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Abstract

The Ultrapower Axiom is a combinatorial principle concerning the struc-
ture of large cardinals that is true in all known canonical inner models of set
theory. A longstanding test question for inner model theory is the equicon-
sistency of strongly compact and supercompact cardinals. In this paper, it is
shown that under the Ultrapower Axiom, the least strongly compact cardinal
is supercompact. A number of stronger results are established, setting the
stage for a complete analysis of strong compactness and supercompactness
under UA that will be carried out in the sequel to this paper.

1 Introduction

How large is the least strongly compact cardinal?1 Keisler-Tarski [1] asked whether
it must be larger than the least measurable cardinal, and Solovay later conjectured
that it is much larger: in fact, he conjectured that every strongly compact cardi-
nal is supercompact.2 His conjecture was refuted by Menas [2], who showed that
the least strongly compact cardinal that is a limit of strongly compact cardinals
is not supercompact. Still, Tarski’s original question was left unresolved until in
a remarkable pair of independence results, Magidor showed that the size of the
least strongly compact cannot be determined using only the standard axioms of
set theory (ZFC). More precisely, it is consistent with ZFC that the least strongly
compact cardinal is the least measurable cardinal, but it is also consistent that the
least strongly compact cardinal is the least supercompact cardinal. Since Magidor’s
result, an extensive literature has sprung up concerning what Magidor termed the
“identity crisis” for the first strongly compact cardinal, showing that there is essen-
tially nothing one can prove about the size of the first strongly compact cardinal in
ZFC.

1See Definition 2.55
2See Definition 2.36.
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The relationship between strongly compact cardinals and supercompact cardi-
nals in terms of consistency strength remains a complete mystery, and in fact, one
of the most prominent open questions in set theory is whether the existence of a
strongly compact cardinal is equiconsistent with the existence of a supercompact
cardinal. There are good reasons to believe that this question cannot be answered
without generalizing inner model theory to the level of strongly compact and super-
compact cardinals. One reason is that there are many analogous equiconsistency
results lower in the large cardinal hierarchy, and all of them require inner model the-
ory: for example, the equiconsistency of weakly inaccessible cardinals and strongly
inaccessible cardinals, of weakly compact cardinals and the tree property, of Jons-
son cardinals and Ramsey cardinals [3], of tall cardinals and strong cardinals [4]. In
fact, almost every nontrivial equiconsistency theorem in set theory involves inner
model theory.

While there is a great deal of evidence that inner model theory is required for a
solution to the equiconsistency problem, this evidence does not bear on whether the
equiconsistency actually holds. There are a number of striking similarities between
the theories of strong compactness and supercompactness that seem to provide
some evidence that there is some deeper connection between the two concepts. But
there are plenty of similar analogies between large cardinal notions that are not
equiconsistent.

The main theorem of this paper roughly shows that in any canonical inner
model built by anything like today’s inner model theoretic methodology, the least
strongly compact cardinal is supercompact. This suggests that strong compactness
and supercompactness really are equiconsistent: with perhaps a few exceptions,
the consistency order on large cardinal axioms coincides with the size of their least
instance in a canonical inner model.3

The precise statement of our theorem involves a combinatorial principle called
the Ultrapower Axiom (UA). This principle holds in all known canonical inner
models and is expected to hold in any canonical inner model built in the future.
We prove:

Theorem 5.17 (UA). The least strongly compact cardinal is supercompact.

To say more about the Ultrapower Axiom, we must discuss the fundamental
theorem of inner model theory: the Comparison Lemma. The key to inner model
theory at the level of Woodin cardinals is a fine structural analysis of models of
a weak set theory approximating the inner model under construction, which for
obscure reasons, are known as mice. There is a natural way to attempt to form
iterated ultrapowers of mice, and a mouse is said to be iterable if this process
never breaks down. The class of mice is constructed by recursion and analyzed by

3For example, Woodin cardinals exceed strong cardinals in consistency strength, and accord-
ingly the least ordinal that is strong in a Mitchell-Steel extender model is strictly smaller than
the least ordinal that is Woodin in a Mitchell-Steel extender model (even though in V , the least
Woodin cardinal is smaller than the least strong cardinal.) A possible counterexample: by a the-
orem of Shelah-Mekler [5], the consistency strength of a cardinal every stationary subset of which
reflects is strictly less than a weakly compact, even though a theorem of Jensen [6] states that in
the constructible universe, all such cardinals are weakly compact.
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induction. To verify that the mice constructed so far are canonical, and to analyze
them well enough to keep the induction going, one must prove the Comparison
Lemma. Very roughly, this is the statement that any two iterable mice M0 and M1

have iterated ultrapowers N0 and N1 such that either N0 ⊆ N1 or N1 ( N0. From
this lemma and its variants flow all the other structural properties of mice. The
inner model one produces is the union of a proper class of mice. The known inner
model constructions are best viewed as an attempt to produce models that contain
large cardinals and satisfy the Comparison Lemma. The tension between these two
constraints is the driving force behind the whole subject.

The Ultrapower Axiom is an abstract form of the Comparison Lemma that
can be stated without reference to the fine structural details of a particular inner
model construction. UA roughly asserts that any two wellfounded ultrapowers
of the universe of sets have a common wellfounded ultrapower. More precisely,
UA states that for any pair of countably complete ultrafilters U0 and U1, there are
linear iterations (U0,W0) and (U1,W1) such that the associated iterated ultrapowers
Ult(Ult(V,U0),W0) and Ult(Ult(V,U1),W1) are equal and the associated iterated
ultrapower embeddings jW0

◦ jU0
and jW1

◦ jU1
coincide. Obviously this is formally

similar to the Comparison Lemma, and in fact there is a very general argument
[7, Theorem 2.3.10] showing that UA follows from the Comparison Lemma. Any
canonical inner model that can be constructed and analyzed using anything like the
current methodology of inner model theory will therefore satisfy UA.

The inner models that have been constructed to date cannot contain super-
compact cardinals. Whether canonical inner models with supercompact cardinals
exist has been one of the main open problems in inner model theory for almost
half a century. Given the intractability of this problem, it is natural to wonder
whether the existence of a supercompact cardinal is compatible with the Compar-
ison Lemma. Having formulated the Ultrapower Axiom, one can state a perfectly
precise version of this question:

Question 1.1. Is the Ultrapower Axiom consistent with the existence of a super-
compact cardinal?

This paper and its sequel show that the Ultrapower Axiom has fairly deep in-
teractions with supercompactness. The coherence of the theory developed so far
suggests that the answer to Question 1.1 is yes. It seems unlikely, however, that
a positive answer can be established without extending inner model theory to the
level of supercompact cardinals. We are optimistic that studying the consequences
of UA with a supercompact cardinal will shed some light on how this can be done
(or else lead to a proof that it is impossible).

Finally, let us mention two stronger theorems we will prove here, and some
further results that will appear in the sequel to this paper. For any cardinal κ, τκ
denotes the least ordinal α such that for any β, there is a κ-complete ultrafilter U
such that jU (α) > β. (The cardinal τκ is a hybrid of Hamkins’s notion of a strongly
tall cardinal [8] and Bagaria-Magidor’s compactness principles [9].)

Theorem 5.18 (UA). The cardinal τω1
is supercompact.
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Finally, we prove a very local form of Theorem 5.17:

Theorem 5.14 (UA). If a successor cardinal λ carries a countably complete uni-
form ultrafilter, then there is some κ ≤ λ that is λ-supercompact.

In fact, the easiest proof we know of Question 1.1 necessarily establishes this
stronger theorem. If λ is a regular limit cardinal, it is open whether the theorem
remains true.

Of course this raises an obvious question: what about the other strongly com-
pact and supercompact cardinals? This is the subject of the sequel to this paper,
in which it will be shown that under UA, every strongly compact cardinal is either
supercompact or a limit of supercompact cardinals, which by Menas’s theorem is
best possible. The techniques leading to this result enable the analysis of many
large cardinal notions beyond supercompactness under UA. One also obtains some
powerful consequences of UA for the general theory of countably complete ultrafil-
ters.

This paper is fairly self-contained. Section 2 contains many standard definitions
and self-explanatory notions from the theory of ultrafilters and some less well-
known material. It is intended to be used as a reference and need not be read
from beginning to end. Section 3 contains a number of the author’s results on the
general theory of countably complete ultrafilters under UA that are used in the
analysis of strong compactness. The reader can skim this, and start in earnest
with Section 4, which contains a proof that the least strongly compact cardinal
is supercompact under a technical assumption about the size of the least strongly
compact cardinal. This assumption is proved in Section 5, completing the proof.

2 Preliminaries

2.1 Ultrapowers

Suppose N is a model of set theory (which the reader may assume to be transitive)
and X ∈ N . An N -ultrafilter over X is a maximal filter on the partial order
PN (X) under inclusion. The ultrapower of N by U , denoted MN

U , consists of mod
U equivalence classes of those functions of N that are defined U -almost everywhere.
If f ∈ N is defined U -almost everywhere, [f ]NU denotes the equivalence class of f
modulo U .

The class MN
U is endowed with the structure of a model of set theory under

the relation ∈U defined by setting [f ]NU ∈U [g]NU if {x ∈ X : f(x) ∈N g(x)} ∈ U .
Los’s Theorem states that MN

U � ϕ([f1]U , . . . , [fn]U ) if and only if {x ∈ X : N �
ϕ(f1(x), . . . , fn(x))} ∈ U . The ultrapower embedding of N associated to U , denoted
jNU : N → MN

U , is the embedding defined by jNU (a) = [ca]U , where ca : X → {a} is
the constant function. This embedding is elementary as an immediate consequence
of Los’s Theorem.

If MN
U is wellfounded (as it almost always will be in this paper), we adhere to the

standard set-theoretic convention of identifying MN
U with its transitive collapse. We

also adopt two nonstandard conventions in order to declutter our notation. First,
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we omit the superscript “N”s whenever they can be inferred from context, writing,
for example, MU instead of MN

U . Second, we make the following definition:

Definition 2.1. If U is an N -ultrafilter, aU = [id]NU .

Suppose N is a model of set theory. We say U is an ultrafilter of N if U is an
N -ultrafilter that belongs to N . We say j : N → P is an ultrapower embedding
and P is an ultrapower of N if for some N -ultrafilter U , there is an isomorphism
k : MU → P such that j = k ◦ jU ; we say j : N → P is an internal ultrapower
embedding if one can find such an N -ultrafilter U that in addition belongs to N .

In the case of interest, when N and P are transitive, j : N → P is an ultrapower
embedding of N if and only if j = jU for some N -ultrafilter U .

Not every elementary embedding is an ultrapower embedding, but the derived
ultrafilter construction reduces many “local” properties of elementary embeddings
to properties of ultrapowers:

Definition 2.2. Suppose j : N → P is an elementary embedding, X ∈ N , and
a ∈ j(X). Then the N -ultrafilter over X derived from j using a is the N -ultrafilter
{A ∈ PN (X) : a ∈ j(A)}.

Lemma 2.3. Suppose j : N → P is an elementary embedding, X ∈ N , and
a ∈ j(X). The N -ultrafilter over X derived from j using a is the unique N -ultrafilter
U such that there is an elementary embedding k : MN

U → P such that k ◦ jNU = j
and k(aU ) = a.

Sketch. The embedding k is defined by k([f ]U ) = j(f)(a). It is routine to check
that k is well-defined and elementary.

We call the (unique) embedding k of Lemma 2.3 the canonical factor embedding
associated to the derived ultrafilter U .

There is an ultrafilter-free characterization of (internal) ultrapower embeddings
that helps establish some of their basic properties. An elementary embedding j :
M → N is said to be cofinal if for all a ∈ N , there is some X ∈ M such that
a ∈ j(X).

Lemma 2.4. A cofinal elementary embedding j : N → P is an ultrapower embed-
ding if and only if there is some a ∈ P such that every element of P is definable in
P from a and parameters in j[N ].

Proof. For the forwards direction, fix an N -ultrafilter U such that j = jU . Then
for all appropriate f ∈ N , [f ]U = j(f)(aU ), and hence [f ]U is definable in P from
f and aU .

Conversely, suppose every element of P is definable in P from a and parameters
in j[N ]. Let U be the N -ultrafilter derived from j using a. Let k : MU → P be the
canonical factor embedding. Then j[N ] ∪ {a} ⊆ k[MU ], so in fact, P ⊆ k[MU ]. In
other words, k is an isomorphism. Hence j = k◦jU is an ultrapower embedding.

Thus an ultrapower of N is a finitely generated elementary extension of N .
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Definition 2.5. An elementary embedding j : N → P is close to N if for all a ∈ P ,
j−1[a] ∈ N .

Obviously any elementary embedding that is definable over N is close to N , so
in particular, internal ultrapower embeddings are close embeddings.

Lemma 2.6. An ultrapower embedding j : N → P is internal if and only if it is
close.

