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Abstract

This paper establishes a number of constraints on the structure of large
cardinals under strong compactness assumptions. These constraints coincide
with those imposed by the Ultrapower Axiom [1], a principle that is expected
to hold in Woodin’s hypothesized Ultimate L, providing some evidence for
the Ultimate L Conjecture [2].

We show that every regular cardinal above the first strongly compact that
carries an indecomposable ultrafilter is measurable, answering a question of
Silver [3] for large enough cardinals. We show that any successor almost
strongly compact cardinal of uncountable cofinality is strongly compact, mak-
ing progress on a question of Boney, Unger, and Brooke-Taylor [4]. We show
that if there is a proper class of strongly compact cardinals then there is no
nontrivial cardinal preserving elementary embedding from the universe of sets
into an inner model, answering a question of Caicedo [5] granting large cardi-
nals. Finally, we show that if κ is strongly compact, then V is a set forcing
extension of the inner model κ-HOD consisting of sets that are hereditarily
ordinal definable from a κ-complete ultrafilter over an ordinal; κ-HOD seems
to be the first nontrivial example of a ground of V whose definition does not
involve forcing.

1 Introduction

1.1 The Ultimate L Conjecture

Since Cohen’s proof of the independence of the Continuum Hypothesis [6], it has
become clear that many of the fundamental features of the universe of sets will never
be decided on the basis of the currently accepted axioms of set theory. Woodin’s
Ultimate L Conjecture [2], however, raises the possibility that the fundamental
objects of set theory can be transferred into a substructure of the set theoretic
universe (namely, Ultimate L) that is as tractable as the conventional structures of
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mathematics.1 The fundamental objects in question are large cardinals, strong clo-
sure points in Cantor’s hierarchy of infinities whose existence, taken axiomatically,
suffices to interpret and compare the vast array of mutually incompatible formal
systems studied in contemporary set theory.

If Woodin’s conjecture is true, the downward transference of large cardinal prop-
erties from the universe of sets into Ultimate L would necessitate an upward trans-
ference of combinatorial structure from Ultimate L back into the universe of sets.
(For example, see [1, Theorem 8.4.40].) This motivates the prediction that assum-
ing large cardinal axioms, the universe of sets resembles Ultimate L in certain ways.
This paper presents a collection of theorems confirming this prediction by showing
that various consequences of the Ultrapower Axiom, a principle expected to hold in
Ultimate L, are actually provable from large cardinal axioms alone.

1.2 The Ultrapower Axiom

The Ultrapower Axiom (UA) asserts that the category of wellfounded ultrapowers
of the universe of sets and internally definable ultrapower embeddings is directed.2

In the author’s thesis [1, Theorem 2.3.10], it is shown that UA holds in any model
whose countable elementary substructures satisfy a weak form of the Comparison
Lemma of inner model theory.

The Comparison Lemma is really a series of results (for example, [7, 8, 9, 10, 11])
each roughly asserting the directedness of some subcategory of the category of count-
able canonical models of set theory and iterated ultrapower embeddings. These
canonical models are known as mice. (We warn that the “category of canonical
models” is not yet precisely defined; so far, only certain subcategories of this cate-
gory have been identified, namely, those for which the Comparison Lemma has been
proved. The term “iterated ultrapower” is used in a similarly open-ended sense.)

As it is currently conceived, the ongoing search for more powerful canonical
models of set theory (including Ultimate L) amounts to an attempt to generalize
the Comparison Lemma to larger subcategories of the category of canonical models.
As a consequence, the current methodology of inner model theory simply cannot
produce a canonical model in which the Ultrapower Axiom fails. For this reason, it
seems likely that if Ultimate L exists, it will satisfy the Ultrapower Axiom.

1.3 Consequences of UA from large cardinal axioms alone

The Ultrapower Axiom can be used to develop a structure theory in the context
of very large cardinals, proving, for example, that the Generalized Continuum Hy-

1The axiom V = Ultimate L: (1) There is a proper class of Woodin cardinals. (2) If some level
of the von Neumann hierarchy satisfies a sentence ϕ in the language of set theory, then there is
a universally Baire set A ⊆ R such that some level of the von Neumann hierarchy of HODL(A,R)

satisfies ϕ.
The Ultimate L Conjecture: If κ is extendible, then there is an inner model M that satisfies

ZFC plus the axiom V = Ultimate L and has the property that for all cardinals λ ≥ κ, there is a
κ-complete normal fine ultrafilter U over Pκ(λ) with Pκ(λ) ∩M ∈ U and U ∩M ∈M .

2A category theorist would say filtered.
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pothesis holds above the least strongly compact cardinal and that the universe is a
set generic extension of HOD. One can also develop the theory of large cardinals,
obtaining equivalences between a number of large cardinal axioms that are widely
believed to have the same strength (e.g., strong compactness and supercompact-
ness).

All of these results are impossible to prove in ZFC alone, but it turns out that
each has an analog that is provable from large cardinal axioms. For example, the
analog of the UA theorem that the GCH holds above a strongly compact cardinal is
Solovay’s result that the Singular Cardinals Hypothesis holds above a strongly com-
pact cardinal. This paper establishes analogs of the other theorems using techniques
that are quite different from those used under the Ultrapower Axiom. The main
methods of this paper actually derive from a lemma used by Woodin in his analysis
of the downward transference of large cardinal axioms to Ultimate L, namely, that
assuming large cardinal axioms, any ultrapower of the universe absorbs all suffi-
ciently complete ultrafilters (Theorem 3.7). This fact enables us to simulate the
Ultrapower Axiom in certain restricted situations.

