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Abstract

Stationary logic is the extension of first-order logic with a quantifier expressing
that “almost all” countable subsets of a structure have a given property. This paper
studies C(aa), the smallest model of ZF containing the ordinal numbers and closed
under the satisfaction predicate for stationary logic. This model was constructed by
Kennedy–Magidor–Vanaanen [11] as a generalization of Gödel’s constructible universe
L, obtained by iterating definability in stationary logic rather than first-order logic.
Unlike L, however, C(aa) can contain large cardinals far beyond a measurable cardinal.
We show in this paper that nevertheless, assuming large cardinals in V , the inner
model C(aa) shares many of the nice properties of L. In particular, we prove that
C(aa) satisfies the Generalized Continuum Hypothesis, the Ultrapower Axiom, and
the axiom V = HOD.

1 Introduction

One of the great triumphs of modern mathematical logic is Gödel’s 1941 theorem
that one can freely assume the Axiom of Choice (AC) and the Generalized Contin-
uum Hypothesis (GCH) without fear of contradiction, as long as the other axioms of
Zermelo-Fraenkel set theory (ZF) are themselves consistent. This result largely put
to rest what had been the greatest controversy in the history of mathematics, the de-
bate over the nonconstructive aspects of Cantor’s set theory. From the perspective of
contemporary set theory, however, the true breakthrough in Gödel’s 1941 work is the
discovery of the constructible universe.

The constructible universe, denoted by L, is the smallest model of the ZF axioms
that contains every ordinal number. It is far from clear that this minimum model
exists since the intersection of two models of ZF need not be a model of ZF. Instead,
Gödel built the constructible universe up from below by iterating the definable powerset
operation, which assigns to a structure M the set def(M) of all subsets of M that are
definable over M from parameters. This leads to the constructible hierarchy :

L0 = ∅
Lα+1 = def(Lα,∈)

Lλ =
⋃
α<λ

Lα if λ is a limit ordinal

A set is constructible if it appears at some level of the constructible hierarchy; intu-
itively, the constructible sets are those that can be constructed in a transfinite recursive
process that uses only the basic set theoretic operations. The constructible universe L
is the class of all constructible sets.
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The theory of arbitrary sets (of natural numbers or real numbers, for example)
is notorious for its incompleteness: many of the basic questions — most famously
Cantor’s continuum hypothesis — cannot be answered on the basis of the ZF axioms,
or in fact on the basis of any commonly accepted axiomatic system. But remarkably, the
constructible sets admit a complete analysis, in the sense that all the classical questions
of set theory can be resolved if one replaces each quantifier over arbitrary sets with
a quantifier over the constructible ones. For example, Gödel showed that L satisfies
the ZF axioms along with AC and GCH. This yields the celebrated consistency result
discussed in the first paragraph. Later on, Jensen showed that Suslin’s hypothesis is
false in L. Later still, Shelah showed that Whitehead’s problem has a positive answer
in L.

One of the main lines of research in set theory is the study of strong axioms of
infinity, or large cardinal hypotheses. It is possible to gain a better understanding of
these principles by examining their behavior within the constructible universe. In this
context, one might hope to obtain a complete picture of the structure of large cardinals
and their relationships with other set theoretic principles. Unfortunately, this can only
be carried out for large cardinals that are relatively small by the standards of modern set
theory. The problem is that many large cardinal hypotheses — for example, measurable
cardinals — are actually false in the constructible universe. In order to understand
these stronger hypotheses, set theorists have defined a hierarchy of generalizations of
L that contain measurable cardinals and much more and yet still admit a complete
analysis in the sense that L does. The study of these models is known as inner model
theory.

The subject of this paper is a generalization of the constructible universe that is
different from the kind studied by inner model theorists. Introduced by Kennedy-
Magidor-Vanaanen [11], this generalization is obtained by replacing the use of first-
order definable subsets in the definition of the constructible hierarchy with subsets
definable in stronger logics. In particular, for each strong logic L, Kennedy-Magidor-
Vanaanen produce an inner model C(L) by iterating the L-definable powerset opera-
tion.

For certain logics L, the structure of C(L) is subject to the same sort of incomplete-
ness phenomena that arise for arbitrary sets. For example, if L is second-order logic,
then C(L) = HOD, an inner model whose structure is infamously difficult to pin down.
Surprisingly, however, under large cardinal hypotheses, there are natural examples of
logics L such that C(L) is a proper extension of L that contains measurable cardinals
and admits a fairly detailed analysis. This paper concerns one such example, which is
arguably the most interesting instance of the Kennedy-Magidor-Vanaanen construction
that has emerged so far: the inner model C(aa), constructed using iterated definability
in stationary logic.

Stationary logic is a strong logic originally proposed by Shelah [9, p. 356] and then
developed in detail by Barwise–Kaufmann–Makkai [1]. It is obtained from first-order
logic by adding a generalized quantifier, denoted aa, intended to express that almost all
countable subsets of a given structure have a certain property. (Formally, a property
is said to hold of almost all countable subsets if there is a closed unbounded family of
countable sets with the property.) Stationary logic is remarkable because although it
is strictly more expressive than first-order logic, it still admits a complete proof system
[1]. The insight of Kennedy–Magidor–Vanaanen [5] is that the Barwise–Kaufmann–
Makkai completeness theorem is closely related to the key comparison lemma in inner
model theory [6]. This connection between classical inner model theory and strong
logics leads to a comparison lemma for the inner model C(aa) ([5, Theorem ??]), a
corollary of which is that the continuum hypothesis holds in C(aa) ([5, Theorem ??]).