Lemma 2.7. An elementary embedding j : N → P is close to N if j is cofinal and
every N -ultrafilter derived from j belongs to N .

Proof. For the forwards direction, assume j is close. Then for any X ∈ N and
a ∈ j(X), the N -ultrafilter derived from j using a is equal to j−1[pa] where pa =
{A ∈ P (j(X))∩P : a ∈ A}. Obviously pa ∈ P , so j−1[pa] ∈ N by closeness. To see
that j is cofinal, fix a ∈ P . Let Y be the set of elements of P that have rank less
than or equal to that of a. Then j−1[Y ] ∈ N . Let X = j−1[Y ]. Then a ∈ j(X).

For the converse, assume j is cofinal and every derived N -ultrafilter of j belongs
to N . Fix a ∈ P , and we will show that j−1[a] ∈ N . Since j is cofinal, there is some
X ∈ N such that a ∈ j(X). Let U be theN -ultrafilter derived from j using a, and let
k : MN

U → P be the canonical factor embedding. Then jU : N →MP
U is an internal

ultrapower embedding, k◦jU = j, and k(aU ) = a. Therefore j−1[a] = j−1U [aU ] ∈ N ,
as desired.

Lemma 2.6 follows immediately from Lemma 2.7:

Proof of Lemma 2.6. Note that U is the N -ultrafilter derived from jU using aU ,
so if jU is close, then U ∈ N , and so jU is an internal ultrapower embedding.
Conversely, if U is an internal ultrapower embedding, then MU ⊆ N and jU is
definable over N , so obviously j−1U [a] ∈ N for every a ∈MU .

These ultrafilter-free characterizations make various properties of ultrapowers
completely transparent:

Lemma 2.8. Suppose M
i−→ N

j−→ P are elementary embeddings and j ◦ i is an
ultrapower embedding. Then j is an ultrapower embedding.

Proof. This is an immediate consequence of Lemma 2.4 since j ◦ i[M ] ⊆ j[N ].

Our next lemma follows directly from the definition of a close embedding.

Lemma 2.9. Suppose N
j−→ P

k−→ Q are elementary embeddings and k ◦ j is a
close embedding. Then j is close to N .

Lemma 2.9 and Lemma 2.6 lead to a useful criterion for an elementary embed-
ding to be an internal ultrapower embedding:

Corollary 2.10. Suppose M
i−→ N

j−→ P
k−→ Q are elementary embeddings, j ◦ i

is an ultrapower embedding, and k ◦ j is a close embedding. Then j is an internal
ultrapower embedding.
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One also easily obtains that compositions of (internal) ultrapower embeddings
are again (internal) ultrapower embeddings:

Lemma 2.11. The composition of two ultrapower embeddings is an ultrapower
embedding.

Proof. Fix ultrapower embeddings M
i−→ N

j−→ P .
Fix b ∈ N such that every element of N is definable in N from b and parameters

in i[M ]. By elementarity, every element of j[N ] is definable in P from j(b) and
parameters in j ◦ i[M ].

Fix c ∈ P such that every element of P is definable in P from c and parameters
in j[N ]. Thus every element of P is definable from c, j(b), and parameters in
j ◦ i[M ]. It follows from Lemma 2.4 (with a = (j(b), c)) that j ◦ i is an ultrapower
embedding.

Again the following lemma is immediate from the definition of a close embed-
ding:4

Lemma 2.12. The composition of two close embeddings is a close embedding.

Applying Lemma 2.6, Lemma 2.11, and Lemma 2.12, we obtain:

Corollary 2.13. The composition of two internal ultrapower embeddings is an in-
ternal ultrapower embedding.

2.2 Uniform and fine ultrafilters

This section defines two different ways in which an ultrafilter can be said to con-
centrate on large sets. The first is a constraint on cardinality:

Definition 2.14. An ultrafilter U over a set X of cardinality λ is uniform if for all
A ∈ U , |A| = λ.

Given an ultrafilter U over a set X, there is always some Y ∈ U such that
U ∩ P (Y ) is uniform: let λ = min{|A| : A ∈ U} and let Y be any set in U of
cardinality λ. The ultrafilters U and U ∩ P (Y ) are essentially the same object, so
in a sense, uniform ultrafilters are just as “general” as ultrafilters are. Since there
is no canonical choice of Y , however, there are often good reasons for considering
ultrafilters that are not uniform.

The second notion is a constraint on cofinality:

Definition 2.15. An ultrafilter U over a family of sets X is fine if for all x ∈
⋃
X ,

{σ ∈ X : x ∈ σ} ∈ U .

The only fine ultrafilters that are important in this paper are the fine ultrafilters
over ordinals. As in the case of uniform ultrafilters, for any ultrafilter U over
an ordinal γ, there is an ordinal δ such that U ∩ P (δ) is a fine ultrafilter: let
δ = minα≤γ α ∈ U .

4The lemma is originally due to Woodin, who took Lemma 2.7 as the definition of a close
embedding, so that Lemma 2.12 is not as obvious.
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Lemma 2.16. Suppose U is an ultrafilter over an ordinal δ. Then the following
are equivalent:

• U is fine.

• Every set in U is cofinal in δ.

• δ is the least ordinal such that jU (δ) > aU .

Both uniformity and fineness amount to the requirement that an ultrafilter ex-
tend a certain filter naturally associated to its underlying set: an ultrafilter U over
a set X of cardinality λ is uniform if and only if it extends the generalized Fréchet
filter over X defined by {A ⊆ X : |X \A| < λ}, while an ultrafilter U over a family
of sets X is fine if and only if it extends the tail filter over X , generated by sets of
the form {σ ∈ X : x ∈ σ} for x ∈

⋃
X .

Take, for example, the class of principal ultrafilters.

Definition 2.17. Suppose X is a set and a is an element of X. The principal
ultrafilter over X concentrated at a is the set pa[X] = {A ⊆ X : a ∈ A}.

We write pa instead of pa[X] when the choice of X is obvious or irrelevant, as
is almost always the case. If α ≤ β are ordinals, then the principal ultrafilter pα[β]
is fine if and only if β = α+ 1.

By Lemma 2.16, fineness and uniformity coincide at regular cardinals:

Lemma 2.18. An ultrafilter over a regular cardinal is fine if and only if it is
uniform.

We briefly discuss weakly normal ultrafilters.

Definition 2.19. A uniform ultrafilter U over a regular cardinal δ is weakly normal
if for any function f such that f(α) < α for U -almost all ordinals α, there is some
ν < δ such that f(α) < ν for U -almost all α.

In other words, U is weakly normal if every U -regressive function is U -bounded.
Weak normality can be expressed in terms of the ultrapower:

Lemma 2.20. If U is a uniform ultrafilter over a regular cardinal δ, then U is
weakly normal if and only if aU = sup jU [δ].

We will use the following lemma, which follows easily from Lemma 2.20.

Lemma 2.21. If j : V →M is an elementary embedding and sup j[δ] < j(δ), then
the ultrafilter U derived from j using sup j[δ] is weakly normal.

2.3 Pushforwards and limits

We now turn to the concept of a pushforward ultrafilter and the more general
concept of a limit of ultrafilters.
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Definition 2.22. Suppose U is an ultrafilter over a set X and f : X → Y is a
function. Then the pushforward of U by f is the ultrafilter

f∗(U) = {A ⊆ Y : f−1[A] ∈ U}

Equivalently, f∗(U) is the ultrafilter generated by sets of the form f [A] where
A ∈ U .

Pushforwards are closely related to derived ultrafilters:

Lemma 2.23. Suppose U is an ultrafilter over a set X and f : X → Y is a
function. Then f∗(U) is the ultrafilter D derived from jU using [f ]U . The canonical
factor embedding k : MD →MU is given by k([g]D) = [g ◦ f ]U .

We now turn to ultrafilter limits:

Definition 2.24. Suppose U is an ultrafilter over a set X and 〈Wx : x ∈ X〉 is
a sequence of ultrafilters over a set Y . Then the U -limit of 〈Wx : x ∈ X〉 is the
ultrafilter

U - lim
x∈X

Wx = {A ⊆ Y : {x ∈ X : A ∈Wx} ∈ U}

If U is an ultrafilter over X and f : X → Y is a function, then the pushforward
f∗(U) is the U -limit of the principal ultrafilters 〈pf(x)[Y ] : x ∈ X〉.

We now generalize Lemma 2.23 to ultrafilter limits:

Lemma 2.25. Suppose U is an ultrafilter over a set X and 〈Wx : x ∈ X〉 is a
sequence of ultrafilters over a set Y . Then U - limx∈XWx = j−1U [W∗] where W∗ =
[x 7→Wx]U .

The proof is straightforward. There is also an analog of the canonical factor
embedding (Lemma 2.3).

Definition 2.26. Suppose j : N → P is an elementary embedding, W is an N -
ultrafilter over a set Y ∈ N , and W∗ is a P -ultrafilter such that W = j−1[W∗].
Then the associated shift embedding is the embedding k : MW → MW∗ defined by
k([f ]W ) = [j(f)]W∗ .

The following lemma is a special case of the shift lemma from the theory of
iterated ultrapowers:

Lemma 2.27. Suppose j : N → P is an elementary embedding, W is an N -
ultrafilter over a set Y ∈ N , and W∗ is a P -ultrafilter such that W = j−1[W∗].
Then the associated shift embedding k : MW → MW∗ is a well-defined elementary
embedding satisfying k ◦ jW = jW∗ ◦ j and k(aW ) = aW∗ .

2.4 Completeness, supercompactness, and Kunen’s theorem

In this section, we exposit the basic results involving κ-complete ultrafilters, al-
though the reader is likely familiar with them. We also discuss the concept of
supercompactness and its relationship with completeness.
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Definition 2.28. Suppose κ is a cardinal. An ultrafilter U is κ-complete if for all
γ < κ, for any sequence 〈Aα〉α<γ with Aα ∈ U for all α < γ,

⋂
α<γ Aα ∈ U .

We will say an ultrafilter U is countably complete if it is ω1-complete.

Definition 2.29. If j : N → P is a nontrivial elementary embedding, then the
critical point of j, denoted crit(j), is the least N -ordinal α such that j(α) 6= j[α].

If N is illfounded, then j may have no critical point. (This issue does not come
up here.) Every nontrivial elementary embedding of a wellfounded model of ZFC
has a critical point.

Theorem 2.30 (Scott). Suppose U is an ultrafilter. Then crit(jU ) is the largest
cardinal κ such that U is κ-complete.

This inspires some obvious notation:

Definition 2.31. If U is an ultrafilter, the completeness of U , denoted crit(U), is
the largest cardinal κ such that U is κ-complete.

The completeness of an ultrafilter turns out to have an intimate relationship
with the closure properties of its ultrapower.

Lemma 2.32. Suppose j : V →M is an elementary embedding and λ is a cardinal.
Then the following are equivalent:

(1) For some set X of cardinality λ, j[X] ∈M .

(2) For any set X of cardinality at most λ, j[X] ∈M .

If j is an ultrapower embedding, one can add to the list:

(3) M is closed under λ-sequences.

As a consequence of Theorem 2.30, one obtains the following fact:

Proposition 2.33 (Scott). Suppose U is a κ-complete ultrafilter. Then MU is
closed under γ-sequences for all γ < κ.

Proof. If γ < κ, then jU (γ) = jU [γ] by Theorem 2.30. In particular, jU [γ] ∈ MU ,
so MU is closed under γ-sequences by Lemma 2.32.

A model of set theory that is closed under countable sequences is necessarily
wellfounded, which yields the most important corollary of Proposition 2.33:

Corollary 2.34. An ultrafilter is countably complete if and only if its ultrapower
is wellfounded.

Proof. The forwards direction follows from Proposition 2.33. For the converse, sup-
pose U is an ultrafilter and assume MU is wellfounded (or just ωM ∼= ω). Obviously
for all n < ω, j(n) = j[n]. Therefore jU (ω) = jU [ω] since any n ∈ jU (ω) \ jU [ω]
would be nonstandard. It follows that crit(jU ) > ω, and so U is ω1-complete by
Theorem 2.30.
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From Corollary 2.34, we can deduce a strengthening of Proposition 2.33:

Theorem 2.35 (Scott). Suppose κ is an uncountable cardinal and U is a κ-complete
ultrafilter. Then MU is closed under κ-sequences.

Proof. Corollary 2.34 implies MU is wellfounded, and so we identify it with its
transitive collapse, which is an inner model. Then for all γ < κ, jU [γ] = jU (γ) is
an ordinal, and hence jU [κ] =

⋃
γ<κ jU [γ] is an ordinal. Since MU contains every

ordinal, jU [κ] ∈MU , and hence MU is closed under κ-sequences by Lemma 2.32.