We now summarize the results of this paper.

1.4 Indecomposable ultrafilters and Silver’s question

Our first theorem, the subject of Section 4, concerns a question posed by Silver [3]
in the 1970s. If δ ≤ λ are cardinals, X is a set, and U is an ultrafilter over X,
U is said to be (δ, λ)-indecomposable if any <λ-sized family of disjoint subsets of
X whose union belongs to U has a <δ-sized subfamily whose union belongs to U .
Indecomposability refines the concept of λ-completeness: an ultrafilter U over X is
λ-complete if U is (2, λ)- or equivalently, (ω, λ)-indecomposable, or in other words,
U meets every <λ-sized family of disjoint subsets of X whose union belongs U .

The precise relationship between indecomposability and completeness, however,
is not at all clear. A uniform ultrafilter on a cardinal λ is said to be indecompos-
able if it is (ω1, λ)-indecomposable, the maximum degree of indecomposabiliy short
of λ-completeness. Silver asked whether an inaccessible cardinal λ that carries an
indecomposable ultrafilter is necessarily measurable, that is, whether λ carries a
λ-complete uniform ultrafilter. If λ is measurable, then λ carries an indecompos-
able ultrafilter that is not itself ω1-complete, but the hope is that one can extract
a λ-complete ultrafilter from any indecomposable ultrafilter over λ (in the same
way, perhaps, that one extracts a normal ultrafilter from an arbitrary λ-complete
ultrafilter).

Jensen showed that in the canonical inner models, the answer to Silver’s question
is yes. On the other hand, by forcing, Sheard [12] produced a model in which the
answer is no. Thus the question appears to be “settled” in the usual way: no answer
can be derived from the standard axioms.

The Ultrapower Axiom does not help with Silver’s question itself, but it does
answer the natural generalization of Silver’s question to countably complete ultrafil-
ters: assuming UA, for any cardinal δ, if λ > δ is inaccessible and carries a uniform
countably complete (δ, λ)-indecomposable ultrafilter, then λ is measurable.
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Despite Jensen and Sheard’s independence results, we will show that for suffi-
ciently large cardinals λ, the answer to Silver’s question is yes:

Theorem 4.5. Suppose δ < κ ≤ λ are cardinals, κ is strongly compact, and λ
carries a uniform (δ, λ)-indecomposable ultrafilter. Then either λ is a measurable
cardinal or λ has cofinality less than δ and is a limit of measurable cardinals.

As a special case, if a cardinal λ above the least strongly compact cardinal carries
an indecomposable ultrafilter, then λ is either a measurable cardinal or the limit of
countably many measurable cardinals.

1.5 Almost strong compactness

Our second result, proved in Section 5, concerns a generalization of strong com-
pactness defined by Bagaria-Magidor [13]. A cardinal κ is strongly compact if every
κ-complete filter extends to a κ-complete ultrafilter. Many applications of strong
compactness only seem to require that κ be almost strongly compact: for any car-
dinal ν < κ, every κ-complete filter extends to a ν-complete ultrafilter.

The Ultrapower Axiom’s most interesting consequences relate to the structure
of strong compactness. Most notably, UA implies that the least strongly compact
cardinal is supercompact. In fact, UA also implies that the least almost strongly
compact cardinal is supercompact; in particular, the least almost strongly compact
cardinal is strongly compact. Whether this is provable outright is an open question,
posed by Boney and Brooke-Taylor. We will obtain the following partial answer:

Theorem 5.7 (SCH). If the least almost strongly compact cardinal has uncountable
cofinality, it is strongly compact.

It is not true in general that every almost strongly compact cardinal is strongly
compact, since any limit of strongly compact cardinals is almost strongly compact,
while every strongly compact cardinal is regular. UA does imply that every succes-
sor almost strongly compact cardinal is strongly compact. Here we will show that
this is almost a theorem of ZFC:

Theorem 5.8. For any ordinal α, if the (α + 1)-st almost strongly compact limit
cardinal has uncountable cofinality, it is strongly compact.

(We must say “limit cardinal” in Theorem 5.8 because technically the successor
of any strongly compact cardinal is almost strongly compact.)

1.6 Cardinal preserving embeddings

Next, in Section 6, we take up the problem of cardinal preserving embeddings, posed
by Caicedo [5]. If M is an inner model, an elementary embedding j : V → M is
said to be cardinal preserving (up to λ) if every cardinal of M (less than λ) is a
cardinal in V .

Caicedo asked whether cardinal preserving embeddings exist. The Ultrapower
Axiom implies that they do not. In fact, under UA, if λ is an aleph fixed point and
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j : V → M is an elementary embedding that fixes λ and is cardinal preserving up
to λ, then Vλ ⊆M . Since every elementary embedding has an ω-closed unbounded
class of fixed points, it follows that under UA, no elementary embedding j : V →M
can be fully cardinal preserving: otherwise Vλ ⊆M for a proper class of λ, violating
the Kunen inconsistency [14], which states that there is no elementary embedding
from V to V .

We show that one can refute the existence of cardinal preserving embeddings
from large cardinal axioms alone:

Theorem 6.6. Suppose there is a proper class of strongly compact cardinals. Then
there are no cardinal preserving embeddings.

This theorem can be viewed as a version of the Kunen inconsistency, but the
proof is completely different from all of the usual proofs of Kunen’s theorem.