The purpose of this paper is to develop the theory of C(aa) using the Kennedy–
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Magidor–Vanaanen comparison lemma and ideas from inner model theory. The main
issue encountered by Kennedy–Magidor–Vanaanen is that it is unclear how to use the
comparison lemma to understand the structure of C(aa) beyond ℵV1 . We overcome
this difficulty by applying techniques from the theory of the Ultrapower Axiom [3] for
extracting information from comparison even when at the outset, one has very litte
information about the embeddings of comparison. This is used to answer the main
question left open by Kennedy–Magidor–Vanaanen: does the Generalized Continuum
Hypothesis hold in C(aa)? Theorem 4.3 shows that the answer is yes. Notably, the
proof of this theorem uses core model theory to take advantage of the smallness of
C(aa), namely the fact that C(aa) does not contain an inner model with a Woodin
cardinal. This idea, which comes up in Theorem 4.1, is the second author’s main
contribution to this paper.

Besides the GCH, we establish several other structural properties of C(aa). For
example, we show that C(aa) has an internally definable well-ordering; in other words,
C(aa) is a model of V = HOD. Regarding the large cardinal structure of C(aa), we
show that C(aa) is a model of the Ultrapower Axiom (Theorem 3.12) and that ℵV1 is the
least measurable cardinal of C(aa) (Corollary 3.16), which answers another question
from [5].

2 Preliminaries

2.1 Stationary logic

The syntax of stationary logic is that of monadic second-order logic. The logic therefore
has variables of two sorts: the first-order variables, which range over elements of a
structure, and the second-order variables, which range over countable subsets of a
structure. For each second-order variable X and each first-order term t, it is stipulated
that t ∈ X is a well-formed formula.

Since the interpretation of the second-order quantifiers will not be the usual one, we
use the symbol aa to denote the second-order universal quantifier and the symbol stat
to denote the second-order existential quantifier. The aa quantifier will be interpreted
to mean “for almost all countable subsets,” while stat means “for stationary many
countable subsets.” The aa-satisfaction relation for a structure M is defined by recur-
sion in the usual way, except for the nonstandard interpretation of the second-order
quantifiers. Let us now say more precisely what this interpretation is.

Suppose φ(x,X, Y ) is a formula in aa-logic and, by induction, that for all a ∈M<ω,
σ ∈ ([M ]ℵ0)<ω, and τ ∈ [M ]ℵ0 , we have defined whether M ⊨ φ(a, σ, τ). We then
define M ⊨ aaY φ(a, σ, Y ) if the set of τ ∈ [M ]ℵ0 such that M ⊨ φ(a, σ, τ) contains a
closed unbounded subset of [M ]ℵ0 . We define statY φ to have the same truth value as
¬(aaY (¬φ)).1 The other steps in the recursive definition of satisfaction are as expected.

We will consider two-sorted structures M with a universe of first-order objects M
and a distinguished collection PM of countable subsets of M . (Often P = ∅.) For
such a structure M, we let Laa(M) denote the set of aa-formulas in the language of
M allowing parameters from M and PM. The aa-satisfaction predicate of M is then
defined to be the set

Sataa(M) = {ψ ∈ Laa(M) : M ⊨ ψ}

The role of PM here is to restrict the second-order parameters under consideration;
the interpretation of quantifiers is unchanged. Our convention is that if we have not
specified PM, then PM = ∅. If moreover M is a transitive structure containing Vω

1In fact, we will never use the “stationary many” quantifier in this paper.
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and M closed under the Quine-Rosser pairing function,2 we will identify Sataa(M)
with a subset of M.

2.2 The inner model C(aa)

We now define the main object of study of this paper: C(aa), the smallest inner model
of ZF that is closed under the aa-satisfaction predicate.

By transfinite recursion, we define for each infinite ordinal α a structure Cα =
(Cα,∈, Tα) where Cα is a transitive set and Tα is a binary predicate on Cα. This
sequence of structures is the C(aa) hierarchy.

We begin by letting Cω = Vω. Once the structure Cα has been defined, we will
let Cα+1 be the set of subsets of Cα definable over Cα in aa-logic. In general, if
γ > ω is any infinite limit ordinal and Cβ has been defined for all β < γ, we will let
Cγ =

⋃
ω≤β<γ Cβ .

Finally, let us explain how to define the structure Cα, having already defined the
set Cα and the structures Cβ for every infinite β < α. We simply set

Tα = {(β, ψ) : β < α and ψ ∈ Sataa(Cβ)}

and then Cα = (Cα,∈, Tα).
The inner model C(aa) is the proper class union of the sets Cα for all infinite

ordinals α. By construction, for any structure M ∈ C(aa), Sataa(M) ∈ C(aa). On
the other hand, suppose that N is an inner model such that for all structures M ∈ N ,
Sataa(M) belongs to N , and let us show that C(aa) ⊆ N .