It is natural to wonder whether the converse to Theorem 2.35 is true: if U is
an ultrafilter such that MU is closed under λ-sequences, must U be λ-complete?
Clearly this is true when λ = ℵ1 or when λ is the first measurable cardinal.5 At
the level of a supercompact cardinal, this implication breaks down:

Definition 2.36. A cardinal κ is λ-supercompact if there is an elementary embed-
ding j : V → M with critical point κ such that j(κ) > λ and Mλ ⊆ M . If κ is
λ-supercompact for all cardinals λ, then κ is said to be supercompact.

Even granting the consistency of supercompact cardinals (which we do), one
can still prove a partial converse to Theorem 2.35. This is a corollary of the Kunen
inconsistency theorem:

Theorem 2.37 (Kunen). Suppose M is an inner model and j : V → M is a
nontrivial elementary embedding. Then j[λ] /∈M where λ is the least ordinal strictly
larger than crit(j) such that j[λ] ⊆ λ.

Note that since an elementary embedding from V to an inner model is continuous
at ordinals of cofinality ω, in the context of Theorem 2.37, λ is also the least fixed
point of j above crit(j). Moreover, λ = supn<ω j

(n)(crit(j)).
Here is the partial converse to Theorem 2.35:

Corollary 2.38. Suppose U is an ultrafilter and λ is an infinite cardinal such that
MU is closed under δ-sequences for all δ < λ. If jU [λ] ⊆ λ, then U is λ-complete.

Proof. Assume not. Without loss of generality, we may assume λ is the least ordinal
strictly larger than crit(j) such that j[λ] ⊆ λ. By the remarks above, λ has countable
cofinality. Since M is closed under ω-sequences and δ-sequences for all δ < λ, in
fact, M is closed under λ-sequences, contrary to Theorem 2.37.

2.5 Decomposable ultrafilters

Keisler and Pŕıkry [10] introduced a spectrum of cardinals associated to an ultrafilter
U generalizing the notion of completeness.

5This is best possible. Let κ be the least measurable cardinal. It is consistent that there is an
ultrafilter U such that MU is closed under κ+-sequences but U is not κ+-complete.
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Definition 2.39. Suppose γ is a cardinal and U is an ultrafilter over X. Then a
γ-decomposition of U is a function f : X → γ such that |f [A]| = γ for all A ∈ U .
The ultrafilter U is said to be γ-decomposable if there is a γ-decomposition of U .

The completeness of U is the least element of its decomposability spectrum:

Lemma 2.40. For any ultrafilter U , the completeness of U is the least cardinal κ
such that U is κ-decomposable.

In general, the decomposability spectrum of an ultrafilter U consists of those
cardinals over which U projects to a uniform ultrafilter.

Lemma 2.41. Suppose U is an ultrafilter over a set X and γ is a cardinal. Then
U is γ-decomposable if and only if there is a function f : X → γ such that f∗(U) is
a uniform ultrafilter over γ; in fact, for any cardinal γ, a function f : X → γ is a
γ-decomposition of U if and only if f∗(U) is a uniform ultrafilter over γ.

For regular cardinals γ, γ-indecomposability has a simple ultrapower theoretic
characterization:

Proposition 2.42. Suppose γ is a regular cardinal and U is an ultrafilter over a
set X. Then U is γ-indecomposable if and only if jU (γ) = sup jU [γ].

Sketch. Using the regularity of γ, one shows that a function f : X → γ is a γ-
decomposition if and only if jU (α) < [f ]U for all α < γ.

There is also a combinatorial characterization of indecomposability in terms of
partitions:

Lemma 2.43. An ultrafilter U over a set X is γ-indecomposable if and only if for
every partition 〈Aξ : ξ < γ〉 of X, there is some S ⊆ γ with |S| < γ such that⋃
ξ∈S Aξ ∈ U .

One can also characterize γ-indecomposable ultrafilters as those that are closed
under intersections of descending γ-sequences. The following definition generalizes
this observation.

Definition 2.44. Suppose U is an ultrafilter and κ ≤ λ are cardinals. Then U is
(κ, λ)-indecomposable if for all γ < λ, if 〈Aα : α < γ〉 is a collection of sets with⋂
α∈σ Aα ∈ U for all σ ∈ Pκ(γ), then

⋂
α<λAα ∈ U .

Proposition 2.45. An ultrafilter U is (κ, λ)-indecomposable if and only if U is
γ-indecomposable for every cardinal γ such that κ ≤ γ < λ.

Proof. Note that U is γ-indecomposable if and only if for any 〈Aα : α < γ〉 for such
that

⋂
α∈σ Aα ∈ U for all σ ∈ Pγ(γ). The proposition follows immediately.

In Section 5, we analyze the class of cardinals carrying uniform countably com-
plete ultrafilters. For this, the following theorem is quite useful:
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Theorem 2.46 (Pŕıkry-Kunen, [11]). Suppose λ is a regular cardinal and U is a
uniform ultrafilter over λ+. Then U is λ-decomposable.

The corresponding fact is not true for singular cardinals λ. For example, if κ
is κ+ω+1-strongly compact then κ+ω+1 carries a uniform κ-complete ultrafilter U ,
which, being countably complete, cannot be κ+ω-decomposable. (A λ-decomposable
ultrafilter is always cf(λ)-decomposable, while countable completeness is equivalent
to ℵ0-indecomposability.) There is, however, a reasonable generalization of The-
orem 2.46 that one might hope to prove (Conjecture 2.53). This generalization
involves the concept of a regular ultrafilter (Definition 2.47), so it will be discussed
at the end of the following section.

2.6 Regular ultrafilters

Definition 2.47. Suppose κ ≤ λ are cardinals. An ultrafilter U is (κ, λ)-regular if
every subset of MU of cardinality at most λ is contained in an element of MU of
MU -cardinality less than jU (κ).

Given Lemma 2.41, the following proposition shows that (κ, λ)-regularity is the
analog of γ-decomposability in which uniform ultrafilters are replaced by fine ones:

Proposition 2.48. An ultrafilter U over X is (κ, λ)-regular if and only if there is
a function f : X → Pκ(λ) such that f∗(U) is a fine ultrafilter.

Combining this with Lemma 2.18 and Lemma 2.41, if γ is a regular cardinal,
U is (γ, γ)-regular if and only if U is γ-decomposable. (On the other hand, if γ is
singular, (γ, γ)-regularity neither implies γ-decomposability nor follows from it.)

The following proposition is an immediate consequence of the definition of (κ, λ)-
regularity:

Proposition 2.49. Suppose κ ≤ κ′ ≤ λ′ ≤ λ are cardinals. If U is a (κ, λ)-regular
ultrafilter, then U is (κ′, λ′)-regular.

Corollary 2.50. Suppose U is (κ, λ)-regular. Then U is γ-decomposable for every
regular cardinal γ in the interval [κ, λ].

Proof. By Proposition 2.49, U is (γ, γ)-regular for all γ in the interval [κ, λ]. If γ is
regular, our comments above imply that U is γ-decomposable.

The following lemma is in spirit due to Ketonen, but the proof we give is based
on an argument due to Woodin that we learned from [12].

Lemma 2.51. Suppose δ is a cardinal, j : V → M is an elementary embedding,
and λ is an M -cardinal. Then the following are equivalent:

(1) For some set X of cardinality δ, there is some Y ∈M such that j[X] ⊆ Y and
|Y |M < λ.

(2) For any set A of cardinality at most δ, there is some B ∈M such that j[A] ⊆ B
and |B|M < λ.
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If δ is regular and M is wellfounded, then one can add to the list:

(3) cfM (sup j[δ]) < λ.

If j is a wellfounded ultrapower embedding, one can add to the list:

(4) Every subset of M of cardinality at most λ is contained in a set in M of M -
cardinality less than j(δ).

Proof. (1) implies (2): Fix a set X of cardinality δ and a set Y ∈ M such that
j[X] ⊆ Y and |Y |M < λ. Fix a set A of cardinality at most δ. We must find
B ∈ M such that j[A] ⊆ B and |B|M < λ. Let f : X → A be a surjection. Then
B = j(f)[A] is as desired.

(2) implies (1): Trivial.
(2) implies (3): Take B ∈M such that j[δ] ⊆ B and |B|M < λ. Then B∩sup j[δ]

is a cofinal subset of sup j[δ] that belongs to M and has M -cardinality less than λ,
so sup j[δ] has M -cofinality less than λ.

(3) implies (1) assuming δ is regular: Let Y ∈M be a closed unbounded subset
of sup j[δ] of M -cardinality less than λ. Note that Y ∩j[δ] is an ω-closed unbounded
subset of sup j[δ]. Letting X = j−1[Y ], it follows that X is an ω-closed unbounded
subset of δ. Since δ is regular, this implies that X has cardinality δ. Since j[X] ⊆ Y ,
this establishes (1).

(4) implies (2): Trivial.
(2) implies (4) assuming j is an ultrapower embedding: Fix a set S ⊆ M of

cardinality at most δ. We must show that there is some T ∈ M of M -cardinality
less than λ such that S ⊆ T .

Since M is an ultrapower embedding, there is some a in M such that every
element of M is of the form j(f)(a) for some function f . One can therefore find a
set of functions F of cardinality at most λ such that S = {j(f)(a) : f ∈ F}. Fix
G ∈ M such that j[F ] ⊆ G and |G|M < λ. Setting T = {g(a) : g ∈ G}, we have
S ⊆ T and |T |M < λ, as desired.

The wellfoundedness assumptions in Lemma 2.51 are unnecessary, although this
is not clear from the proof above. Ketonen’s proof [13] works assuming assuming
only that sup j[δ] exists.

Corollary 2.52 (Ketonen). Suppose κ is a cardinal and λ is a regular cardinal. A
countably complete ultrafilter U is (κ, λ)-regular if and only if

cfMU (sup jU [λ]) < jU (κ)

Therefore a countably complete weakly normal ultrafilter over λ is (κ, λ)-regular if
and only if it concentrates on the set Sλκ = {α < λ : cf(α) < κ}.

Returning to the question of generalizing Theorem 2.46 to singular cardinals,
we consider the following conjecture of Lipparini:

Conjecture 2.53 (Lipparini, [14, Conjecture 2.12]). Suppose λ is a cardinal and
U is a uniform ultrafilter over λ+. Must one of the following hold?
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• U is (κ, λ+)-regular for some κ < λ.

• U is λ-decomposable.

There is an approximate answer to this question will be quite important in our
analysis of strongly compact cardinals under UA. Recall that if W is an ultrafilter
over X and Z is an ultrafilter over Y then

W ⊗ Z = {A ⊆ X × Y : ∀Wx ∀Zy (x, y) ∈ A}

Theorem 3.24. Suppose λ is a cardinal and U is a uniform ultrafilter over λ+.
Then either U is (κ, λ+)-regular for some κ < λ or else U ⊗ U is λ-decomposable.

If λ is regular, then U is λ-decomposable if and only if U⊗U is λ-decomposable.
(This is obvious from Proposition 2.42.) Therefore Theorem 3.24 generalizes Pŕıkry’s
Theorem (Theorem 2.46). Lipparini pointed out in personal correspondence that
Theorem 3.24 follows from results of [15]. We will give a more direct proof at the
end of Section 3.4.

2.7 Compactness principles

In this subsection, we define various strong compactness principles: classical strong
compactness, due to Tarski [1], and a number of variants introduced by Bagaria-
Magidor [9].

Definition 2.54. Suppose δ ≤ κ ≤ λ are cardinals. Then κ is (δ, λ)-strongly
compact if for some inner model M , there is an elementary embedding j : V → M
with critical point at least δ such that every subset of M of cardinality at most λ
is contained in an element of M of M -cardinality less than j(κ).

This principle is degenerate in the sense that if κ is (δ, λ)-strongly compact, then
all cardinals in the interval [κ, λ] are (δ, λ)-strongly compact.

Definition 2.55. Suppose δ ≤ κ ≤ λ are cardinals.

• κ is (δ,∞)-strongly compact if it is (δ, γ)-strongly compact for all cardinals
γ ≥ κ.

• κ is λ-strongly compact if it is (κ, λ)-strongly compact.

• κ is strongly compact if it is (κ,∞)-strongly compact.

There are many alternate characterizations of strong compactness:

Theorem 2.56 (Solovay, Ketonen). Suppose δ ≤ κ ≤ λ are cardinals. Then the
following are equivalent:

(1) κ is (δ, λ)-strongly compact.

(2) There is a δ-complete fine ultrafilter over the set Pκ(λ) = {σ ⊆ λ : |σ| < κ}.
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(3) There is a δ-complete (κ, λ)-regular ultrafilter.

If cf(λ) ≥ κ, one can add to the list:

(4) Every regular cardinal in the interval [κ, λ] carries a δ-complete uniform ultra-
filter.

If λ is regular, one can add to the list:

(5) There is a δ-complete weakly normal fine ultrafilter over λ concentrating on the
set Sλκ = {α < λ : cf(α) < κ}.