1.7 Definability from ultrafilters

Finally, Section 7 studies the structure of ordinal definability under large cardinal
assumptions. The most prominent question here is Woodin’s HOD Conjecture [2].
It turns out that UA implies the HOD Conjecture,3 and more:

Theorem (UA). If there is a supercompact cardinal, then V is a generic extension
of HOD.

The proof appears in the author’s thesis [1, Theorem 6.2.8].
It is impossible to prove that V is a generic extension of HOD from any of the

standard large cardinal hypotheses. We will instead consider a generalization of
HOD.

Definition. Let κ-OD denote the class of sets definable from a κ-complete ultra-
filter over an ordinal, and let κ-HOD denote the class of hereditarily κ-OD sets.4

An ultrafilter over a set X can be thought of as a generalized element of X.
From this perspective, an ultrafilter over an ordinal is a generalized ordinal. For
this reason, definability from an ultrafilter over an ordinal seems to be a natural
extension of ordinal definability.

Arguably, the more complete an ultrafilter over an ordinal is, the more it should
resemble an ordinal. Thus as κ increases, κ-HOD should become more like HOD; for
example, the∞-complete ultrafilters (i.e., those that are κ-complete for all cardinals
κ) are just the principal ultrafilters over ordinals, which are essentially just ordinals.
Therefore ∞-HOD is just the usual HOD. On the other hand, ω-HOD, the class of
sets definable from an arbitrary ultrafilter over an ordinal, turns out to be equal
to V (Proposition 7.5). The remaining models 〈κ-HOD〉κ∈Card form a decreasing
sequence of structures between V and HOD.

3Technically UA implies the HOD Hypothesis. The HOD Conjecture is that the HOD Hypoth-
esis is provable in ZFC.

4Note that x is κ-OD if and only if x is in ODU for some κ-complete ultrafilter U over an
ordinal, so κ-OD and κ-HOD are first-order definable.
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Standard arguments show that for any cardinal κ, κ-HOD is an inner model of
ZF. A little bit more surprisingly, if κ is strongly compact, then κ-HOD satisfies
the Axiom of Choice.

It is consistent with all known large cardinal axioms that V 6= κ-HOD for any
uncountable cardinal κ, since this holds after adding a Cohen real (Proposition 7.9).
We will show, however, that V is almost equal to κ-HOD. If M is an inner model
of ZFC, M is said to be a ground of V if there is a partial order P ∈ M and an
M -generic filter G on P such that M [G] = V .

Theorem 7.8. Suppose κ is strongly compact. Then κ-HOD is a ground of V .

It follows that for all sufficiently large cardinals λ, (λ+)κ-HOD = λ+, (2λ)κ-HOD =
2λ, κ-HOD correctly computes stationary subsets of λ, large cardinals are trans-
ferred into and out of κ-HOD, etc. In fact, this is true for all λ ≥ (2κ)+. Therefore
unlike HOD, κ-HOD is provably very similar to V . The model κ-HOD is, as far as
we know, the first nontrivial example of a ground of V that is not defined in terms
of set theoretic geology.

Last of all, we prove the following theorem:

Theorem 7.11. Suppose κ is supercompact. Then κ is supercompact in κ-HOD.

Since supercompactness is defined in terms of κ-complete normal fine ultrafilters,
which are necessarily κ-OD, Theorem 7.11 may not seem very surprising. The issue
one must overcome, however, is that these ultrafilters might not concentrate on
κ-HOD and therefore might not witness that κ is supercompact in κ-HOD. This
corresponding question for strongly compact cardinals remains open.

2 Preliminaries

We put down some definitions and notational conventions, most of which are com-
pletely standard.

2.1 Ultrafilters

Definition 2.1. If (P,≤) is a partial order, a proper subset F ⊆ P is a filter on P
if it is closed upwards under ≤ and for any p, q ∈ F , there is some r ∈ F with r ≤ p
and r ≤ q. A filter U on P is an ultrafilter on P if it is ⊆-maximal among all filters
on P.

We are really only interested in the following special case:

Definition 2.2. Suppose M is a model of set theory and X ∈ M . We say U ⊆
PM (X) is an M -filter (resp. M -ultrafilter) over X if U is a filter (resp. ultrafilter)
on the partial order (PM (X),⊆M ).

A fundamental concept in the theory of large cardinals is the completeness of
an ultrafilter. We will need the generalization of this concept to M -ultrafilters.
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Definition 2.3. Suppose M is a model of set theory, U is an M -ultrafilter, ρ is an
M -cardinal, and κ is a cardinal.

• U is M -ρ-complete if for any σ ⊆ U with σ ∈M and |σ|M < ρ,
⋂
σ ∈ U .

• U is M -κ-complete if for any σ ⊆ U with σ ∈M and |σ| < κ,
⋂
σ ∈ U .5

If U is a V -ultrafilter over X, we say that U is an ultrafilter over X, and if U is
V -κ-complete, we say U is κ-complete.

We denote the ultrapower of a model P by an P -ultrafilter U by

jU : P →MP
U

The ultrapower of V by an ultrafilter U is denoted jU : V →MU .
The following terminology is probably self-explanatory:

Definition 2.4. Suppose M is a model of set theory and W is an M -ultrafilter.
Then W is an ultrafilter of M if W ∈M .

We now turn to some basic combinatorial definitions.

Definition 2.5. Suppose M is a model of set theory and X ∈M . An M -ultrafilter
U over X is uniform if every set in U has M -cardinality |X|M .

Note that if M is a wellfounded model of ZFC, then for any M -ultrafilter U ,
there is some A ∈ U such that U ∩ PM (A) is uniform. In particular, this holds for
any V -ultrafilter, so in the theory of ultrafilters, one can usually work with uniform
ultrafilters with no loss of generality.