This is proved by transfinite induction. Suppose ξ is an infinite ordinal and for all
infinite β < ξ, Cβ ∈ N . We will show that Cξ ∈ N . If ξ = α+1 is a successor ordinal, this
is easy: Cξ is the set of aa-definable subsets of Cα, which belongs to N , and Tα+1 can be
computed in N from Sataa(Cα), which belongs to N . So Cξ = (Cα+1,∈, Tα+1) belongs
to N . If ξ is a limit ordinal, we automatically have that for all β < ξ, Cβ ∈ Vξ ∩N . Let
M = (Vξ ∩N,∈). Then Cξ can be computed in N using Sataa(M), and hence Cξ ∈ N .

2.3 Club determinacy

The key assumption behind the results of this paper is called club determinacy. A
structure M is club determined if for all formulas φ ∈ L(M), either M ⊨ aaX φ or
M ⊨ aaX ¬φ. In other words, every subset of [M ]ℵ0 definable in aa-logic is measurable
with respect to the closed unbounded filter.

The statement that a structure is club determined can be expressed as a scheme in
aa-logic, which we call the club determinacy scheme. The club determinacy principle
states that for all ordinals α, the structure Cα, the α-th level of the C(aa) hierarchy,
is club determined. This principle permits the analysis of C(aa) we will carry out in
this paper. Fortunately, it follows from large cardinal hypotheses:

Theorem 2.1 (Kennedy-Magidor-Vanaanen). Assume there is a proper class of Woodin
cardinals. Then club determinacy holds.

2.4 Potential aa-premice

A potential aa-premouse is a transitive structure M = (M,∈, T, P, S) where M is a
transitive set, P is a family of subsets of M , T is a binary relation on M , and S is a

2The details of the pairing function are not so important. Though we will suppress the details, what is
important is that the function is uniformly ∆1-definable over transitive structures and for sets x, y of rank
less at most α, ⟨x, y⟩ has rank at most 1 + α.
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complete consistent theory in aa-logic extending the elementary diagram of (M,∈, T, P )
and containing the club determinacy scheme.3 Given such a potential aa-premouse M,
we will denote its predicates by TM, PM, and SM.

We establish some conventions to make the theory of aa-mice smoother. The lan-
guage of aa-mice, denoted Laa, is the set of formulas in aa-logic in the vocabulary
of set theory with an additional binary predicate. If M is a potential aa-premouse,
φ ∈ Laa, and a ⊆ M and σ ⊆ PM are finite sequences of parameters, we write

M ⊨ φ(a, σ)

to abbreviate the statement that φ(a, σ) ∈ SM. We will write Laa(M) to denote the
set of formulas in Laa with parameters from M and PM.

If M is a potential aa-premouse, an embedding π : M → N is an aa-elementary
embedding if for all formulas φ in the language of aa-mice, for all finite sequences
a ⊆ M and σ ∈ PM, M ⊨ φ(a, σ) ⇐⇒ N ⊨ φ(π(a), π(σ)).

2.5 aa-premice

For each potential aa-premouse N ∈ M, define

SatMaa(N ) = {ψ ∈ Laa(N ) : M ⊨ ψN }

One can run the construction of Section 2.2 but replacing the aa-satisfaction predicate
with S. This produces a sequence of structures ⟨CM

α : α < ν⟩ for some ordinal ν ≤
o(M). The recursive definition terminates as soon as CM

α /∈ M . We say M is an
aa-premouse if ν = o(M), M =

⋃
α<ν C

M
α , and

T = {(β, ψ) : β < o(M) and ψ ∈ SatMaa(CM
β )}

Note that there is a recursive set of axioms A ⊆ Laa such a potential aa-premouse M
is an aa-premouse if and only if M ⊨ A.

The simplest example of an aa-premouse is a level Cα of C(aa). This can be
viewed as an aa-premouse (Cα,∈, Tα, ∅, S) where S is the aa-satisfaction predicate
of (Cα,∈, Tα). More generally, for any collection P ⊆ [Cα]

ω, (Cα,∈, Tα, P, S) is an
aa-premouse where S is the aa-satisfaction predicate of (Cα,∈, Tα, P ).

The completeness theorem for aa-logic [1] yields a method for embedding an aa-
premouse into a level of the aa-hierarchy. This involves iterating the aa-ultrapower
construction, which we now describe.

2.6 The aa-ultrapower construction

Suppose M is an aa-premouse. Let

p(X) = {ψ(X) : M ⊨ aaX ψ(X)}

where ψ(X) ∈ Laa(M). Then p(X) is a complete consistent type over M, and since
M has definable Skolem functions, M has a minimum extension M∗ that realizes this
type.

More precisely, there is a (possibly ill-founded) structure M∗ such that M is an aa-
elementary substructure of M∗, P

M∗ = PM ∪ {M}, and M∗ ⊨ p(M). This structure
M∗ is minimal in the sense that for any other N that aa-elementarily extends M,

3The elementary diagram of (M,∈, T, P ) is the set of first-order formulas with parameters in M and P
true in this structure. We do not include formulas that quantify over P .
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if σ ∈ PN realizes the type p(X), then there is a unique aa-elementary embedding
π : M∗ → N such that π ↾M is the identity and π(M) = σ.4

The structure M∗ can be constructed as a collection of “formal functions” modulo
the aa-ultrafilter coded by SM. That is, for each formula ψ(X, y) ∈ Laa(M), we
introduce a formal symbol fψ, which we think of intuitively as denoting a partial
function which takes the value y at X if and only if there is a unique y ∈M such that
ψ(X, y) holds.