Finally, we will use Solovay’s theorem that the Singular Cardinals Hypothesis
holds above a strongly compact cardinal in the following form:

Theorem 2.57 (Solovay, [16]). Assume κ ≤ λ are cardinals, cf(λ) ≥ κ, and κ is
λ-strongly compact. Then λ<κ = λ.

A proof of this local form of Solovay’s theorem in the case that λ is regular
appears in the author’s thesis [7, Theorem 7.2.16]. The case that cf(λ) ≥ κ follows
since λ<κ = supδ<λ δ

<κ if λ is a limit cardinal and cf(λ) ≥ κ.

3 The Ultrapower Axiom

In this section, we state the Ultrapower Axiom and prove some basic results from
the general theory of countably complete ultrafilters under UA that are required to
prove the supercompactness of the least strongly compact cardinal.

Since we never consider countably incomplete ultrafilters, we will only be inter-
ested in wellfounded ultrapowers, so we adopt the following convention:

Convention 3.1. All the models of set theory under consideration are from now
on assumed to be transitive.

3.1 Comparisons and the Ultrapower Axiom

By Corollary 2.13, ultrapowers of V form a category under internal ultrapower
embeddings:

Definition 3.2. The category of internal ultrapowers is the category whose objects
are ultrapowers of the universe of sets6 and whose morphisms are internal ultrapower
embeddings.

Our next definition is standard in model theory:

Definition 3.3. A category C has the Amalgamation Property if for all morphisms
j0 : P → M0 and j1 : P → M1 of C there exist morphisms i0 : M0 → N and
i1 : M1 → N of C such that i0 ◦ j0 = i1 ◦ j1.

6But only transitive ultrapowers; see Convention 3.1.
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Definition 3.4. The Ultrapower Axiom states that the category of internal ultra-
powers has the Amalgamation Property.

Let us put down an equivalent formulation of the Ultrapower Axiom which the
categoraphobic among us may take as the definition.

Definition 3.5. Suppose M0 and M1 are models of set theory. We say

(i0, i1) : (M0,M1)→ N

is a comparison of (M0,M1) if i0 : M0 → N and i1 : M1 → N are elementary
embeddings. If P is a model of set theory j0 : P → M0 and j1 : P → M1 are
elementary embeddings, we say (i0, i1) : (M0,M1)→ N is a comparison of (j0, j1).

We will say a comparison is an internal ultrapower comparison if its constituent
embeddings are internal ultrapower embeddings.

Lemma 3.6. The Ultrapower Axiom holds if and only if every pair of ultrapower
embeddings of the universe of sets admits an internal ultrapower comparison.

Proof. The forwards direction is clear. For the converse, suppose P,M0,M1 are
ultrapowers of V and j0 : P → M0 and j1 : P → M1 are internal ultrapower
embeddings. To verify the Amalgamation Property, we must show that there exists
an internal ultrapower comparison (i0, i1) : (M0,M1)→ N such that i0◦j0 = i1◦j1.
Thus the only difficulty is that P may not be equal to V .

Note however that the statement that every pair of ultrapower embeddings of
the universe of sets admits an internal ultrapower comparison is equivalent to a
first-order statement in the language of set theory. Therefore since P ≡ V , P
satisfies that every pair of ultrapower embeddings of the universe of sets admits
an internal ultrapower comparison. But in P , j0 : P → M0 and j1 : P → M1 are
ultrapower embeddings of the universe of sets since j0 and j1 are internal. It follows
that in P there is an internal ultrapower comparison (i0, i1) : (M0,M1) → N such
that i0 ◦ j0 = i1 ◦ j1. The fact that (i0, i1) is an internal ultrapower comparison of
(j0, j1) is easily upwards absolute, so in fact (i0, i1) really is an internal ultrapower
comparison of (j0, j1), and this completes the proof.

3.2 The Ketonen order

One of the most important structural consequences of the Ultrapower Axiom is the
existence of a natural wellorder of the class of countably complete fine ultrafilters
over ordinals. The order coincides with a partial order introduced in a somewhat
restricted setting by Ketonen [13]. Ketonen’s definition of this order was expressed
in terms of limits of ultrafilters (Definition 2.24).

Definition 3.7. Suppose U and W are countably complete ultrafilters over ordinals
ε and δ. Then the Ketonen order is defined by setting U <k W (resp. U ≤k W ) if
U = W - limα<δ Uα for a sequence 〈Uα : α < δ〉 of countably complete ultrafilters
over ε such that α ∩ ε ∈ Uα (resp. (α+ 1) ∩ ε ∈ Uα) for W -almost all α.
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A complete exposition of the basic theory of the Ketonen order appears in [17].
Here we will just state some facts and sketch some easy proofs.

Lemma 3.8. Suppose U and W are countably complete ultrafilters over ordinals ε
and δ. Then the following are equivalent:

(1) U <k W (resp. U ≤k W ).

(2) For some ultrafilter U∗ of MW over jW (ε), j−1W [U∗] = U and aW ∩ jW (ε) ∈ U∗
(resp. (aW + 1) ∩ jW (ε) ∈ U∗).

(3) There is a comparison (k, `) : (MU ,MW )→ N of (jU , jW ) such that ` is close
to MW and k(aU ) < `(aW ) (resp. k(aU ) ≤ `(aW )).

Proof. We prove the lemma for the strict Ketonen order <k; the proof for ≤k is a
trivial modification.

The equivalence of (1) and (2) is an immediate application of  Loś’s Theorem
and Lemma 2.25.

(2) implies (3): Assume (2). Let k : MU → MU∗ be the associated shift em-
bedding (Definition 2.26), and let ` : MW → MU∗ be the ultrapower embedding
associated to U∗. Then by Lemma 2.27, (k, `) is a comparison of (jU , jW ). Since `
is an internal ultrapower embedding, ` is close to MW .

Finally, we show k(aU ) < `(aW ). First note that k(aU ) = aU∗ by Lemma 2.27.
Since aW ∩ jW (ε) ∈ U∗, aU∗ ∈ `(aW ) ∩ `(jW (ε)), and in particular aU∗ < `(aW ).
Therefore k(aU ) = aU∗ < `(aW ), as desired.

(3) implies (2): Assume (3), and let U∗ be the MW -ultrafilter over jW (ε) derived
from ` using k(aU ). Since ` is close to MW , Lemma 2.7 implies that U∗ ∈ MW .
Since k(aU ) < `(aW ), we have `(aW ) ∩ jW (ε) ∈ U∗. Finally,

j−1W [U∗] = j−1W [`−1[pk(aU )]] = j−1U [k−1[pk(aU )]] = j−1U [paU ] = U

The following is the first place where countable completeness is used in the
theory of the Ketonen order:

Proposition 3.9. ≤k is a wellfounded preorder.

The preorder ≤k is almost antisymmetric:

Lemma 3.10. Suppose U and W are countably complete ultrafilters over ordinals
ε and δ. Then U ≤k W and W ≤k U if and only if there is an ordinal α ∈ U ∩W
such that U ∩ P (α) = W ∩ P (α).

Corollary 3.11. The restriction of the Ketonen order to fine ultrafilters, or to
ultrafilters over a fixed ordinal, is antisymmetric.

The relationship between ≤k and <k is simple:

Lemma 3.12. If U and W are countably complete ultrafilters, then U <k W if and
only if U ≤k W and W 6≤k U .
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The following lemma allows us to view the Ketonen order as an extension of
the natural wellorder of the class of ordinals to the class of countably complete
ultrafilters over ordinals:

Lemma 3.13. If U and W are countably complete ultrafilters over ordinals and
min(Ord ∩ U) < min(Ord ∩W ), then U <k W .

Lemma 3.13 implies that for any ordinals α and β, pα < pβ if and only if
α < β. Moreover, for any countably complete ultrafilter U , U <k pα if and only if
U concentrates on α. In particular, the set of fine ultrafilters below pα is precisely
the set of fine ultrafilters over ordinals less than α.

The following theorem is the fundamental consequence of the Ultrapower Axiom:

Theorem 3.14 (UA). The Ketonen order wellorders the class of countably complete
fine ultrafilters over ordinals.

Proof. Given Proposition 3.9 and Lemma 3.10, it suffices to show that the Ketonen
order is total, meaning that for any countably complete fine ultrafilters U and W ,
either U ≤k W or W <k U . To see this, let (k, `) : (MU ,MW ) → N be an
internal ultrapower comparison of (jU , jW ). If k(aU ) ≤ `(aW ), then (k, `) witnesses
U ≤k W by Lemma 3.8. Otherwise, `(aW ) < k(aU ) so (`, k) witnesses W <k U by
Lemma 3.8.

3.3 Translation functions

In this section, we sketch the proofs of some slightly deeper structural consequences
of UA for countably complete ultrafilters.

The irreflexivity of the Ketonen order yields the following useful lemma.7

Lemma 3.15. Suppose U is a countably complete ultrafilter over an ordinal and i0
and i1 are elementary embeddings from MU to a common model N such that i1 is
close to MU and i0 ◦ jU = i1 ◦ jU . Then i0(aU ) ≥ i1(aU ).

Proof. Otherwise by Lemma 3.8, (i0, i1) : (MU ,MU ) → N witnesses that U <k U ,
contradicting the wellfoundedness of the Ketonen order.

Using Lemma 3.15, we obtain a key consequence of UA:

Theorem 3.16 (UA). Suppose j : V →M is an ultrapower embedding and U is an
ultrafilter over an ordinal δ. Let U∗ ∈M be a countably complete M -ultrafilter over
j(δ) such that j−1[U∗] = U . Let k : MU → MU∗ be defined by k([f ]U ) = [j(f)]U∗ .
Then the following are equivalent:

(1) U∗ is <Mk -minimal among all countably complete ultrafilters U ′ of M over j(δ)
such that j−1[U ′] = U .

7We make two unrelated comments. First, the lemma does not actually require the hypothesis
that U is countably complete. Second, a significant strengthening of this lemma appears as [7,
Theorem 3.5.11]: given two inner models M and N and elementary embeddings i0, i1 : M → N ,
if i1 is definable over M from parameters, then i0(α) ≥ i1(α) for every ordinal α.
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(2) k is an internal ultrapower embedding of MU .

Recall that the shift lemma (Lemma 2.27) implies that the embedding k defined
above is elementary. Moreover, Lemma 2.8 and Lemma 2.11 imply that k is an
ultrapower embedding. (We do include the details in the proof of Theorem 3.16.)
Therefore all that is in question in (2) is whether k is internal.

Proof of Theorem 3.16. (1) implies (2): Let (i, i∗) : (MU ,MU∗)→ N be an internal
ultrapower comparison of (jU , jU∗ ◦ j).

The main claim is that i∗ ◦ k = i. Since every element of MU is definable in MU

from parameters in jU [V ] ∪ {aU}, it suffices to show that i∗ ◦ k and i coincide on
jU [V ] ∪ {aU}. By the definition of a comparison,

i ◦ jU = i∗ ◦ jU∗ ◦ j = i∗ ◦ k ◦ jU

so i∗ ◦ k and i coincide on jU [V ].
We finish the proof of the main claim by showing i∗ ◦ k(aU ) = i(aU ). To see

i∗ ◦ k(aU ) ≥ i(aU ), notice that i∗ ◦ k and i are elementary embeddings from MU to
a common model N , i is close to MU , and i∗ ◦ k ◦ jU = i ◦ jU . Therefore applying
Lemma 3.15 with i0 = i∗ ◦ k and i1 = i, we can conclude that i∗ ◦ k(aU ) ≥ i(aU ).

On the other hand, the minimality of U∗ implies that i∗ ◦ k(aU ) ≤ i(aU ). To
see this, let U ′ be the M -ultrafilter derived from i∗ ◦ k using i(aU ). We claim that
j−1[U ′] = U : indeed, for any A ⊆ δ,

j(A) ∈ U ′ ⇐⇒ i(aU ) ∈ i∗ ◦ k(j(A))

⇐⇒ i(aU ) ∈ i(jU (A))

⇐⇒ aU ∈ jU (A)

⇐⇒ A ∈ U

By the minimality of U∗, U∗ ≤k U
′ in M . Let i′ : MU ′ → N be the canonical

factor embedding associated to the derived ultrafilter U ′, so i′ ◦ jU ′ = i∗ ◦ k and
i′(aU ′) = i(aU ) by Lemma 2.3. Then (i′, i∗) : (MU ′ ,MU∗) → N is a comparison
of (jU ′ , jU∗) and i∗ is internal to MU∗ . Therefore since U∗ ≤k U

′, we must have
i∗(aU∗) ≤ i′(aU ′) But i∗(aU∗) = i∗ ◦ k(aU ) and i′(aU ′) = i(aU ), so this implies
i∗ ◦ k(aU ) ≤ i(aU ), as claimed.

