U) is well-founded. Then there is a normal non-dropping iteration tree T
of limit length on HOD by ΣHOD with a unique cofinal branch b such that MT

b = iU (HOD)
and iTb = iU ↾ HOD.

Proof. Fix ⟨(Hα,Σα) | α < η⟩ as in Theorem 3.8. Fix α < η. Also fix a countable least
branch hod pair (P,Σ) with scope HC such that (Hα,Σα) is an iterate of (P,Σ+ ↾ VΘ) and
Hα = M∞(P,Σ). For each countable non-dropping iterate Q of (P,Σ), let SQ the unique
non-dropping tree on (Q,Σ+

Q ↾ VΘ) with last model Hα. By Lemma 3.4, iU (SQ) is by Σ+
Q

so iU (Hα) is a non-dropping Σ+
Q-iterate of Q. By Corollary 3.7, iU (Hα) is a non-dropping

Σ+
α -iterate of Hα. Let Tα be the unique normal tree witnessing this.
We claim that the main branch embedding j of Tα is equal to iU ↾ Hα. By Lemma 2.13

and a Skolem hull argument, for any countable non-dropping iterate Q of (P,Σ), j ◦ iSQ

0,∞ =

i
iU (SQ)
0,∞ . Note that iU ◦ iSQ

0,∞ = i
iU (SQ)
0,∞ and therefore j ↾ iSQ

0,∞[Q] = iU ↾ iSQ

0,∞[Q]. By the

definition of the direct limit, Hα =
⋃

Q i
SQ

0,∞[Q], and it follows that j = iU ↾ Hα, as claimed.
For α < β < η, since (Hα,Σα) ◁∗ (Hβ ,Σβ) we can view Tα as a non-dropping normal

tree on (Hβ ,Σβ) with the same exit extenders and tree order. By the uniqueness of normal
trees (Remark 2.14), since (Hα,Σα) ◁ (Hβ ,Σβ) and iU (Hα) ◁ iU (Hβ), Tβ is an extension
of Tα, viewed in this way. Let (H,Λ) =

⋃
α<η(Hα,Σα). Let T =

⋃
Tα, viewed as a tree

on H by Λ. Note that T has limit length and so does not have a last model. However,
since Hα ◁∗ Hβ for α < β < η (Definition 2.6), T is essentially a stack of normal trees
⟨Uα | α < η⟩ on H: Uα consists of the exit extenders of T with length between supβ<α o(Hβ)
and o(Hα). It follows that T has a unique cofinal branch b, obtained by concatenating the
main branches in the stack ⟨Uα | α < η⟩. Moreover, MT

b =
⋃

α<ηM
Tα
∞ =

⋃
α<η iU (Hα).

Also, iTb ↾ Hα = iTα
0,∞ = iU ↾ Hα. Therefore iTb = iU ↾ H. Here we just mean that

iTb (x) = iU (x) for all x ∈ H; iU (H) may be different from MT
b , in general, since it is

possible that iU (Θ) > sup iU [Θ] when Θ is singular. (In any case, MT
b = iU (H)| sup iU [Θ].)

Let E be the extender of iTb . Since iTb = iU ↾ H, E is equal to the extender of length
sup iU [Θ] derived from iU ↾ HOD. From now on let us consider T as a tree on HOD =
L[H]. Note that MT

b = Ult(HOD, E) which is equal to iU (HOD) by Lemma 3.1. Finally,
iTb = iHOD

E = iU ↾ HOD, again by Lemma 3.1.

3.2 V = L(R)
In this section we’ll prove our main theorem in L(R) under determinacy using arguments
similar to those of the previous section. While the full HOD of L(R) can be seen to be of
the form L[M∞(P,Σ)] for some mouse pair (P,Σ) (the rigidly layered version of Mω with
its strategy, for example), there is no such mouse pair which is actually a member of L(R).
To get around this, we will use a reflection argument.

We will need the following result which follows from the proof of Theorem 3.9.
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Lemma 3.10. Assume AD+ + V = L(P (R)). Let U be an ultrafilter on an ordinal. Let
(P,Σ) be a mouse pair with scope HC and let M∞ = M∞(P,Σ). Then there is a unique
normal tree V on M∞ by Σ+

M∞
with last model iU (M∞) and iV0,∞ = iU ↾M∞.

(We will not use the full generality of Lemma 3.10 and for the (P,Σ) we need to consider,
we could instead use the argument from Theorem 3.5.)

Here is our main theorem for L(R).

Theorem 3.11. Assume AD + V = L(R). Let U be an ultrafilter on an ordinal. Then
there is a normal non-dropping ordinal definable iteration tree T on HOD of length Θ based
on HOD|Θ by the short tree strategy for HOD with a unique cofinal branch b such that
MT

b = iU (HOD) and iTb = iU ↾ HOD.

Proof. Because the short tree strategy of HOD is definable (in L(R)), the theorem statement
can be expressed by a first-order sentence ψ0 in the language of set theory. We would like
to show L(R) ⊨ ψ0. We will do this via a reflection argument following [6, §7].

Let γ be least such that Lγ(R) satisfies

ZF− + “P (P (R)) exists” + ¬ψ0.

Let θ = ΘLγ(R). The argument of [6, §7] produces a pure extender mouse pair (P,Σ) with
the following properties.3 First, P has ω Woodin cardinals. Second, the following hold,
where δ0 is the least Woodin cardinal of P , P0 = P |δ0, and M∞ =M∞(P−,ΣP0

):

1. Vθ ∩HODLγ(R) =M∞, and

2. there is a unique normal tree S on P0 of length θ + 1 by Σ+
P0

with M∞ = MS
θ , and

S ↾ θ ∈ Lγ(R).