A notion similar to uniformity, but distinct from it, is fineness:

Definition 2.6. An ultrafilter U over a family of sets F is fine if for all x ∈
⋃
F ,

the set {A ∈ F : x ∈ A} belongs to U .

This is a slight generalization of the standard definition of fineness. Note that
an ultrafilter U over an ordinal α is fine if and only if every set in U is cofinal in α.

Definition 2.7. Suppose f is a function, U is an ultrafilter over a set X, and Y
is a set such that f−1[Y ] ∩ X ∈ U . The pushforward of U under f over Y is the
ultrafilter defined by f∗(U) = {A ⊆ Y : f−1[A] ∩X ∈ U}.

Our notation for pushforwards ignores the choice of Y , which we ask the reader
to infer from context. For notational convenience, we allow that dom(f) 6= X
and ran(f) 6= Y , and instead require just that f is defined U -almost everywhere
and sends U -almost every element of X to an element of Y . This is not really an
important point.

What is important is the relationship between pushforwards and derived ultra-
filters.

5We often identify a point σ ∈M with its extension extM (σ) = {x ∈M : M � x ∈ σ}, which is
a subset of M , even when M is illfounded. For each σ ∈ M , let P∞(σ) be denote the maximum
ZFA model with atom set σ as computed in M (see [?, (15.33)]). There is a unique isomorphism
i from the wellfounded part W (σ) of P∞(σ) to a transitive model N(σ) of ZFA with atom set
extM (σ) such that i is the identity on extM (σ). Our abuse of notation amounts to identifying
W (σ) with N(σ) via this isomorphism.
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Definition 2.8. If j : M → N is an elementary embedding, X ∈M , and a ∈ j(X),
then the M -ultrafilter over X derived from j using a is the set {A ∈ PM (X) : a ∈
j(A)}.

Proposition 2.9. Suppose U and W are ultrafilters over sets X and Y and f is a
function such that f−1[Y ] ∩X ∈ U . Then the following are equivalent:

(1) f∗(U) = W .

(2) W is the ultrafilter on Y derived from jU using [f]U .

(3) There exists an elementary embedding k : MW → MU such that k ◦ jW = jU
and k([id]W ) = [f ]U .

Notice that there is at most one embedding witnessing (3).

2.2 The approximation and cover properties

For our results, it is important to define covering properties for models that are not
necessarily wellfounded.

Definition 2.10. Suppose M is a model of set theory, X ∈ M is a set, ρ is an
M -cardinal, and κ is a cardinal.

• M has the (κ, ρ)-cover property if for all σ ⊆ M with |σ| < κ, there is some
τ ∈M with |τ |M < ρ such that σ ⊆ τ .

• κ-cover property if for all σ ⊆ M with |σ| < κ, there is some τ ∈ M with
|τ | < κ such that σ ⊆ τ .

We will also discuss the Hamkins approximation property [15], but we pass over
the illfounded case:

Definition 2.11. Suppose M is a model of set theory and κ is a cardinal.

• A set A ⊆M is κ-approximated by M if for all σ ∈M with |σ| < κ, A∩σ ∈M .

• M has the κ-approximation property if every set that is κ-approximated by
M belongs to M .

These two properties combined define the notion of a pseudoground:

Definition 2.12. Suppose M ⊆ N are transitive models of ZFC and κ is an
N -cardinal. We say M is a κ-pseudoground of N if N satisfies that M has the
κ-approximation and cover properties.6 We say M is a pseudoground of N if there
is some N -cardinal κ such that M is a κ-pseudoground of N .

We will refer to pseudogrounds of V simply as pseudogrounds.
Note that if M is a pseudoground of N then Ord ∩N ⊆ M , or in other words,

M is an inner model of N . In particular, M is not an element of N , but it turns
out that M must be definable over N :

6Formally this is expressed in the structure (N,M).
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Theorem 2.13 (Laver-Hamkins). Suppose M is a κ-pseudoground of N . Then M
is the unique κ-pseudoground P of N such that P ∩H(κ+N ) = M ∩H(κ+N ) and
M is ∆2-definable over N from the parameter M ∩H(κ+).

The following is Woodin’s Universality Theorem for pseudogrounds:

Theorem 2.14 (Woodin). Suppose M is a κ-pseudoground and E is an M -extender
of length ν whose critical point is at least κ. If jE(A) ∩ [ν]<ω ∈ M for all A ∈ M ,
then E ∈M .

The Hamkins Universality Theorem shows that for nice embeddings, one does
not even have to assume closure under the extender:

Theorem 2.15 (Hamkins). Suppose M is a κ-pseudoground.

• Every κ-complete M -ultrafilter belongs to M .

• If E is an extender with critical point greater than κ such that ME is closed
under κ-sequences, then E ∩M ∈M .

Theorem 2.16 (Hamkins-Reitz). Suppose κ is a cardinal and M is a κ-pseudoground.
Then M is a λ-pseudoground for all λ ≥ κ.

2.3 Compactness principles

In this section, we define various notions of strong compactness, the most famous
of which is of course due to Tarski [16], and the rest of which were introduced by
Bagaria-Magidor [13].

Definition 2.17. Suppose δ ≤ κ ≤ λ are cardinals. Then κ is (δ, λ)-strongly
compact if there is a δ-complete fine ultrafilter over Pκ(λ).

This principle is degenerate in the sense that if κ is (δ, λ)-strongly compact, then
all ordinals above κ are (δ, λ)-strongly compact.