This proves i∗◦k(aU ) = i(aU ), and concludes our proof of the claim that i∗◦k = i.
In particular, i∗ ◦ k is an internal ultrapower embedding of MU . We can therefore
apply Corollary 2.10 to the sequence

V
jU−→MU

k−→MU∗
i∗−→ N

and deduce that k is an internal ultrapower embedding.
(2) implies (1): The proof does not use the Ultrapower Axiom. Suppose U ′ is

another countably complete ultrafilter of M such that j−1[U ′] = U . We will show
that U ′ 6<k U∗.

Let (i′, i∗) : (MU ′ ,MU∗) → N be a comparison of (jU ′ , jU∗) where i∗ is close
to MU∗ . We must show that i′(aU ′) ≥ i∗(aU∗). Let k′ : MU → MU ′ be the shift
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embedding defined by k′([f ]U ) = [j(f)]U ′ . Since i′ ◦ k′ and i∗ ◦ k are elementary
embeddings from MU to N such that i′ ◦ k′ ◦ jU = i∗ ◦ k ◦ jU and i∗ ◦ k is close
to MU , i′ ◦ k′(aU ) ≥ i∗ ◦ k(aU ) by Lemma 3.15. But i′ ◦ k′(aU ) = i′(aU ′) and
i∗ ◦ k(aU ) = i∗(aU∗), so we have shown i′(aU ′) ≥ i∗(aU∗), as desired.

Since Theorem 3.16 comes up so often, it is useful to introduce the following
definition:

Definition 3.17 (UA). Suppose U is a countably complete ultrafilter over an
ordinal δ, M is an inner model, and j : V → M is an elementary embedding.
Then the translation of U by j, denoted tj(U), is the <Mk -least ultrafilter U ′ of
M over j(δ) such that j−1[U ′] = U . If D is a countably complete ultrafilter,
tD(U) = tjD (U)

Since j−1[j(U)] = U , tj(U) is always defined, and moreover, tj(U) ≤k j(U) in
M .

We make some comments on translation functions that are not needed in our
applications. Assuming UA, it is not hard to show that for any countably complete
ultrafilters U and W over ordinals,

(jtU (W ), jtW (U)) : (MU ,MW )→ N

is a comparison of (jU , jW ). This comparison is the minimum comparison of
(jU , jW ) in the sense that for any other internal ultrapower comparison

(k, `) : (MU ,MW )→ P

of (jU , jW ), there is a unique internal ultrapower embedding h : N → P such that
k = h ◦ jtU (W ) and ` = h ◦ jtW (U). In other words, (jtU (W ), jtW (U)) is the pushout
of (jU , jW ) in the category of internal ultrapowers, the category theoretic analog of
a least upper bound.

3.4 The internal relation

Probably the most important application of Theorem 3.16 concerns the case in
which tj(W ) = j(W ):

Corollary 3.18 (UA). Assume j : V → M is an ultrapower embedding and W is
a countably complete ultrafilter over an ordinal. Then tj(W ) = j(W ) if and only if
j �MW is an internal ultrapower embedding.

Proof. Let k : MW →Mj(W ) be the shift embedding defined by k([f ]W ) = [j(f)]j(W )).
By Theorem 3.16, k is an internal ultrapower embedding of MW if and only if
j(W ) = tj(W ). But k([f ]W ) = [j(f)]j(W ) = j([f ]W ), so k = j. The corollary
follows.

This corollary motivates the introduction of a variant of the Mitchell order:
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Definition 3.19. The internal relation is defined on ultrafilters U and W by setting
U < W if jU �MW is an internal ultrapower embedding of MW .

Corollary 3.18 amounts to a computation of tU (W ) in the case that U < W .
What about tW (U)?

Definition 3.20. Suppose U is a countably complete ultrafilter over a set X,
M is an inner model, and j : V → M is an elementary embedding. Then the
pushforward of U onto M via j, denoted sj(U), is the M -ultrafilter over j(X)
defined by sj(U) = {A ∈ j(P (X)) : j−1[A] ∈ U}. If W is a countably complete
ultrafilter, then sW (U) = sjW (U).

Note that j−1[sj(U)] = U .
Notice that sj(U) = j∗(U) ∩ M , so it really is a kind of pushforward. The

following proposition reinforces our contention that the internal relation is a variant
of the Mitchell order.

Proposition 3.21. Suppose U is an ultrafilter over a set X and j : V →M is an
ultrapower embedding. Then the following hold:

(1) sj(U) is the M -ultrafilter over j(X) derived from jU �M using jU (j)(aU ).

(2) jMsj(U) = jU �M .

(3) jU �M is an internal ultrapower embedding of M if and only if sj(U) ∈M .

Proof. Towards (1), let U ′ be the M -ultrafilter over j(X) derived from jU � M
using jU (j)(aU ). Then for any A ∈ j(P (X)),

A ∈ U ′ ⇐⇒ jU (j)(aU ) ∈ jU (A)

⇐⇒ {x ∈ X : j(x) ∈ A} ∈ U
⇐⇒ j−1[A] ∈ U

Thus U ′ = sj(U), proving (1).
Towards (2), let k : Msj(U) → jU (M) be the canonical factor embedding with

k ◦ jsj(U) = jU � M and k(asj(U)) = jU (j)(aU ). We must show that k is an
isomorphism. Since k is an elementary embedding, it suffices to show that k is
surjective.

Since j is an ultrapower embedding, Lemma 2.4 yields some a ∈ M such that
every element of M is definable in M from a and parameters in j[V ]. Hence by Los’s
Theorem, every element of jU (M) is definable in jU (M) from jU (a) and parameters
in jU (j)[MU ].

On the other hand, every element of MU is definable in MU from aU and param-
eters in jU [V ]. Therefore by elementarity, every element of jU (j)[MU ] is definable
in jU (M) from jU (j)(aU ) and parameters in jU (j) ◦ jU [V ] = jU ◦ j[V ].

It follows that every element of jU (M) is definable in jU (M) from jU (a), jU (j)(aU ),
and parameters in jU ◦ j[V ]. Therefore every element of jU (M) is definable in
jU (M) from jU (j)(aU ) and parameters in jU [M ]. Since jU (j)(aU ) ∈ k[Msj(U)] and
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jU [M ] ⊆ k[Msj(U)], every element of jU (M) is definable in jU (M) from parameters
in k[Msj(U)]. Since k is elementary, it follows that k[Msj(U)] = jU (M). Thus k is
surjective, proving (2).

The forwards direction of (3) is an immediate consequence of (2), and the reverse
direction is an immediate consequence of (1).

Proposition 3.22 (UA). Suppose U is a countably complete ultrafilter over an
ordinal, M is an inner model, and j : V → M is an elementary embedding. Then
jU �M is an internal ultrapower embedding if and only if tj(U) = sj(U).

Proof. If tj(U) = sj(U), then sj(U) ∈ M , so jU � M is an internal ultrapower
embedding by Proposition 3.21.

Conversely assume sj(U) ∈ M . Consider the shift map k : MU → Msj(U)

defined by k([f ]U ) = [j(f)]sj(U). (This is well-defined because j−1[sj(U)] = U .) By
Proposition 3.21,

k([f ]U ) = jU (j(f))(jU (j)(aU )) = jU (j)([f ]U )

Hence k = jU (j), and in particular, k is an internal ultrapower embedding of MU .
Therefore by Theorem 3.16, sj(U) = tj(U).

We now use sU (U) to prove Theorem 3.24. First, we need a lemma which is
essentially a combinatorial restatement of Proposition 3.21. For A ⊆ V × V , let
Ax = {y : (x, y) ∈ A} and Ay = {x : (x, y) ∈ A}.

Lemma 3.23. Suppose W is an ultrafilter over X and Z is an ultrafilter over Y .
Then for any A ⊆ X × Y ,

A ∈W ⊗ Z ⇐⇒ [y 7→ Ay]Z ∈ sZ(W ) (1)

Proof. The lemma is a consequence of the following computation:

A ∈W ⊗ Z ⇐⇒ {x ∈ X : Ax ∈ Z} ∈W
⇐⇒ {x ∈ X : aZ ∈ jZ(Ax)} ∈W
⇐⇒ {x ∈ X : (jZ(x), aZ) ∈ jZ(A)} ∈W
⇐⇒ {x ∈ X : jZ(x) ∈ jZ(A)aZ} ∈W
⇐⇒ {x ∈ X : jZ(x) ∈ [y 7→ Ay]Z} ∈W
⇐⇒ j−1Z ([y 7→ Ay]Z) ∈W
⇐⇒ [y 7→ Ay]Z ∈ sZ(W )

Theorem 3.24. Suppose λ is a cardinal and U is a uniform ultrafilter over λ+.
Then either U is (κ, λ+)-regular for some κ < λ or else U ⊗ U is λ-decomposable.

Proof. Assume first that for some κ < λ, sU (U) contains a set Y of MU -cardinality
less than jU (κ). Let X = j−1U [Y ]. Then by the definition of sU (U), X ∈ U , so since
U is uniform, |X| = λ+. It follows from Lemma 2.51 that U is (κ, λ+)-regular.
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Assume instead that for all κ < λ, no set in sU (U) has MU -cardinality less than
jU (κ). Note that there is a set Y ∈ sU (U) of MU -cardinality at most jU (λ): indeed,
any ordinal ξ with jU (α) < ξ for all α < λ+ belongs to sU (U), and there is such
an ordinal ξ strictly below jU (λ+) since U is λ+-decomposable (Proposition 2.42).
Clearly |ξ|MU ≤ jU (λ).

Let f : jU (λ+) → jU (λ) be one-to-one on Y . Let g : λ+ → λ+

λ be such that
[g]U = f . We claim that the function F (α, β) = g(β)(α) is a λ-decomposition of
U ⊗ U . Suppose not, and fix A ∈ U ⊗ U such that |F [A]| < κ for some κ < λ.
Let Aβ = {α : (α, β) ∈ A}. Then |g(β)[Aβ ]| < κ for all β < λ. Hence letting B =
[β 7→ Aβ ]U , and recalling that f = [g]U , we have that |f [B]|MU < jU (κ) by Los’s
Theorem. Moreover since A ∈ U ⊗U , B ∈ sU (U) by (1). Therefore B∩Y ∈ sU (U).
But f is one-to-one on B ∩ Y , and therefore |B ∩ Y |MU = |f [B ∩ Y ]|MU < jU (κ),
contrary to our case hypothesis.

3.5 Commuting ultrapowers

Given the wellfoundedness of the Mitchell order, it is natural to ask whether the
internal relation is wellfounded. Kunen’s Commuting Ultrapowers Lemma shows
that it is not, and in fact, it contains 2-cycles:8

Theorem 3.25 (Kunen). Suppose U is a κ-complete ultrafilter and W is an ultrafil-
ter over a set of size less than κ. Then jU (jW ) = jW �MU and jW (jU ) = jU �MW .
In particular U < W and W < U .

A proof appears in the author’s thesis [7, Theorem 5.5.21].

Definition 3.26. Two countably complete ultrafilters U and W are said to com-
mute if jU (jW ) = jW �MU and jW (jU ) = jU �MW .

Proposition 3.22 and Corollary 3.18 combine to yield the following converse to
Theorem 3.25:

Theorem 3.27 (UA). Suppose U and W are countably complete ultrafilters Then
the following are equivalent:

(1) U < W and W < U

(2) U and W commute.

Proof. (1) implies (2): Applying Proposition 3.22 and Corollary 3.18, jU (W ) =
tU (W ) = sU (W ). Therefore jU (jW ) = jjU (W ) = jsU (W ) = jW � MU , where the
final equality follows from Proposition 3.21. By symmetry, this establishes (2).

(2) implies (1): Trivial.

One can ask whether Theorem 3.25 has a converse in another sense: if U and
W commute, must U contain a set of size less than crit(W ) or vice versa? The

8If U and W are fine ultrafilters over an ordinal δ and U < W , then U <k W . Hence the
internal relation is wellfounded when restricted to fine ultrafilters over a fixed ordinal δ.
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answer is no, and the reader can no doubt provide a counterexample with a little
bit of thought. It will be important, however, to establish a positive answer for
ultrafilters with the following property.

Definition 3.28. Suppose λ is a cardinal and U is a countably complete ultrafilter.
Then U is λ-internal if D < U for any ultrafilter over a set of size less than λ, and
U is uniformly internal if U is λ-internal where λ = minA∈U |A|.

For example, a κ-complete ultrafilter over κ is uniformly internal.

Theorem 3.29. Suppose U and W are countably complete uniformly internal ul-
trafilters. Then the following are equivalent:

(1) U and W commute.

(2) U contains a set of cardinality less than crit(W ) or W contains a set of cardi-
nality less than crit(U).

The proof requires the following fact:

Proposition 3.30. Suppose κ is a strong limit cardinal and U is a countably com-
plete κ-internal ultrafilter such that jU [κ] ⊆ κ. Then U is κ-complete.

The idea of the proof of Proposition 3.30 is to show that for every δ < κ, there is
an ultrafilter D over a set of size less than κ such that jD[δ] = jU [δ]. Since D < U ,
jU [δ] = jD[δ] ∈MU . Now using the Kunen inconsistency theorem (Corollary 2.38),
crit(jU ) ≥ κ.