Let U ∈ Lγ(R) be an Lγ(R)-ultrafilter on κ < θ witnessing the failure of ψ0. The Coding
Lemma implies that P (κ) ⊆ Lγ(R), so U is an ultrafilter in L(R). Using the minimality of
γ, we will show that Ult0(Lγ(R), U) = iU (Lγ(R)) and

i
Lγ(R)
U = iU ↾ Lγ(R).

For every n, let Hn = Hull
Lγ(R)
Σn

(R). By Replacement, every Hn is a member of Lγ(R)
and is the surjective image of R in Lγ(R). The Coding Lemma implies that every κ-sequence
of sets of reals with Wadge rank bounded below θ belongs to Lγ(R). It follows that every
partial function from κ into Hn belongs to Lγ(R). Fix a function f : κ→ Lγ(R). We’ll show
that f ↾ A ∈ Lγ(R) for some A ∈ U . Let An = {α < κ | f(α) ∈ Hn}. By the countable
completeness of U , for some n, An ∈ U . Since f ↾ An is a partial function from κ into Hn,
f ↾ An ∈ Lγ(R), as desired. This proves our claim that Ult0(Lγ(R), U) = iU (Lγ(R)) and

i
Lγ(R)
U = iU ↾ Lγ(R).

By Lemma 3.10, there is a unique normal tree V on M∞ by Σ+
M∞

with last model
iU (M∞) and

iV0,∞ = iU ↾M∞.

Since iU (S ↾ θ) ∈ Lγ(R) and iU (S) = X(S,V), we can use Proposition 2.10 to show that
every proper initial segment of V is in Lγ(R). More precisely, since V is the tree of the

3In [6, §7], the analogous mouse pair is called (M0,Σ0).
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comparison of M∞ and iU (M∞), it suffices to show that for all limit ordinals λ < lh(V),
[0, λ)V is in Lγ(R) and this follows from Proposition 2.10 by the Σ1

1-absoluteness argument
used in the proof of Corollary 3.7.

Finally, since iV0,∞ = iU ↾ M∞ = i
Lγ(R)
U ↾ M∞ is definable over Lγ(R), the main branch

of V is a member of Lγ(R). Let T be the tree on HODLγ(R) with the same extenders

and tree-order as V. By Lemma 3.1 applied in Lγ(R), iT0,∞ = i
Lγ(R)
U ↾ HODLγ(R). This

contradicts that U witnessed the failure of ψ0 in Lγ(R).

If there is a fully iterable M#
ω , then we also have access to the external characterization

of HODL(R). This requires a bit of notation. Let Σ be the iteration strategy for Mω coming
from the unique iteration strategy for M#

ω . Let δ0 be the least Woodin cardinal of Mω. Let
M∞ be the direct limit of all non-dropping iterates of Mω by Σ via countable non-dropping
stacks of normal trees based on Mω|δ0. Also let δ∞ be the least Woodin cardinal of M∞
and λ∞ be the supremum of the Woodin cardinals of M∞. Finally, let Λ be the restriction
of ΣM∞ to stacks of normal trees based on M∞|δ∞ which are members of M∞|λ∞.

Theorem 3.12 (Steel-Woodin [6]). Assume M#
ω exists and is fully iterable. Then (VΘ ∩

HOD)L(R) is the universe of M∞|δ∞ and HODL(R) = L[M∞,Λ].

In particular, ifM#
ω exists and is fully iterable, the H from the statement of Theorem 2.4

is just Mω.
That M#

ω exists and is fully iterable implies that R#. If we assume additionally that
L(R,R#) ⊨ AD, we can strengthen Theorem 3.11 a bit to say that the trees we produce are
actually according to tails of Σ, the iteration strategy for Mω.

Theorem 3.13. Assume M#
ω exists and is fully iterable and L(R,R#) ⊨ AD. Let U be an

L(R)-ultrafilter on an ordinal and let T ⌢b be the tree as in Theorem 3.11. Then, T ⌢b is
by ΣM∞ (viewing T ⌢b as an iteration tree on M∞).

Proof sketch. Let U be an L(R)-ultrafilter on an ordinal and let T ⌢b be the tree on

HODL(R) as in Theorem 3.11. By a Coding Lemma argument, U is still an ultrafilter

in L(R,R#), i
L(R,R#)
U ((HOD|Θ)L(R)) = i

L(R)
U ((HOD|Θ)L(R)), and i

L(R,R#)
U ↾ (HOD|Θ)L(R) =

i
L(R)
U ↾ (HOD|Θ)L(R). (This uses that ΘL(R) has countable cofinality in L(R,R#).) We
also have that the restriction of Σ to countable stacks of normal trees on Mω|δ0, which we
denote Λ, is a member of L(R,R#) because the full strategy for countable stacks on M#

ω

is in L(R,R#) [cite something !!!!!]. We can apply Lemma 3.10 to (Mω|δ0,Λ) in L(R,R#)

to get a non-dropping normal tree V by Λ+
M∞|δ∞ on M∞|δ∞ with last model i

L(R)
U (M∞|δ∞)

such that iV0,∞ = iUL(R,R#) ↾ M∞|δ∞ = iUL(R) ↾ M∞|δ∞, using that M∞|δ∞ = (HOD|Θ)L(R),

by Theorem 3.12, and our observation that iUL(R,R#) and i
U
L(R) agree on (HOD|Θ)L(R). These

observations also imply that V = T ⌢b, viewed as a tree on M∞|δ∞. Since the full strategy
Σ for Mω has very strong hull condensation and fully normalizes well, it follows that T ⌢b
must actually be by ΣM∞ , as desired.
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