We let X = {fψ : M ⊨ aaX ∃!y ψ(X, y)}. Then M∗ = X/=∗ where =∗ is the
equivalence relation on X defined by fφ = fψ if M ⊨ aaX fφ(X) = fψ(X).5 We
identify the point [fy=a] ∈M∗ with the point a ∈M so that M ⊆M∗. The rest of the
construction is straightforward; see [11]. The key thing is that M∗ is an aa-elementary
extension of M that realizes the type p(X) in a minimal way, and moreover, that the
set satisfying the type p(X) in M∗ is M itself.

This minimum structure M∗ is called the aa-ultrapower of M. If it is well-founded,
we identify it with its transitive collapse, so that instead of an elementary extension,
we have an aa-elementary embedding

π : M → M∗

With this change of perspective, the new element of PM∗ is notM but π[M ]. Moreover,
M∗ is itself an aa-premouse, and we can iterate the aa-ultrapower construction.

2.7 aa-mice

By starting with M0 = M and taking aa-ultrapowers at successor stages and direct
limits at limit stages, we produce a sequence of structures ⟨Mα : α ≤ γ⟩ and a
commuting system of elementary embeddings παβ : Mα → Mβ . Here γ denotes the
least countable ordinal such that Mγ is ill-founded if such an ordinal exists, or else
γ = ω1. If γ = ω1, the aa-premouse M is said to be iterable; an iterable aa-premouse
is called an aa-mouse.

The key result on aa-mice that will be exploited in this paper is the following
aa-comparison theorem [11]:

Theorem 2.2 (Kennedy-Magidor-Vanaanen). If M is a countable aa-mouse and

Mω1 = (Mω1 ,∈, Tω1 , Pω1 , Sω1)

is the direct limit of its aa-iteration, then for some infinite ordinal α, (Mω1 ,∈, Tω1) =
Cα and Sω1 = Sataa(Cα, Pω1).

3 Countably complete ultrafilters

For each aa-premouse M, let κM denote the critical point of the aa-ultrapower of M.
This is the least ordinal α ≤ o(M) such that M ⊨ aaσ α ⊈ σ. The following is a slight
improvement of [11, Lemma 5.29].

Lemma 3.1. If M is an aa-premouse and N is its aa-ultrapower, then for all ordinals
γ < κM, PM(γ) = PN (γ).

Proof. Fix a formula φ(X, v), allowing first-order and second-order parameters from
M such that M ⊨ aaX ∃!v φ(X, v) and M ⊨ aaX ∀v(φ(X, v) → v ⊆ γ). Let f = fφ.
We will show that [f ] ∈ M.

4Here we must extend our conventions on aa-premice to the possibly ill-founded structures M∗ and N .
5Formally this means M ⊨ aaX ∀y φ(X, y) ↔ ψ(X, y).
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First, let us show that M ⊨ aaX aaY f(X) = f(Y ). Suppose not. Then

M ⊨ aaX aaY ∃ν < γ f(X)(ν) ̸= f(Y )(ν)

(Here we identify the set f(X) with its characteristic function.) Using Fodor’s lemma
and club determinacy, we can fix some ν < γ such that

M ⊨ aaX aaY f(X)(ν) ̸= f(Y )(ν)

contradicting that there is some i ∈ {0, 1} such that M ⊨ aaX f(X)(ν) = i.
Since M ⊨ aaX aaY f(X) = f(Y ) and M ⊨ aaX aayf(X) ∈ Y , it follows that

M ⊨ aaY f(Y ) ∈ Y . It follows that there is some T ∈ M such thatM ⊨ aaY f(Y ) = T .
Hence [f ] = T ∈ M, as desired.

Corollary 3.2. If M is an aa-premouse and N is an aa-iterate of M, then for all
ordinals γ < κM, PM(γ) = PN (γ).

Proposition 3.3. Suppose M0 and M1 are finitely generated aa-mice whose under-
lying sets are models of ZFC. Either M0 ∈ M1, M1 ∈ M0, or M0 and M1 iterate
into the same level of C(aa).

Proof. Let π0 : M0 → Cν0 and π1 : M1 → Cν1 denote the aa-iterations of M0 and M1

respectively. By symmetry, it suffices to show that if ν0 < ν1, then M0 ∈ M1.
Assume therefore that ν0 < ν1. Then (Cν0 ,Sataa(Cν0)) ∈ Cν1 . Fix p ∈ M0 such

that every element of M0 is aa-definable in M0 from p. Then the aa-definable hull H
of π0(p) in Cν0 belongs to Cν1 and is countable there. Since the underlying set of Cν1
satisfies ZFC, the transitive collapse of this hull, which is equal to M0, also belongs
to Cν1 , and it is also countable there. Since PM1(ω) = P Cν1 (ω) by Corollary 3.2, it
follows that M0 ∈ M1, as desired.