Thus we must show that an ultrafilter U can be “approximated” by ultrafilters
over smaller sets.

Lemma 3.31. Suppose I, X, and Y are sets, U is an ultrafilter over X, and
p : I → jU (Y ) is a function. Then for some ultrafilter D over Y I , there is an
elementary embedding k : MD →MU such that k ◦ jD = jU and p[I] ⊆ k[MD].

Proof. Choose q : I → XY so that [q(i)]U = p(i). Define f : X → Y I by f(x)(i) =
q(i)(x). Let D = f∗(U) be the pushforward of U by f , and let k : MD → MU be
the canonical factor embedding with k ◦ jD = jU and k(aD) = [f ]U (Lemma 2.3
and Lemma 2.23).

An easy computation shows that for any function g on Y I , k([g]D) = [g ◦ f ]U .
Note that for any i ∈ I, q(i) = evali ◦ f where evali : Y I → Y is defined by
evali(g) = g(i). It follows that k([evali]D) = [evali ◦ f ]U = [q(i)]U = p(i). Hence
p[I] ⊆ k[MD].

Corollary 3.32. Suppose M is an inner model, j : V → M is an ultrapower
embedding, and κ is a cardinal. Then for some ultrafilter D over a set of size 2κ,
there is an elementary embedding k : MD →M such that k◦jD = j and crit(k) > κ.

Proof. Apply Lemma 3.31 with Y = κ + 1, I = κ, and p : κ → j(Y ) such that
κ + 1 ⊆ p[κ]. Then one obtains an ultrafilter D over (κ + 1)κ such that there is
an elementary embedding k : MD → M with κ + 1 ⊆ k[MD], or in other words,
crit(k) > κ.
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Proof of Proposition 3.30. By Corollary 3.32, for any δ < λ, there is an ultrafilter
D over a set of cardinality less than λ such that jD � δ = jU � δ. Since D < U ,
jU [δ] ∈MU .

This shows that jU [δ] ∈ MU for all δ < λ. This contradicts the Kunen incon-
sistency theorem for ultrapowers (Corollary 2.38), unless crit(jU ) ≥ κ, or in other
words, U is κ-complete.

Proof of Theorem 3.29. (1) implies (2): Since U and W commute, jU (crit(W )) =
crit(W ). In particular crit(U) 6= crit(W ), so assume without loss of generality that
crit(U) < crit(W ).

If U does not contain a set of size less than crit(W ), then since U is uniformly in-
ternal, U is crit(W )-internal. But then by Proposition 3.30, U is crit(W )-complete.
This contradicts that crit(U) < crit(W ).

(2) implies (1): This is a special case of Theorem 3.25.

4 The least supercompact cardinal

In the course of the next two sections, we will prove that the least strongly compact
cardinal is supercompact (Theorem 5.17). In this section we prove a conditional
result in this direction, a coarse version of which can be described in terms of the
following cardinal.

Definition 4.1. For every cardinal γ, let τγ denote the least ordinal τ such that for
all ordinals α, there is an ultrapower embedding j : V → M such that crit(j) ≥ γ
and j(τ) > α.

Theorem 4.13 (UA). If τω1
is strongly compact, then it is supercompact.

In Section 5 we will prove Theorem 5.18, which shows that τω1
is supercompact.

Notice that τω1 is less than or equal to the least strongly compact which is less
than or equal to the least supercompact, so if τω1 is supercompact, then the least
strongly compact cardinal is supercompact.

4.1 Ketonen ultrafilters

It is quite easy to construct an example of an ultrafilter U whose associated ultra-
power embedding jU : V →MU witnesses that κ is strongly compact but does not
witness that κ is supercompact. Therefore to prove the supercompactness of the
least strongly compact cardinal, we will have to define special ultrafilters that do
witness supercompactness. The ultrafilters we use are called Ketonen ultrafilters:

Definition 4.2. A countably complete ultrafilter U over a cardinal λ is said to
be a Ketonen ultrafilter if U is minimal in the Ketonen order among all countably
complete uniform ultrafilters over λ.

In this section, we will only discuss Ketonen ultrafilters over regular cardinals,
which have a simple combinatorial characterization.
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Theorem 4.3 (Ketonen). A countably complete ultrafilter U over a regular cardinal
δ is a Ketonen ultrafilter if and only if U is weakly normal and concentrates on
ordinals that carry no countably complete fine ultrafilter.

Proof. Let U be a Ketonen ultrafilter over δ.
To see that U is weakly normal, consider the ultrafilter W over δ derived from

jU using sup jU [δ]. By Lemma 2.21, W is weakly normal. Let k : MW →MU be the
canonical factor embedding with k(aW ) = sup jU [δ]. Then (k, id) : (MW ,MU ) →
MU is a comparison witnessing W ≤k U . Since W is uniform, the minimality of U
implies U = W . Hence U is weakly normal.

We now show that the set A of ordinals α < δ carrying a countably complete
fine ultrafilter is U -null. Assume not, and for each α ∈ A, let Uα be a fine ultrafilter
over α. Let Wα be the ultrafilter over δ given by Uα. then U -limα∈AWα <k U by
definition, but clearly U -limα∈AWα is a fine ultrafilter over δ.

Conversely, suppose U is weakly normal and concentrates on ordinals that carry
no countably complete fine ultrafilter. Suppose W is an ultrafilter over δ such that
W <k U . We must show that W is not fine. By the definition of the Ketonen order,
W = U -limα<δWα where and α ∈ Wα for U -almost all α ∈ A. For each α < δ,
let f(α) be the least ordinal in Wα. Since U -almost every α carries no countably
complete fine ultrafilter, f(α) < α for U -almost all α. Since U is weakly normal
and f is regressive modulo U , there is some ν < δ such that f(α) < ν for U -almost
all α < δ. It follows that ν ∈ Wα for U -almost all α < δ, and hence ν ∈ W . Since
ν < δ, this means that W is not fine.

The key ZFC theorem on Ketonen ultrafilters is a variant of a theorem due to
Ketonen himself, which he used to prove Theorem 2.56:

Theorem 4.4 (Ketonen). Suppose κ is a cardinal, δ is a regular cardinal, and U
is a Ketonen ultrafilter over δ. Assume that every regular cardinal in the interval
[κ, δ] carries a countably complete fine ultrafilter. Then U is (κ, δ)-regular.

Proof. By Lemma 2.51, it suffices to show

cfMU (sup jU [δ]) < jU (κ)

By Theorem 4.3, sup jU [δ] carries no countably complete fine ultrafilter in MU ,
and hence cfMU (sup jU [δ]) carries no countably complete fine ultrafilter in MU .
By elementarity, every MU -regular cardinal in the interval [jU (κ), jU (δ)] carries
a countably complete fine ultrafilter in MU . Thus cfMU (sup jU [δ]) does not lie
in this interval, and so since cfMU (sup jU [δ]) ≤ jU (δ), it must be the case that
cfMU (sup jU [δ]) < jU (κ).

4.2 The ultrafilter Kδ

Under the Ultrapower Axiom, the Ketonen order is linear, and therefore there is at
most one Ketonen ultrafilter over any ordinal.
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Definition 4.5 (UA). For any cardinal λ, let Kλ denote the unique Ketonen
ultrafilter over λ, if it exists.

The ultrafilter Kλ is the key to understanding strong compactness and super-
compactness under UA, especially when λ is a regular cardinal. For example, The-
orem 5.13 and Theorem 5.20 show that if δ is either a successor cardinal or an
inaccessible cardinal, then Kδ witnesses the δ-strong compactness of crit(Kδ) (as-
suming Kδ exists). That is, Kδ is (crit(Kδ), δ)-regular. Moreover, Corollary 5.14
shows that for any successor cardinal δ, Kδ witnesses the δ-supercompactness of
Kδ; that is, the ultrapower MKδ

is closed under δ-sequences.
These properties of Kδ trace back to the universal property of Kδ:

Theorem 4.6 (UA). Suppose δ is a regular and carries a countably complete fine
ultrafilter. Then for any wellfounded ultrapower embedding j : V →M , the following
are equivalent:

(1) There is an internal ultrapower embedding k : MKδ
→M such that k ◦ jKδ

= j
and k(sup jKδ

[δ]) = sup j[δ].

(2) sup j[δ] carries no countably complete fine ultrafilter in M .

Proof. (1) implies (2): Since Kδ is a Ketonen ultrafilter, sup jKδ
[δ] carries no count-

ably complete fine ultrafilter in MKδ
. Therefore by elementarity, k(sup jKδ

[δ]) =
sup j[δ] carries no countably complete fine ultrafilter in M .

(2) implies (1). Let (i0, i1) : (M0,M1)→ N be an internal ultrapower compari-
son of (jKδ

, j). Since i0 is an internal ultrapower embedding of MKδ
, and there is

no countably complete fine ultrafilter over sup jKδ
[δ] in M0, i0(sup jKδ

[δ]) = sup i0◦
jKδ

[δ]. Similarly, i1(sup j[δ]) = sup i1 ◦ j[δ]. Therefore i0(sup jKδ
[δ]) = i1(sup j[δ]).

Since Kδ is weakly normal, every element of MKδ
is of the form jKδ

(f)(sup jKδ
[δ])

for some function f : δ → V . But i0(jKδ
(f)(sup jKδ

[δ])) = i1(j(f))(i1(sup j[δ])) ∈
i1[M ]. It follows that i0[MKδ

] ⊆ i1[M ].
Let k = i−11 ◦ i0. Since i0[MKδ

] ⊆ i1[M ], k : MKδ
→ M is a (total) elementary

embedding. Clearly, k ◦ jKδ
= j and k(sup jKδ

[δ]) = sup j[δ].
It remains to show that k is an internal ultrapower embedding, but this follows

immediately from Corollary 2.10 applied to the sequence

V
jKδ−→MKδ

k−→M
i0−→ N

Theorem 4.6 yields a simple characterization of the internal ultrapower embed-
dings of MKδ

:

Theorem 4.7 (UA). Suppose δ is regular and carries a countably complete fine
ultrafilter. An ultrapower embedding h : MKδ

→ N is internal if and only if
h(sup jKδ

[δ]) = sup k ◦ jKδ
[δ].

Proof. The forwards implication is trivial. For the converse, apply Theorem 4.6 with
j1 = h ◦ jKδ

to obtain an internal ultrapower embedding k : MKδ
→ N such that

k◦jKδ
= h◦jKδ

and k(sup j0[δ]) = sup k◦j0[δ]. Since sup k◦jKδ
[δ] = suph◦jKδ

[δ] =
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h(sup jKδ
[δ]), k(sup jKδ

[δ]) = h(sup jKδ
[δ]). Every element of MKδ

is of the form
jKδ

(f)(sup jKδ
[δ]) so since k ◦ jKδ

= h ◦ jKδ
and k(sup jKδ

[δ]) = h(sup jKδ
[δ]),

k = h. It follows that h is an internal ultrapower embedding.

4.3 Supercompactness conditioned on strong compactness

The main result of this section is the following implication:

Theorem 4.8. Suppose δ is a regular cardinal. Let κ = crit(Kδ). Assume κ is
δ-strongly compact. Then:

• MKδ
is closed under γ-sequences for all γ < δ.

• Every subset of MKδ
of cardinality δ is contained in a set in MKδ

that has
cardinality δ in MKδ

.

• MKδ
is closed under δ-sequences unless δ is strongly inaccessible.

The proof involves some infinite combinatorics, namely the concept of an inde-
pendent family of sets.

Definition 4.9. Suppose κ is a cardinal. A family of sets F is κ-independent if
for any disjoint subfamilies σ and τ of F , each of cardinality less than κ, there is a
point that belongs to all the sets in σ and none of the sets in τ .

Equivalently, F is κ-independent if for any disjoint subfamilies B0 and B1 of F ,
there is a κ-complete filter for which every set in B0 is co-null and every set in B1

is null.
Let us give a simple example of a κ-independent family. Suppose X is a set.

For each x ∈ X, let Ax = {σ ∈ Pκ(X) : x ∈ σ}. Then F = {Ax : x ∈ X} is a
κ-independent family. Notice that |F| = |X|. Hausdorff proved that there are much
larger κ-independent families:

Theorem 4.10 (Hausdorff). For any set X, there is a κ-independent family of
subsets of Pκ(X) of cardinality 2|X|.

Proof. Let λ be the cardinality of X. Since κ-independence is preserved by relabel-
ings of the underlying set, it suffices to exhibit a κ-independent family F of subsets
of some set S such that |F| = 2λ and |S| = λ<κ.