Definition 2.18. Suppose δ ≤ κ ≤ λ are cardinals.

• κ is (δ,∞)-strongly compact if it is (δ, γ)-strongly compact for all cardinals
γ ≥ κ.

• κ is λ-strongly compact if it is (κ, λ)-strongly compact.

• κ is strongly compact if it is (κ,∞)-strongly compact.

• κ is almost λ-strongly compact if it is (γ, λ)-strongly compact for all cardinals
γ < κ.

• κ is almost strongly compact if it is almost η-strongly compact for all cardinals
η ≥ κ.
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These principles can be reformulated in terms of either the filter extension prop-
erty, elementary embeddings, or uniform ultrafilters on cardinals. We will actually
use all four characterizations below without much comment.

Theorem 2.19 (Solovay, Ketonen). Suppose δ ≤ κ ≤ λ are cardinals. Then the
following are equivalent:

• κ is (δ, λ)-strongly compact.

• There is an elementary embedding j : V → M with crit(j) ≥ δ such that M
has the (λ+, j(κ))-cover property.

• Every κ-complete filter that is generated by at most λ sets extends to a δ-
complete ultrafilter.

If cf(λ) ≥ κ, one can add to the list:

• Every regular cardinal in the interval [κ, λ] carries a δ-complete uniform ul-
trafilter.

We also use the following theorem, which is essentially due to Solovay:

Theorem 2.20 (Solovay). The Singular Cardinals Hypothesis holds above the least
almost strongly compact cardinal κ: if λ ≥ κ is a singular cardinal, then

λcf(λ) = max(2cf(λ), λ+)

3 Ultrafilters in ultrapowers

Suppose D is an ultrafilter and W is an MD-ultrafilter. It is often useful to know
whether W belongs to MD. The Ultrapower Axiom yields many instances in which
W ∈ MD must occur for D and W countably complete ultrafilters; this fact is
leveraged to prove most of the consequences of UA in [1]. But it turns out that in
certain situations, one can prove that W ∈MD from large cardinal axioms alone.

The idea is that if one can W extend to a sufficiently complete V -ultrafilter W ∗,
then using a result known as Kunen’s commuting ultrapowers lemma one obtains
that jW∗ �MD is definable over MD, and hence W belongs to MD. In Section 3.1,
we give a proof of Kunen’s result. (The reason we include this is to verify that the
proof goes through in the case that D is countably incomplete, which we need in
order to answer to Silver’s question above a strongly compact cardinal.)

In Section 3.2, we prove that if κ is a strong limit cardinal and W is κ-complete
with respect to sets in MD, then W generates a κ-complete filter in V . Thus if
κ is strongly compact, W extends to a κ-complete ultrafilter W ∗, and so by the
observation in the previous paragraph, one can conclude that W ∈MD.

Finally, Section 3.3 is devoted to applications of the results of Section 3.2 to the
theory of pseudogrounds, a generalization due to Hamkins [17] of the concept of a
set forcing ground of V that appears to have a deep relationship with the theory of
inner models for supercompact cardinals. These applications digress from the main
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thread of this paper, and are not strictly speaking necessary to prove our main
results. What we show is that if κ is strongly compact, then κ-pseudogrounds are
characterized by their most basic properties:

Theorem 3.22. Suppose κ is strongly compact and M is an inner model. Then
the following are equivalent:

(1) M is a κ-pseudoground.

(2) κ is strongly compact in M and the following hold:

• Every κ-complete ultrafilter over a set in M extends an ultrafilter of M .

• Every κ-complete ultrafilter of M extends to a κ-complete ultrafilter of V .

(3) Every regular cardinal of M above κ has cofinality at least κ and every κ-
complete ultrafilter over a set in M extends an ultrafilter of M .

3.1 Commuting ultrafilters and ultrapowers

The following definition explains how elementary embeddings act on amenable
classes.

Definition 3.1. Suppose M is a model of set theory. A class A is amenable to M
if A ⊆M and A ∩ x ∈M for all x ∈M .

An elementary embedding j : M → N is cofinal if for every a ∈ N , there is some
X ∈M such that a ∈ j(X).

If j : M → N is a cofinal elementary embedding, and A is an amenable class of
M , then j(A) =

⋃
x∈P j(A ∩ x).

If j′ : M ′ → N ′ extends j : M → N , and j′ � M : M → j′(M) is a cofinal
embedding, then j′(A) = j(A) for all A in M ′ amenable to M .

If j0 : M → N0 is a cofinal elementary embedding and j1 : M → N1 is an
amenable elementary embedding, then j0(j1) : N0 → j0(N1) is an elementary em-
bedding.

Definition 3.2. Suppose j0 : V → M0 and j1 : V → M1 are cofinal elementary
embeddings. We say j0 and j1 commute if there is an isomorphism k : j0(M1) →
j1(M0) such that

j1 �M0 = k ◦ j0(j1) and j0 �M1 = k−1 ◦ j1(j0)

Note that we do not assume that M0 and M1 are wellfounded. If M0 and M1

are transitive, then k must be the identity, and hence j0 and j1 commute if and
only if

j0(j1) = j1 �M0 and j1(j0) = j0 �M1

For ultrafilters U and W , whether jU and jW commute is influenced by the
relationship between the filter product U ×W and the ultrafilter product U ⊗W
of U and W .
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Definition 3.3. Suppose U and W are ultrafilters over sets X and Y .

• W is U -complete if for any sequence 〈Bx : x ∈ X〉 ⊆W , there is some A ∈ U
such that

⋂
x∈ABx ∈W .