To establish that C(aa) satisfies the Ultrapower Axiom, we will prove that certain
forms of Woodin’s Weak Comparison Principle hold in levels of C(aa).

An elementary embedding i : M → N is a close embedding if for all S ∈ N ,
i−1[S] ∈ M. An aa-premouse M is finitely generated if there is some x ∈ M such that
every element of M is aa-definable in M from x.

Definition 3.4. An aa-premouse M satisfies Weak Comparison if for any two finitely
generated aa-premice M0 and M1 that aa-elementarily embed into M, one of the
following holds:

• M0 ∈ M1.

• M1 ∈ M0.

• For some aa-premouseN , there are close aa-elementary embeddings j0 : M0 → N
and j1 : M1 → N .

There is a somewhat serious issue in using Proposition 3.3 to show that Weak
Comparison holds in levels of C(aa). The problem is that close embeddings must be
cofinal, while aa-iterations often are not. The fact that close embeddings are cofinal
follows from the definition for a somewhat trivial reason, so it might seem that one
should modify closeness in the context of aa-mice as follows:

Lemma 3.5. Suppose M is an aa-premouse and π : M → N is an aa-iteration of M.
If S ⊆ N is aa-definable over N from parameters, then π−1[S] is aa-definable over M
from parameters.

Proof. It suffices to prove this when π : M → N is the aa-ultrapower of M. In
this case, S is aa-definable over N from the second-order parameter π[M ] and some
other (first-order and second-order) parameters in the range of π. Say S = {a ∈
N : N ⊨ ψ(a, π[M ], π(p⃗), π(τ⃗))}. For a ∈ M, we will have π(a) ∈ S if and only if
M ⊨ aaX ψ(a,X, p⃗, τ⃗), and so π−1[S] is aa-definable over M.
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A theorem of Enayat [2, Theorem 2.2] states that if M is a model of ZFC, then an
elementary embedding π : M → N is close to M if and only if for all A ⊆ N definable
over N from parameters, π−1[A] is definable over M from parameters.

It seems vital in applications of Weak Comparison, however, that the embeddings
be close in the usual sense, not in the sense of Lemma 3.5; in particular, we need
them to be cofinal. (For example, see the proof of Theorem 3.12.) Our solution to
this issue is to note that certain types of aa-mice do have cofinal aa-ultrapowers. An
aa-premouse M is ω-cofinal if

M ⊨ aaσ ∀x ∃y ∈ σx ∈ y

Note that Cν is ω-cofinal if and only if cf(ν) = ω, while a Skolem argument shows that
there are countable aa-mice that are not ω-cofinal.

Lemma 3.6. If M is an ω-cofinal aa-premouse, then all aa-iterations of M give rise
to cofinal embeddings.

To obtain close embeddings, we impose one further property. We say an aa-
premouse M satisfies ZFC if it satisfies the separation and replacement schema for
aa-formulas.

Lemma 3.7. If M is an ω-cofinal aa-premouse that satisfies ZFC, then all aa-
iterations of M give rise to close embeddings.

Proof. This follows immediately from Lemma 3.5 and Lemma 3.6.

Theorem 3.8. Suppose λ is an ordinal of countable cofinality such that Cλ ⊨ ZFC.
Then Cλ satisfies Weak Comparison.

Proof. This is obtained by combining Proposition 3.3 and Lemma 3.7.

For Theorem 3.8 to be useful, we must show that there exist some levels of C(aa)
to which it applies. Say an ordinal λ is good if cf(λ) = ω, Cλ = Vλ ∩ C(aa), and λ is
strongly inaccessible in C(aa). The following lemma implies the existence of a proper
class of good ordinals:

Lemma 3.9. Suppose κ is a countably closed regular cardinal. Then the set of good
ordinals less than κ contains an ω-club subset of κ.

Recall that a cardinal κ is countably closed if for all γ < κ, γℵ0 < κ. There is a
proper class of countably closed regular cardinals: namely, the cardinals of the form
ℶα+1 where α is either 0, a successor ordinal, or an ordinal of uncountable cofinality.

The following argument is due to Magidor:

Proposition 3.10. If κ is a countably closed cardinal, then Cκ = C(aa) ∩ Vκ.

Proof. It suffices to show that every x ∈ C(aa)∩Vκ belongs to Cκ. Fix γ > κ such that
x ∈ C(aa)Vγ . Let H be a countably closed elementary substructure of Vγ such that
tc(x∪ {x}) ⊆ H and |H| < κ. Let M be the transitive collapse of H. By elementarity,
x ∈ C(aa)M , since x collapses to itself and x ∈ C(aa)Vγ . Since M is countably closed,
club determinacy implies C(aa)M = Co(M). Thus x ∈ Cκ, as desired.

Proof of Lemma 3.9. Let F denote the ω-club filter on κ. By club determinacy, U =
F ∩ C(aa) is a normal ultrafilter in C(aa). It follows that U concentrates on the set
I of all ordinals λ < κ such that λ is strongly inaccessible in C(aa). On the other
hand, since Cκ = Vκ ∩ C(aa), S = {λ < κ : Cλ = Vλ ∩ C(aa)} is closed unbounded.
Since S ∈ C(aa), it follows that S ∈ U . Thus the set S ∩ I of good ordinals less than
κ belongs to U . Since U ⊆ F , this means that the set of good ordinals less than κ
contains an ω-club.
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If M is an aa-premouse that satisfies ZFC and M satisfies that U is a countably
complete ultrafilter, the ultrapower of M by U , denoted Ult(M, U), is the aa-premouse
defined by the usual ultrapower construction. (One has to shift the aa-satisfaction
predicate of M to a predicate on Ult(M, U). This is possible since M satisfies ZFC.)
If M is finitely generated, then so is Ult(M, U).