Let
S =

∐
σ∈Pκ(X)

Pκ(P (σ)) = {(σ, t) : t ∈ Pκ(P (σ))}

Note that for all σ ∈ Pκ(X), |Pκ(P (σ))| ≤ (2<κ)<κ = 2<κ. Therefore

|S| = |Pκ(λ)| · sup
σ∈Pκ(λ)

|Pκ(P (σ))| = λ<κ

For each A ⊆ X, let

SA = {(σ, t) ∈ S : A ∩ σ ∈ t}
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and let
F = {SA : A ⊆ X}

Then |F| = 2λ: the function A 7→ SA is injective since x ∈ A if and only if
({x}, {{x}}) ∈ SA.

To finish, we show that F is κ-independent. Suppose T0 and T1 are disjoint
collections of subsets of X, each of cardinality less than κ. We will find a point in
S that belongs to SA for every A ∈ T0 and does not belong to SB for any B ∈ T1,
which clearly implies that F is κ-independent.

Choose σ ∈ Pκ(X) large enough that for any A ∈ T0 and B ∈ T1, A∩σ 6= B∩σ.
Now let

t = {A ∩ σ : A ∈ T0}

Obviously, A∩σ ∈ t if A ∈ T0. Moreover, B∩σ /∈ t if B ∈ T1 since B∩σ 6= A∩σ for
all A ∈ T0 by our choice of σ. It follows from the definition of SA that (σ, t) ∈ SA
for all A ∈ T0 and (σ, t) /∈ SB for all B ∈ T1. Thus (σ, t) is as desired.

Lemma 4.11. Suppose κ is a λ-strongly compact cardinal. Suppose M is an inner
model of ZFC with Pκ(λ) ⊆ M . Suppose γ ≤ λ is an M -cardinal of cofinality at
least κ such that λ ≤ (2γ)M and U ∩M ∈M for every κ-complete ultrafilter U over
γ. Then P (λ) ⊆M .

Proof. We first note that κ is δ-strongly compact in M for all M -regular cardinals
δ ≤ γ. Indeed, since Pκ(γ) ⊆ M , every regular cardinal δ of M with δ ≤ γ has
cofinality at least κ in V and hence carries a κ-complete fine ultrafilter W . By
assumption W ∩M ∈M , so W is a κ-complete uniform ultrafilter over δ in M . By
Ketonen’s Theorem (Theorem 2.56), this implies κ is δ-strongly compact in M for
all regular δ ≤ γ.

In particular, it follows from Solovay’s Theorem (Theorem 2.57) applied in M
that |Pκ(γ)|M = γ. Therefore U ∩M ∈ M for every κ-complete ultrafilter U over
Pκ(γ).

To prove the lemma, it suffices to show that there is a set F ∈ M such that
|F|M = λ and P (F) ⊆ M . Working in M , apply Theorem 4.10 to obtain a κ-
independent family F of subsets of Pκ(γ) of cardinality λ.

Since Pκ(λ) ∈ M , M contains every subfamily of F of cardinality less than κ.
It follows that F is truly κ-independent.

Suppose S ⊆ F . We will show that S ∈ M . Let T = F \ S. Let B =
S ∪ {Pκ(γ) \A : A ∈ T}. Since F is κ-independent, B generates a κ-complete filter
G over Pκ(γ). Since κ is λ-strongly compact, G extends to a κ-complete ultrafilter
U over Pκ(γ). (See Theorem 2.56.) By assumption U ∩M ∈ M . But S = U ∩ F ,
so S ∈M .

[7, Theorem 7.3.22] generalizes Lemma 4.11 in a way that clarifies the underlying
combinatorics.

Proof of Theorem 4.8. Let j : V →M denote the ultrapower embedding associated
to Kδ.
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We first show that for all ordinals α < δ, P (α) ⊆ M . Assume towards a
contradiction that this fails, and let γ be the least ordinal such that P (γ) * M .
Clearly γ is an M -cardinal, and moreover since M is closed under κ-sequences,
cf(γ) ≥ κ. Since γ < δ, Theorem 4.7 implies that for all countably complete
ultrafilters U over γ, U < Kδ and hence U ∩M ∈ M . Therefore by Lemma 4.11,
P (γ) ⊆M . This is a contradiction, establishing that P (α) ⊆M for all α < δ.

Next, we show that cfM (sup j[δ]) = δ. Suppose not, towards a contradiction.
Then for every countably complete ultrafilter U over δ, U∩M ∈M . To see this, note
that jMU∩M : M → MM

U is continuous at cfM (sup j[δ]). Therefore by Theorem 4.6,
jMU∩M is an internal ultrapower embedding of M , and hence U ∩M ∈M .

Note that in particular, Kδ ∩M ∈M . This is quite strange given the fact that
no countably complete ultrafilter belongs to its own ultrapower, but it is not in and
of itself a contradiction.

Since U ∩M ∈M for every countably complete ultrafilter U over δ, however, we
can apply Lemma 4.11 with γ = λ = δ to obtain that P (δ) ⊆M . Now Kδ = Kδ ∩
M ∈ M . This contradicts that an ultrafilter never belongs to its own ultrapower,
and this contradiction proves that cfM (sup j[δ]) = δ. By Lemma 2.51, it follows
that every subset of M of cardinality at most δ is contained in a set in M of
M -cardinality at most δ.

We now show M is closed under γ-sequences for all γ ≤ δ such that P (γ) ⊆M .
By Lemma 2.32, it suffices to show that j[γ] ∈M for all γ < δ.

Assume towards a contradiction that γ < δ is the least ordinal such that M
is not closed under γ-sequences. Clearly γ is a regular cardinal. By the covering
property ofM established above, sup j[γ] has cofinality at most δ inM . In fact, since
sup j[γ] has cofinality γ in V , its cofinality in M is strictly less than δ. Applying
Lemma 2.51 again, we obtain a set A ∈ M containing j[γ] such that |A|M < δ.
Since P (|A|M ) ⊆M , P (A) ⊆M , and so j[γ] ∈M . Therefore M is closed under γ-
sequences. This is a contradiction, establishing that M is closed under γ-sequences
for all γ < δ.

Finally, assume δ is not strongly inaccessible, and we will show that M is closed
under δ-sequences. There are two cases.

Suppose first that δ ≤ γ<κ for some cardinal γ < δ. Then by Theorem 2.57,
δ = γ+ and γ has cofinality less than κ. Since j[γ] ∈M , j[Pκ(γ)] = Pκ(j[γ]) ∈M .
Since |Pκ(γ)| = δ, j[δ] = M . This shows that M is closed under δ-sequences in this
case.

Suppose instead that γ<κ < δ for all γ < δ. Let γ be least such that 2γ ≥ δ.
Then since γ < δ, P (γ) ∈ M , and so (2γ)M ≥ δ. Therefore applying Lemma 4.11,
P (δ) ⊆ M . Since we showed that M is closed under α-sequences for all α ≤ δ
such that P (α) ⊆ M , it follows that M is closed under δ-sequences in this case as
well.

We now prove the conditional result on the cardinal τω1
described at the begin-

ning of this section.

Theorem 4.12. Suppose τω1
is δ-strongly compact where δ ≥ τω1

is a regular
Fréchet cardinal. Then crit(Kδ) = τω1

.
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Proof. The fact that crit(Kδ) ≤ τω1 is a consequence of Theorem 4.4. More explic-
itly, note that since τω1 is δ-strongly compact, every regular cardinal in the interval
[τω1

, δ] carries a uniform countably complete ultrafilter. Applying Theorem 4.4,
this means that Kδ is (τω1

, δ)-regular. In particular, Kδ is τω1
-decomposable (by

Corollary 2.50), and hence crit(Kδ) ≤ τω1
.

To show that τω1 ≤ crit(Kδ), we first show that for any ultrapower embedding
j : V →M , j[τω1 ] ⊆ τω1 . Suppose j : V →M is an ultrapower embedding and κ is
an ordinal such that j(κ) ≥ τω1

. We will show κ ≥ τω1
. We claim that for any α,

there is an ultrapower embedding i : V → N such that i(κ) > α. To see this, one
just composes j with an ultrapower embedding sending τω1

above α, (The fact that
the composed embedding is also an ultrapower embedding follows from Lemma 2.11
and Proposition 3.21.) By the minimality of τω1 , it follows that κ ≥ τω1 , as claimed.

In particular, jKδ
[τω1 ] ⊆ τω1 . But Kδ is τω1-internal and τω1 is a strong limit

cardinal, so by Proposition 3.30, crit(Kδ) ≥ κ.

Theorem 4.13. If the cardinal τω1
is strongly compact, it is supercompact.

Proof. Let δ ≥ τω1
be a successor cardinal. Since τω1

is δ-strongly compact, Kδ

exists. By Theorem 4.12, crit(Kδ) = τω1
. Therefore by assumption, crit(Kδ) is

δ-strongly compact, and so we can apply Theorem 4.8 to obtain that MKδ
is closed

under δ-sequences. This yields that τω1 is δ-supercompact, and so since δ was an
arbitrary successor cardinal, τω1

is supercompact.

5 Strong compactness and uniform ultrafilters

In this section, we study the pattern of cardinals that carry countably complete
uniform ultrafilters under UA, culminating in our main theorem:

Theorem 5.17 (UA). The least strongly compact cardinal is supercompact.

In fact, this will follow as a consequence of various stronger and more local
theorems (Corollary 5.14 and Theorem 5.21).

5.1 Fréchet cardinals

Definition 5.1. A cardinal λ is Fréchet if it carries a countably complete uniform
ultrafilter.

A cardinal λ is Fréchet if and only if the Fréchet filter {A ⊆ λ : |λ \ A| < λ}
extends to a countably complete ultrafilter.

We will use a number of characterizations of Fréchet cardinals that are very easy
to prove:

Lemma 5.2. For any cardinal λ, the following are equivalent:

(1) λ is Fréchet.

(2) There is a countably complete ultrafilter U such that minA∈U |A| = λ.
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(3) There is a countably complete λ-decomposable ultrafilter.

If λ is regular, one can add to the list:

(4) There is an elementary embedding j : V →M such that sup j[λ] < j(λ).

Proof. The equivalence of (1) and (2) is trivial, and the equivalence of (1) and (3)
follows immediately from Lemma 2.41. (4) follows from (1) by taking an ultrapower,
and (1) follows from (4) by considering the ultrafilter over λ derived from j using
sup j[λ], which is fine, and hence uniform if λ is regular (Lemma 2.18).

Given an ordinal γ, how large is the least Fréchet cardinal above γ?

Definition 5.3. For any ordinal γ, γσ denotes the least Fréchet cardinal above γ.

Of course, γσ may not be defined. Note that 1σ is equal to the least measurable
cardinal (if there is one). On the other hand, if κ is κ+-strongly compact, then
κσ = κ+. It is natural to conjecture that these are the only possibilities. It is
consistent, however, that this is not the case: for example, Gitik [18] shows that if
there are two measurable cardinals and κ < λ are the least ones, then it is possible to
build a forcing extension in which λ is strongly inaccessible but not weakly compact
and κσ = λ. It is therefore natural to make the following revised conjecture:

Conjecture 5.4. Assuming the Ultrapower Axiom, for any ordinal γ, either γσ =
γ+ or γσ is measurable.

While Conjecture 5.4 remains open, we will show in Proposition 5.19 that it holds
assuming GCH. (This is by far the most important case given that our interest is
not really in arbitrary models of UA.)

The notion of an isolated cardinal naturally arises from the attempt to prove
Conjecture 5.4.

Definition 5.5. A cardinal λ is isolated if λ is a limit cardinal and there is some
γ < λ such that λ = γσ.

The following lemma will be quite important:

Lemma 5.6. Suppose λ is a cardinal and λ+ is Fréchet. Either λ is Fréchet or λ
is a singular limit of Fréchet cardinals.

Proof. Theorem 3.24 implies that there is a countably complete ultrafilter W that
is either λ-decomposable or (κ, λ+)-regular for some κ < λ.

If W is λ-decomposable, then by Lemma 5.2, λ is a Fréchet cardinal. Assume
instead that W is (κ, λ+)-regular. Then by Corollary 2.50, W is δ-decomposable
for every regular cardinal δ in the interval [κ, λ+]. If λ is regular, then λ itself is
a regular cardinal in the interval [κ, λ+], and so λ is Fréchet. Otherwise, λ is a
singular cardinal, so λ is a singular limit of Fréchet cardinals.

By the following proposition, to prove Conjecture 5.4, one only has to show that
every isolated cardinal is measurable.
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Proposition 5.7. Suppose γσ is a successor cardinal. Then γσ = γ+.

Proof. Let λ be the cardinal predecessor of γσ. Then γ ≥ λ: otherwise, Lemma 5.6
implies that there is a Fréchet cardinal strictly between γ and γσ, which contradicts
the definition of γσ. Now γσ = λ+ ≤ γ+, proving the theorem.

The following corollary is the true explanation for our interest in isolated cardi-
nals:

Proposition 5.8. Suppose δ is a regular cardinal, U is a Ketonen ultrafilter over
δ, and κ = crit(U). If there are no isolated cardinals λ such that κ < λ ≤ δ, then κ
is δ-strongly compact and U is (κ, δ)-regular.