• The filter product of U and W is the filter U ×W generated by sets of the
form A×B for A ∈ U and B ∈W .

• The ultrafilter product of U and W is the ultrafilter

U ⊗W = {A ⊆ X × Y : ∀Ux ∀W y (x, y) ∈ A}

The filter product is commutative up to canonical isomorphism, but in general
the ultrafilter product is not.

Theorem 3.4 (Blass). Suppose U and W are ultrafilters. Then the following are
equivalent:

(1) W is U -complete.

(2) jU [W ] generates jU (W ).

(3) U ×W is an ultrafilter.

(4) U ×W = U ⊗W .

Proof. Let X and Y be the underlying sets of U and W .
(1) implies (2): Fix [Bx]U ∈ U . The U -completeness of W yields that for some

A ∈ U ,
⋂
x∈ABx ∈ W . Note that jU

(⋂
x∈ABx

)
⊆ [Bx]U since

⋂
x∈ABx ⊆ Bx for

U -almost all x ∈ X. Thus [Bx]U contains and element of jU [W ], as desired.
(2) implies (3): Fix R ⊆ X ×Y . We will prove that either R or its complement

contains a set in U . Let Rx = {y ∈ Y : (x, y) ∈ R}. Assume without loss of
generality that Rx ∈ W for U -almost all x ∈ X. Then [Rx]U ∈ jU (W ), so by (2),
there is some B ∈W such that jU (B) ⊆ [Rx]U . Fix A ∈ U such that for all x ∈ A,
B is contained in Rx. Then A×B ⊆ R and A×B ∈ U ×W .

(3) implies (4): This is trivial since by definition U ×W ⊆ U ⊗W , so if U ×W
is an ultrafilter, then U ×W = U ⊗W by maximality.

(4) implies (1): Fix 〈Bx〉x∈X ⊆ W . Let R = {(x, y) ∈ X × Y : y ∈ Bx}. Then
R ∈ U ⊗W by definition. Therefore R ∈ U ×W by (4), so fix A ∈ U and B ∈ W
such that A×B ⊆ R. Then for all x ∈ A, B ⊆ Bx. In other words, B ⊆

⋂
x∈ABx,

so since B ∈W ,
⋂
x∈ABx ∈W . This shows that W is U -complete.

The equivalence of (1) and (3) in Theorem 3.4 implies that an ultrafilter W
is U -complete if and only if U is W -complete, which is a bit surprising given the
original definition.

Lemma 3.5. Suppose U and W are ultrafilters over X and Y . The following are
equivalent:

(1) jU and jW commute.
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(2) Let flip(x, y) = (y, x). Then flip∗(U ⊗W ) = W ⊗ U .7

(3) The quantifiers associated to U and W commute. That is, for any predicate R
on X × Y ,

∀Ux ∀W y R(x, y) ⇐⇒ ∀W y ∀Ux R(x, y)

Proof. (1) if and only if (2): There is a natural isomorphism between MU⊗W
and jU (jW )(MU ) sending a point [f ]U⊗W , where f : X × Y → V , to the point
[[λf ]U ]jU (W ) where λf : X → V Y is the function defined by λf(x)(y) = f(x, y).
For notational convenience, we will identify the two models via this isomorphism.

This identification results in the following equalities:

jU⊗W = jU (jW ) ◦ jU
[id]U⊗W = (jU (jW )([id]U ), jU ([id]W ))

Under the corresponding identification of MW⊗U with jW (jU )(MW ),

jW⊗U = jW (jU ) ◦ jW
[id]W⊗U = (jW (jU )([id]W ), jW ([id]U ))

Given these equalities and Proposition 2.9, the function flip(x, y) = (y, x) sat-
isfies flip∗(U ⊗ W ) = W ⊗ U if and only if there is an elementary embedding
k : MW⊗U →MU⊗W satisfying

k ◦ jW (jU ) ◦ jW = jU (jW ) ◦ jU (1)

k(jW (jU )([id]W ), jW ([id]U ) = flip(jU (jW )([id]U ), jU ([id]W )) (2)

We claim that an embedding satisfies (1) and (2) if and only if it is an isomor-
phism such that k ◦ jW (jU ) = jU �MW , and k−1 ◦ jU (jW ) = jW �MU , or in other
words, jU and jW commute.

For the forwards direction, assume k satisfies (1) and (2). We claim k is surjec-
tive. Let

S = jU (jW ) ◦ jU [V ] ∪ {jU (jW )([id]U ), jU ([id]W )}

Then  Loś’s Theorem implies every element of jU (jW )(MU ) is definable in jU (jW )(MU )
from parameters in S. But (1) and (2) imply that S ⊆ ran(k). Since ran(k) is closed
under definability in jU (jW )(MU ), every point in jU (jW )(MU ) is in ran(k), so k is
surjective. It follows that k is an isomorphism.

To see that k ◦ jW (jU ) = jU � MW , notice that k ◦ jW (jU ) agrees on jW [V ]
with jU by (1), and k(jW (jU )([id]W )) = jU ([id]W ). Hence k ◦ jW (jU ) and jU
agree on jW [V ] ∪ {[id]W }. Since every point in MW is definable in MW from
parameters in jW [V ] ∪ {[id]W }, k ◦ jW (jU ) = jU � MW by elementarity. The fact
that k−1 ◦ jU (jW ) = jW �MU is proved by a similar argument.