The following “realizability lemma” is proved by the standard argument, which is
originally due to Jensen; for example, see [8, Theorem 10.3]:

Lemma 3.11. Suppose that in C(aa), M is a countable aa-premouse satisfying ZFC,
and PM = ∅. Suppose π : M → Cλ is an aa-elementary embedding that belongs
to C(aa). If M satisfies that U is a countably complete ultrafilter, then there is an
aa-elementary embedding π′ : Ult(M, U) → Cλ such that π′ ◦ jU = π.

Theorem 3.12. C(aa) satisfies the Ultrapower Axiom.

Proof. The proof is very similar to the proof of the proof of [4, Theorem 2.3.10], which
shows that assuming V = HOD, a slightly different formulation of Weak Comparison
implies the Ultrapower Axiom. The difference here is that we cannot assume V = HOD,
since this is an open question. This does not cause any real difficulties, since each
level of C(aa) has definable Skolem functions, which is all that is really needed for
[4, Theorem 2.3.10]. For the reader’s convenience, we repeat this argument with the
necessary adjustments.

Fix a good ordinal λ. By Theorem 3.8, Cλ satisfies weak comparision. Since Cλ
has definable Skolem functions, there is a pointwise definable aa-mouse M that is
aa-elementarily embeddable into Cλ.

Suppose U ∈ M is a countably complete ultrafilter. By Lemma 3.11, there is an
aa-elementary embedding from Ult(M, U) to Cλ.

Suppose now that M satisfies that U0 and U1 are countably complete ultrafilters.
Let M0 and M1 be the ultrapowers of M associated to U0 and U1 respectively. Then
M0 and M1 are finitely generated and aa-embeddable in Cλ.

Since o(M0) = o(M1), neither model belongs to the other, and therefore Weak
Comparison (Theorem 3.8) yields close embeddings j0 : M0 → N and j1 : M1 → N .
By replacingN with the elementary hull of j0[M0]∪j1[M1] inside ofN , one can assume
j0 and j1 are internal ultrapower embeddings, which shows that the Ultrapower Axiom
holds for U0 and U1. (Here it seems essential that j0 and j1 are cofinal embeddings.)
The details appear in the proof of [3, Theorem 2.3.10].

Since UA is equivalent to a Π2-sentence and C(aa) ∩ Vλ satisfies UA for a proper
class of λ, C(aa) satisfies UA.

Theorem 3.13. If C(aa) ⊨ U is countably complete, then in V , U extends to a count-
ably complete filter.

To prove this, we need the following lemma, which says that any element of an
iterated aa-ultrapower has a preimage in a finite aa-iteration. This is a common
pattern in the theory of iterated ultrapowers, and the proof is essentially the standard
one.

Lemma 3.14. Suppose M is an aa-mouse, j : M → Q is an iterated aa-ultrapower.
For any finite sets a ⊆ Q and σ ⊆ PQ, Q in a finite signature, there is a finite iterated
aa-ultrapower i : M → N and an aa-elementary embedding k : N → Q such that
k ◦ i = j and a, σ ⊆ ran(k).

We will also use the following lemma, which is due to Woodin [12, Lemma 5.32] in
a slightly different context:

Lemma 3.15. Suppose M is a finitely generated aa-premouse and j0, j1 : M → N
are close aa-elementary embeddings. Then j0 = j1.
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The argument in the proof of Theorem 3.13 below is based on an unpublished idea
of Woodin [12] for showing that the HOD-ultrafilter conjecture holds granting the HOD
analysis.

Proof of Theorem 3.13. Fix a good ordinal λ. We claim that for any countably com-
plete ultrafilter U ∈ Cλ, there is a finite aa-iteration i : Cλ → N and some a ∈ N such
that U = {A ∈ P Cλ(X) : a ∈ i(A)}. Then the fact that U extends to a countably
complete filter in V follows from countable completeness of the closed unbounded filter
and its iterated products.

To prove the claim, fix such a countably complete ultrafilter U ∈ Cλ, and let M
be a finitely generated aa-mouse admitting an aa-elementary embedding π : M → Cλ
with U ∈ ran(π). It suffices to show that W = π−1[U ] is of the form {A ∈ PM(X) :
a ∈ i(A)} for some finite aa-iteration i : M → N and some a ∈ N : then the same
holds of U in Cλ by aa-elementarity.

First note that as in Theorem 3.12, for some ordinal α there are close embeddings
j : M → Cα and ℓ : Ult(M,W ) → Cα. We have ℓ ◦ jW = j by the uniqueness of
close embeddings, and so U = {A ∈ PM(X) : ℓ([id]W ) ∈ j(A)}. Now by Lemma 3.14,
there is a finite iterated aa-ultrapower i : M → N and an aa-elementary embedding
k : N → Cα such that k ◦ i = j, and ℓ([id]W ) ∈ ran(k). Thus U = {A ∈ PM (X) : a ∈
i(A)} where a = k−1(ℓ([id]W )).