Proof. Fix an ordinal γ such that κ ≤ γ < δ.
Let λ = γσ. We claim λ = γ+. Assume towards a contradiction that λ > γ+.

Then λ is an isolated cardinal by Proposition 5.7. Since δ is a Fréchet cardinal
above γ, λ ≤ δ. This contradicts that there are no isolated cardinals such that
κ < λ ≤ δ.

This proves that every successor cardinal in the interval (κ, δ) is Fréchet. By
Lemma 5.6, it follows that every regular cardinal in the interval [κ, δ] is Fréchet.
Therefore by Ketonen’s theorem (Theorem 4.4), U is (κ, δ)-strongly compact. In
particular, it follows (from Theorem 2.56, say, but essentially by definition) that κ
is δ-strongly compact.

5.2 Ketonen ultrafilters over isolated cardinals

In this section, we study Kλ when λ is isolated. The key is a weak form of Theo-
rem 4.7:

Lemma 5.9. Suppose λ is an isolated cardinal. Then for any countably complete
ultrafilter D over a cardinal δ < λ, jD �MKλ

is an internal ultrapower embedding.

The lemma is only of interest when λ is singular, since we have already proved
a much stronger result in the regular case (Theorem 4.7). In the singular case,
the assumption that λ is isolated is essential, since one can show that if λ is a
nonisolated singular Fréchet cardinal of cofinality δ, then jKδ

� MKλ
is not an

internal ultrapower embedding.
Lemma 5.9 is a consequence of Corollary 3.18, our general UA technique for

proving that the restriction of an ultrapower embedding to another ultrapower is
internal. The proof also uses the following easy lemma:

Lemma 5.10. Suppose λ is a cardinal, X is a set of cardinality less than λ, and
D is an ultrafilter over X. Suppose Y is a set and U∗ is an ultrafilter of MD

over jD(Y ) that is (j(γ), j(λ+))-indecomposable for some γ < λ. Then j−1D [U∗] is
λ-indecomposable.
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Proof. Let U = j−1D [U∗]. Let 〈Ux : x ∈ X〉 be a sequence of (γ, λ+)-indecomposable
ultrafilters such that U∗ = [〈Ux : x ∈ X〉]D. Suppose 〈Aα : α < λ〉 is a partition of
Y . We must find a set S ⊆ λ of cardinality less than λ such that

⋃
α∈S Aα ∈ U .

For each x ∈ X, let Sx ⊆ λ be a set of cardinality less than γ such that⋃
α∈Sx Aα ∈ Ux. Let S =

⋃
x∈X Sx. Since |X| < λ and |Sx| < γ for all x, |S| < λ.

Moreover,
⋃
x∈S Ax ∈ Ux for all x ∈ X since Sx ⊆ S. By Los’s Theorem, this

implies that jD(
⋃
x∈S Ax) ∈ U∗, or in other words,

⋃
x∈S Ax ∈ U . Therefore S is as

desired.

Proof of Lemma 5.9. Let U∗ be the MD-ultrafilter over jD(λ) in the Ketonen order
of MD such that j−1D [U∗] = Kλ.

We claim that U∗ is jD(λ)-decomposable in MD. To see this, fix γ < λ such
that λ = γσ. Then U∗ (and indeed any countably complete ultrafilter of MD) is
(jD(γ), ρ)-indecomposable in MD for all ρ < jD(λ). Assume towards a contradic-
tion that U∗ is jD(λ)-indecomposable. Then U∗ is (jD(γ), jD(λ))-indecomposable.
Therefore by Lemma 5.10, j−1D [U∗] = Kλ is λ-indecomposable. This contradicts
that Kλ is a uniform ultrafilter over λ.

Note that for any cardinal η, Kη is the Ketonen least fine ultrafilter that is
η-decomposable. Therefore since U∗ is jD(λ)-decomposable in MD, jD(Kλ) ≤k U∗
in MD. Obviously U∗ ≤k jD(Kλ), so equality holds. Hence by Corollary 3.18,
jD �MKλ

is an internal ultrapower embedding.

The following criterion for nonisolation will prove quite useful:

Lemma 5.11 (UA). Suppose λ is a Fréchet cardinal and there is a countably com-
plete ultrafilter D such that Kλ < D but D 6< Kλ. Then λ is not isolated.

Proof. Assume towards a contradiction that λ is isolated. Assume without loss of
generality that the underlying set of D is a cardinal.

Since Kλ < D, tD(Kλ) = sD(Kλ) by Proposition 3.22. Since D 6< Kλ, Corol-
lary 3.18 implies that tD(Kλ) <k jD(Kλ). Since jD(Kλ) is the least countably
complete uniform ultrafilter of MD over jD(λ), it follows that sD(Kλ) is not a
uniform ultrafilter in MD.

Fix a set Y ∈ sD(Kλ) of minimal cardinality. Let δ be the least cardinal less
than λ such that there are no Fréchet cardinals γ with δ ≤ γ < λ. Then since
sD(Kλ) ∩ PMD (Y ) is uniform, |Y |MD < jD(δ). Let X = j−1D [Y ]. Then X ∈ Kλ

since Y ∈ sD(Kλ). Now applying Lemma 2.51, D is (δ, λ)-regular. It follows from
Corollary 2.50 that λ is a limit of Fréchet cardinals. Hence λ is not isolated. This
is a contradiction.

As a consequence, we obtain the following theorem:

Theorem 5.12 (UA). Suppose λ0 < λ1 are Fréchet cardinals, λ0 is isolated, and
λ1 is either isolated or regular. Then λ0 < crit(Kλ1

).

Proof. Note that Kλ0 < Kλ1 by Theorem 4.7 or Lemma 5.9. Since λ0 is isolated,
Lemma 5.11 implies that Kλ1 < Kλ0 . By Theorem 3.27, it follows that Kλ0 and
Kλ1

commute.
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By Theorem 4.7 and Lemma 5.9, Kλ0 and Kλ1 are uniformly internal, and so
Theorem 3.29 implies that Kλ0 contains a set of size less than crit(Kλ1). Since Kλ0

is a uniform ultrafilter over λ0, this means that λ0 < crit(Kλ1
).

5.3 Strong compactness

The most important application of Theorem 5.12 is the following theorem:

Theorem 5.13 (UA). If δ is a regular Fréchet cardinal that is not isolated. Let
κ = crit(Kδ). Then κ is δ-strongly compact and Kδ is (κ, δ)-regular.

Proof. Let κ = crit(Kδ). By Theorem 5.12, there are no isolated cardinals in the
interval (κ, δ). Therefore by Proposition 5.8, κ is δ-strongly compact.

Corollary 5.14 (UA). Suppose δ is a successor cardinal that carries a countably
complete uniform ultrafilter. Then some cardinal κ < δ is δ-supercompact.

Proof. Since successor cardinals are not isolated, this corollary follows immediately
from Theorem 4.8 and Theorem 5.13.

The proof of Theorem 5.13 yields two characterizations of the least δ-strongly
compact cardinal:

Corollary 5.15 (UA). Suppose δ is a regular Fréchet cardinal that is not isolated.
Let κ be the supremum of all isolated cardinals less than δ. Let κ′ be the least
(ω1, δ)-strongly compact cardinal. Let κ′′ be the least δ-strongly compact cardinal.
Let κ′′′ = crit(Kδ). Then κ = κ′ = κ′′ = κ′′′.

Proof. Clearly κ ≤ κ′ since every cardinal in the interval [κ′, δ] is Fréchet, so no
cardinal in the interval (κ′, δ) is isolated. Trivially, κ′ ≤ κ′′. Theorem 5.13 shows
that crit(Kδ) is δ-strongly compact. Hence

κ ≤ κ′ ≤ κ′′ ≤ κ′′′

Since there are no isolated cardinals in the interval (κ, δ), the argument of The-
orem 5.13 shows that for any ordinal γ ∈ (κ, δ), γσ = γ+. As in Theorem 5.13,
it follows that every regular cardinal in the interval [κ, δ] is Fréchet. Therefore by
Theorem 4.4, Kδ is (κ, δ)-regular, and hence κ′′′ = crit(Kδ) ≤ κ. This proves the
corollary.

Corollary 5.16 (UA). For any successor cardinal δ, the least (ω1, δ)-strongly com-
pact cardinal is δ-supercompact.

Proof. This is an immediate consequence of Theorem 4.8 and Corollary 5.15.

This immediately implies our main theorem:

Theorem 5.17. The least strongly compact cardinal is supercompact.
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Proof. Indeed, the least (ω1,∞)-strongly compact cardinal κ is supercompact. This
follows from Corollary 5.16, noting that for all δ ≥ κ, κ is the least (ω1, δ)-strongly
compact cardinal. (If κ̄ ≤ κ is (ω1, κ)-strongly compact, then κ̄ is (ω1,∞)-strongly
compact by Theorem 2.56.)

Let us also make good on our promise to prove that the cardinal τω1 defined at
the beginning of Section 4 is strongly compact.

Theorem 5.18 (UA). The cardinal τω1 is supercompact.

Proof. The existence of τω1
easily implies that there is a proper class of Fréchet

cardinals. We will show that there are no isolated cardinals above τω1
.

Fix a Fréchet cardinal λ ≥ τω1
. Let κ = crit(Kλ). Let ξ be the least ordinal

greater than κ such that jKλ
(ξ) = ξ. Let W be the <k-least countably complete

fine ultrafilter over an ordinal such that jW (τω1) > ξ.
By the proof of Theorem 4.12, τω1

≤ κ ≤ λ. Therefore jW (κ) > κ. In particular,
it cannot be that Kλ < W and W < Kλ: otherwise jW (jKλ

) = jKλ
� MW by

Theorem 3.27, and hence jW (κ) = κ.
We now show that Kλ < W . Let W∗ = tKλ

(W ). Let k : MW → MW∗ be the
shift embedding (Definition 2.26). Then

jW∗(jKλ
(τω1

)) = k(jW (τω1
)) ≥ jW (τω1

) > ξ = jKλ
(ξ)

In MKλ
, jKλ

(W ) is the <k-least countably complete ultrafilter W ′ over jKλ
(δ) such

that jW ′(jKλ
(τω1

)) > jKλ
(ξ), so jKλ

(W ) ≤k W∗. It follows that jKλ
(W ) = W∗,

and therefore Kλ < W by Corollary 3.18, as claimed.
Since Kλ < W , we can conclude that W 6< Kλ. Therefore by Lemma 5.11, λ is

not isolated.
Since there are no isolated cardinals above τω1 , it must be that γσ = γ+ for all

γ ≥ τω1
. It follows that every successor cardinal above τω1

is Fréchet, and hence by
Theorem 2.46 or Theorem 3.24, every regular cardinal above τω1

is Fréchet. Thus
τω1

is the least (ω1,∞)-strongly compact cardinal. By Corollary 5.16, it follows
that τω1

is supercompact.

5.4 Inaccessible Fréchet cardinals

The following proposition shows that Conjecture 5.4 follows from the Generalized
Continuum Hypothesis:

Proposition 5.19 (UA). Suppose λ is an isolated strong limit cardinal. Then λ is
measurable.

Proof. Let δ be the strict supremum of all Fréchet cardinals less than λ. Then Kλ is
(δ, λ)-indecomposable. Since λ is a strong limit cardinal, Corollary 3.32 implies that
there is an ultrafilter D on a set of size less than δ such that jD � λ = jKλ

� λ. By
Lemma 5.9, it follows that jKλ

� λ ∈ MKλ
. Therefore by the Kunen inconsistency

theorem (Corollary 2.38), Kλ is λ-complete. Therefore Kλ witnesses that λ is
measurable.
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Using Proposition 5.19, one can generalize Theorem 5.13 to inaccessible cardi-
nals:

Theorem 5.20 (UA). Suppose λ is strongly inaccessible and carries a countably
complete uniform ultrafilter. Then some cardinal κ ≤ λ is λ-strongly compact.

Proof. If λ is isolated, then Proposition 5.19 implies that λ is λ-supercompact,
which implies the corollary. Otherwise, λ is not isolated, so Theorem 5.13 yields
that some κ < λ is λ-strongly compact.

As a corollary of Theorem 4.8 and the proof of Theorem 5.20, one can almost
generalize Corollary 5.14 to inaccessible cardinals:

Theorem 5.21 (UA). Suppose λ is strongly inaccessible and carries a countably
complete uniform ultrafilter. Then there is an elementary embedding j : V → M
with the following properties:

• The critical point of j is κ and j(κ) > λ.

• For all δ < λ, M is closed under δ-sequences.

• Every A ⊆M with |A| = λ is contained in some B ∈M with |B|M = λ.

Question 5.22 (UA). Suppose λ is strongly inaccessible and carries a countably
complete uniform ultrafilter. Is there a cardinal κ ≤ λ that is λ-supercompact?
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