The reverse direction of the claim is very similar, so we omit the proof. We also
omit the proof of the equivalence of (2) and (3), since there are no ideas there, and
anyway (3) was included only for aesthetic reasons.

7Recall that f∗(U) = {A : f−1[A] ∈ U}; see Definition 2.7.
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We now prove the Commuting Ultrapowers Lemma using Blass’s result.

Theorem 3.6 (Kunen). Suppose U and W are ultrafilters such that W is U -
complete. Then jU and jW commute.

Proof. By Theorem 3.4, U ⊗W = U ×W . Therefore flip∗(U ⊗W ) = flip∗(U ×
W ) = W × U . Since W × U is an ultrafilter, by Theorem 3.4 (with the roles
of U and W exchanged), W × U = W ⊗ U . Putting these equations together,
flip∗(U ⊗W ) = W ⊗ U . Applying Lemma 3.5, jU and jW commute.

Whether the converse of Theorem 3.6 is provable in ZFC an open question.
The converse restricted to countably complete ultrafilters is an easy consequence of
the Ultrapower Axiom. The author has also proved that the converse follows from
the Generalized Continuum Hypothesis. Thus another consequence of UA can be
verified by a classical axiom.

3.2 Sufficiently complete MD-ultrafilters are in MD

In this subsection we prove our main theorem on the amenability of ultrafilters:

Theorem 3.7. Suppose δ is a cardinal and κ ≥ δ is a strong limit cardinal. Suppose
D is an ultrafilter over a set of size less than δ and X is a set in MD. Suppose W
is an MD-κ-complete MD-ultrafilter over X ∈ MD. Assume that every κ-complete
filter over X extends to a δ-complete ultrafilter. Then W ∈MD.

The main point is that in the situation of Theorem 3.7, the MD-ultrafilter W
can be extended to a δ-complete ultrafilter:

Proposition 3.8. Suppose κ is a strong limit cardinal and M is a model of set
theory with the κ-cover property. Suppose W is an M -κ-complete M -ultrafilter.
Then W generates a κ-complete filter.

This in turn follows from Kunen’s analysis of weakly amenable ultrafilters, which
we state in a very general form:

Theorem 3.9 (Kunen). Suppose M is a model of set theory, U is an M -ultrafilter
over X ∈ M , and ι is an M -cardinal. Let j : M → N be the ultrapower of M by
U . Then the following are equivalent:

(1) For all σ ⊆ PM (X) with σ ∈M and |σ|M = ι, U ∩ σ ∈M .

(2) For all B ∈ PN (j(ι)), j−1[B] ∈M .

Proof. (1) implies (2): Fix B ∈ PN (j(ι)). Let f : X → PM (ι) be a function in
M such that B = [f ]MU . For ξ < ι, let Aξ = {x ∈ X : ξ ∈ f(x)}. Note that the
sequence 〈Aξ〉ξ<ι belongs to M . Let σ = {Aξ : ξ < ι}. Now j−1[B] = {ξ < ι : Aξ ∈
U} = {ξ < ι : Aξ ∈ U ∩ σ}. But by (1), U ∩ σ ∈M . Hence j−1[B] ∈M .

(2) implies (1): Fix σ ⊆ PM (X) and a surjection f : ι→ σ that belongs to M .
Let a = [id]U . Let B = {ξ < j(ι) : a ∈ j(f)(ξ)}. Clearly B ∈ PN (j(ι)). Note that
j(ξ) ∈ B if and only if a ∈ j(f(ξ)), which happens if and only if f(ξ) ∈ U . In other
words, U ∩ σ = {f(ξ) : ξ ∈ j−1[B]}. By (2), j−1[B] ∈M , and so U ∩ σ ∈M .
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Proof of Proposition 3.8. To show that W generates a κ-complete filter, it suffices
to show that for all σ ⊆W with |σ| < κ,

⋂
σ is nonempty. By the κ-cover property,

there is some τ ∈M containing σ of cardinality less than κ. Let ι = |τ |M .
Let j : M → N be the ultrapower of M by W . Since κ is a strong limit cardinal,

W is M -((2ι)+)M -complete. This implies that j[PM (ι)] = j(PM (ι)) = PN (j(ι)).
(Recall that an M -ultrafilter U is M -δ-complete if and only if j(X) = j[X] for every
X ∈M with |X|M < δ.) In particular, for any B ∈ PN (j(ι)), there is some B̄ ∈M
with j(B̄) = B, so j−1[B] ∈M since j−1[B] = B̄.

Applying Theorem 3.9, it follows that W ∩ τ ∈ M . Since W is M -ρ-complete,⋂
(W ∩ τ) is nonempty. But σ ⊆W ∩ τ , so

⋂
σ is nonempty, as desired.

To obtain the cover hypothesis in Proposition 3.8, we establish a general fact
about the covering properties of ultrapowers.

Proposition 3.10. Suppose κ is a strong limit cardinal and D is an ultrafilter over
a set X of size less than κ. Then MD has the κ-cover property.

Proof. Fix σ ⊆ MD with |σ| < κ. Let δ = |σ| and choose functions 〈fα〉α<δ such
that

σ = {[fα]U : α < δ} = {jU (fα)([id]U ) : α < δ}

Let 〈gβ〉β<jD(δ) = jD(〈fα〉α<δ). Then {jU (fα) : α < δ} ⊆ {gβ : β < jD(δ)}, so
σ ⊆ {gβ([id]U ) : β < jD(δ)}. Clearly {gβ([id]U ) : β < jD(δ)} ∈ MD and has
cardinality at most |jD(δ)| ≤ δ|X| < κ since κ is a strong limit cardinal.