Corollary 3.16. The least measurable cardinal of C(aa) is ω1.

If S is a set of ordinals, a sequence of ultrafilters ⟨Uα⟩α∈S is regressive if for all
α ∈ S, Uα is an ultrafilter on α. If δ is an ordinal and U andW are countably complete
ultrafilters on δ, then U lies below W in the Ketonen order, denoted U <k W , if for
some S ∈W , there is a regressive sequence ⟨Uα⟩α∈S of countably complete ultrafilters
such that U = W - limα∈S Uα; that is, A ∈ U if A ∩ α ∈ Uα for W -almost all α ∈ S.
(One can always assume S = κ \ {0}.)

If U is a subset of P (δ) and σ is a countable subset of P (δ), then AU (σ) =
⋂
A∈σ∩U A

and, if AU (σ) ̸= ∅, χU (σ) = min(AU ). By Theorem 3.13, if U is a countably complete
ultrafilter in C(aa), then χU (σ) is defined for almost all σ ⊆ P (δ).

Theorem 3.17. Suppose δ is an ordinal and in C(aa), U and W are countably com-
plete ultrafilters on δ. Then C(aa) satisfies U <k W if and only if aaσ ⊆ P (δ)χU (σ) <
χW (σ).

Proof. Suppose C(aa) satisfies U <k W and let ⟨Uα⟩α∈S witness this. The key obser-
vation is that

aaσ ⊆ P (δ) ∀A ∈ σ (A ∈ U ⇐⇒ A ∩ χW (σ) ∈ UχW (σ))

To see this, let h : P (δ) → P (δ) be the function h(A) = {α ∈ S : A∩α ∈ Uα}. If S ∈ σ
and σ is closed under h, then for all A ∈ σ,

A ∈ U ⇐⇒ h(A) ∈W ⇐⇒ χW (σ) ∈ h(A) ⇐⇒ A ∩ χW (σ) ∈ UχW (σ)

If σ is such that for all A ∈ σ, A ∈ U ⇐⇒ A ∩ χW (σ) ∈ UχW (σ), then χU (σ) <
χW (σ). This implies the theorem.

4 The Generalized Continuum Hypothesis

For any cardinal µ, let u2(µ) = sup{µ+L[A] : A ∈ Hµ}. We will need to apply the
following theorem in C(aa):
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Theorem 4.1. Assume there is no inner model with a Woodin cardinal and for every
set A, there is an iterable model M containing A with two measurable cardinals above
sup(A). Then for each regular cardinal µ ≥ ω2, u2(µ) < µ+.

Proof. Fix µ, and let

M = {N ∈ Hµ | N is a properly 1-small mouse}.

Let <∗ be the mouse order on M.
For any particular N ∈ M, |N |<∗ < µ+, because <∗ is contained in the mouse

order on mice that are countable in V [g], for g generic on Col(ω,<µ), and in V [g], the
mouse order on countable P <∗ N is a Σ1

2(N) wellfounded relation.
Since µ ≥ ω2, K|µ is universal for mice of height ≤ µ, by [7, Theorem 3.4]. It

follows that if N ∈ M, then N <∗ K|ξ for some ξ < µ. Thus <∗ has cofinality µ, and
hence

|<∗| < µ+.

Thus it suffices to show that u2(µ) ≤ |<∗|. For that, fix some bounded subset A of
µ. We need to see that µ+L[A] < |<∗|. By hypothesis, there is a transitive P0 |= ZFC
such that A ∈ P0, |P0| < µ, and P0 has two measurable cardinals above sup(A). Let
P come from iterating P0 at its bottom measurable µ times, so µ is measurable in P
and A ∈ HP

µ .
Now by the proof of [10, Theorem 7.9], carried out inside P ,

P |= u2(µ) ≤ |<∗|.

(See the proof that “u2 ≤ δ” starting on the bottom of p. 68.) But

µ+L[A] < u2(µ)
P ≤ |<∗|P ≤ |<∗|.

Thus µ+L[A] < |<∗|, as desired.

Lemma 4.2. If Cγ is a model of ZFC and δ is a successor cardinal of M , then any
close embedding j : M → N is continuous at δ.

Proof. If j is discontinuous at δ, then the M -ultrafilter U on δ derived from j using
sup j[δ] belongs to M . Thus in M there is a countably complete uniform ultrafilter on
the successor cardinal δ. (In the terminology of [3], δ is a Fréchet cardinal.) By the
theory of supercompactness under UA [3, Corollary 7.4.10], it follows that in M, there
is a cardinal κ < δ that is δ-supercompact. This contradicts that M does not have an
inner model with a Woodin cardinal.

Theorem 4.3. The inner model C(aa) satisfies the Generalized Continuum Hypothe-
sis.

Proof. We will show that in C(aa), if γ is regular or has countable cofinality, then
2γ = γ+. By Silver’s theorem that the minimal failure of GCH cannot occur at a
singular cardinal of uncountable cofinality, it will then follow that C(aa) satisfies GCH.

Fix a good ordinal λ > γ. For each A ⊆ γ, let HA be the transitive collapse of the
set of x definable in the structure Cλ from parameters from (γ + 1) ∪ {A}, and let NA

be the iterated aa-ultrapower of HA of length γ+C(aa).
We start by showing that for all A0, A1 ⊆ γ and all aa-premice M, any two close

elementary embeddings i0 : HA0 → M and i1 : HA1 → M such that sup i0[γ] =
sup i1[γ] and i0(γ) = i1(γ) must satisfy i0 ↾ γ = i1 ↾ γ.

To see this, first take the case that γ is regular, and let S⃗ be a partition of (Sγω)
C(aa)

into γ-many C(aa)-stationary sets that is definable from γ in Cλ. Then S⃗ is definable
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from γ by the same formula in both HA0 and HA1 , and so since i0(γ) = i1(γ), i0(S⃗) =
i1(S⃗). Letting T⃗ = i0(S⃗) and γ

∗ = sup i0[γ], we have

i0[γ] = {α < i0(γ) : C(aa) ⊨ Tα ∩ γ∗ is stationary} = i1[γ]

If instead γ has countable cofinality, fix a sequence S ⊆ γ of successor cardinals of
C(aa) cofinal in γ that is definable in Cλ from γ. We have that i0(S) = i1(S), and
hence sup i0[δ] = i0(δ) = i1(δ) = sup i1[δ] for all δ ∈ S. This is because of Lemma 4.2.
The argument from the case that γ is regular now implies that i0 ↾ δ = i1 ↾ δ for all
δ ∈ S, or in other words, i0 ↾ γ = i1 ↾ γ, as desired.

Let I = {NB : B ⊆ γ} and let N =
⋃
I. We will now show that in C(aa), there

is a surjection f from I × N onto P (γ) ∩ C(aa). Namely, for each M ∈ I, each pair
of ordinals γ0, γ1 ∈ M, and each set B ∈ P (γ1) ∩M, we let f(M, (γ0, γ1, B)) be the
unique set A ⊆ γ such that there is a close elementary embedding i : HA → M such
that sup i[γ] = γ0, i(γ) = γ1, and i(A) = B, if such a set A exists. The uniqueness of
A follows from the previous paragraph, since A = (i ↾ γ)−1[B], and i ↾ γ is uniquely
determined by M , γ0, and γ1.

We claim that in C(aa), |I| ≤ γ+. Note that for any A0, A1 ⊆ γ in C(aa), NA0 =
NA1 if and only if o(NA0) = o(NA1). To show that C(aa) satisfies |I| ≤ γ+, it therefore
suffices to prove that C(aa) satisfies |o(N)| ≤ γ+.

Let µ = γ+C(aa). Note that for each B ⊆ γ, L[HB ] ⊨ |NB | ≤ µ since the iteration
of HB of length µ can be formed in this model. Therefore o(NB) < µ+L[HB ]. Working
in C(aa) and applying Theorem 4.1,

o(N) = sup
B⊆γ

o(NB) ≤ sup
B⊆γ

µ+L[HB ] ≤ (u2(µ))
C(aa) < µ+C(aa) = γ++C(aa)

as desired.
Since C(aa) satisfies that |I| ≤ γ+ and that |NB | ≤ γ+ for each B ⊆ γ, C(aa)

satisfies that |N | ≤ γ+. Since C(aa) contains a partial surjection from I × N to
P (γ)∩C(aa), it follows that C(aa) satisfies |P (γ)| ≤ γ+, or in other words 2γ = γ+.

This also allows us to classify the measurable cardinals of C(aa):

Theorem 4.4. An ordinal δ is measurable in C(aa) if and only if it has uncountable
cofinality in V and is regular in C(aa).

Proof. Any such δ is a Fréchet cardinal in C(aa), so by UA + GCH, some κ ≤ δ is δ-
strongly compact. (See [3, Theorem 7.4.9, Proposition 7.5.4].) Since C(aa) has no inner
model with a Woodin cardinal, we must have κ = δ, and therefore δ is measurable.

Theorem 4.5. The inner model C(aa) satisfies V = HOD.

Proof. Suppose γ is an ordinal and A ⊆ γ, and we will show that A is definable in
C(aa) from ordinal parameters. Let HA be the aa-mouse defined in Theorem 4.3. Let
i : HA → N be the aa-iteration of length γ+C(aa). Let γ0 = sup i[γ] and γ1 = i(γ).
Finally let ξ be the rank of i(A) in the canonical well-order of N .

The proof of Theorem 4.3 shows that in C(aa), if H′ is an aa-mouse of cardinality γ
whose aa-iteration i′ : H′ → N ′ of length γ+C(aa) satisfies sup i′[γ] = γ0 and i′(γ) = γ1,
then i′ ↾ γ = i ↾ γ.

Therefore A is definable in C(aa) from the ordinals γ, γ0, γ1, and ξ as the unique
set of the form (i′)−1[B] where i′ : H′ → N ′ is the γ+C(aa)-length aa-iteration of some
aa-mouse H′ of cardinality γ such that sup i′[γ] = γ0, i

′(γ) = γ1, and B is the ξ-th
element in the canonical well-order of N ′.
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