Theorem 3.7 is now a matter of citing the preceding results in the right order.

Proof of Theorem 3.7. By Proposition 3.10, MD has the κ-cover property, so by
Proposition 3.8, the MD-κ-complete MD-ultrafilter W is κ-complete, or in other
words, it generates a κ-complete filter.

Let F be the κ-complete filter generated by W . The filter F extends to a
δ-complete ultrafilter U by our large cardinal hypothesis. Now we apply the Com-
muting Ultrapowers Lemma (Theorem 3.6) to conclude that U ∩MD belongs to
MD. More precisely, the Commuting Ultrapowers Lemma yields an isomorphism
k : jU (MD) → jD(MU ) such that k ◦ jU � MD = jD(jU ). We therefore have
A ∈ U ∩M if and only if A ∈ PM (X) and [id]U ∈ jU (A), and this holds if and only
if k([id]U ) ∈ jD(jU )(A). Clearly the set

{A ∈ PMD (X) : k([id]U ) ∈ jD(jU )(A)}

belongs to MD, since it is definable from parameters over MD. Therefore U ∩MD ∈
MD.

But U ∩MD = W . This completes the proof.
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3.3 The approximation property

This section proves some basic structural results about pseudogrounds under large
cardinal assumptions. We will show that if there is a proper class of strongly
compact cardinals, then the pseudogrounds are closed under the fundamental model
constructions of set theory: generic extensions and extender ultrapowers.

For the sake of exposition, let us recall a theorem of Woodin and Usuba that
motivates the results of this section. This requires some definitions.

Definition 3.11. An ultrafilter U over a family F of subsets of X is normal if for
any 〈Ax : x ∈ X〉 with Ax ∈ U for all x ∈ X, the diagonal intersection

4x∈XAx =

{
σ ∈ F : σ ∈

⋂
x∈σ

Ax

}

belongs to U .
A cardinal κ is supercompact if for all λ ≥ κ, there is a κ-complete normal fine

ultrafilter over Pκ(λ), or equivalently, there is an elementary embedding j : V →M
where M is an inner model closed under λ-sequences.

An inner model M is a weak extender model for the supercompactness of κ if
for all λ ≥ κ, there is a κ-complete normal fine ultrafilter U over Pκ(λ) such that
Pκ(λ) ∩M ∈ U and U ∩M ∈M .

Woodin and Usuba independently proved the following theorem:

Theorem 3.12. If M is a weak extender model for the supercompactness of κ, then
M is a κ-pseudoground.

Woodin asked whether the converse holds: if κ is supercompact, must every
κ-pseudoground be a weak extender model for the supercompactness of κ? The
author found the following counterexample, based on Magidor’s identity crisis [18]
as treated by Mitchell [19]:

Theorem 3.13. Suppose κ is strongly compact. Then there is a κ-pseudoground
in which κ is the least measurable cardinal.

We sketch the proof after Theorem 3.17.
This raises a natural question in the context of strongly compact cardinals.

Although Theorem 3.13 shows that a supercompact cardinal need not be super-
compact in a κ-pseudoground, a theorem of Hamkins [15] shows that there is no
corresponding counterexample for strong compactness. Therefore one might hope
that by considering weak extender models for strong compactness, one might obtain
a theorem like Theorem 3.12 that is an equivalence.

Definition 3.14. An inner model M is a weak extender model for the strong com-
pactness of κ if for every λ ≥ κ, there is a κ-complete fine ultrafilter U over Pκ(λ)
such that Pκ(λ) ∩M ∈ U and U ∩M ∈M .
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The question becomes whether every weak extender model for the strong com-
pactness of κ is a κ-pseudoground. The answer is again no:

Proposition 3.15. Suppose κ is strongly compact and M is an inner model. Then
M is a weak extender model for the strong compactness of κ if and only if κ is
strongly compact in M and M has the κ-cover property.

Proof. We begin with the forwards direction. To see that κ is strongly compact
in M , just note that if U is a fine ultrafilter on Pκ(λ) such that Pκ(λ) ∩M ∈ U
and U ∩M ∈ M , then U ∩M is a fine ultrafilter in M . To see that M has the
κ-cover property, fix a cardinal λ and a κ-complete fine ultrafilter U on λ such that
Pκ(λ)∩M ∈ U and U ∩M ∈M . We will show that every σ ∈ Pκ(λ) is contained in
some τ ∈ Pκ(λ) ∩M . For any σ ∈ Pκ(λ) {τ ∈ Pκ(λ) : τ ⊆ σ} ∈ U by fineness and
κ-completeness. Therefore {τ ∈ Pκ(λ) : τ ⊆ σ} ∩M ∈M since Pκ(λ) ∩M ∈ U . In
other words, there is some τ ∈ Pκ(λ) ∩M such that σ ⊆ τ .

For the converse, fix λ ≥ κ. Let W be a κ-complete fine ultrafilter on Pκ(λ)
that belongs to M . Then by the κ-cover property, W generates a κ-complete filter
F in V . Since κ is strongly compact, F extends to a κ-complete ultrafilter U . Now
U is a fine ultrafilter, Pκ(λ)∩M ∈ W ⊆ U , and U ∩M =W ∈M . Since λ ≥ κ was
arbitrary, this shows that M is a weak extender model for the strong compactness
of κ.

Corollary 3.16. Suppose κ is strongly compact and U is a κ+-complete ultrafilter.
Then MU is a weak extender model for the strong compactness of κ, but MU does
not have the κ-approximation property.

Proof. It is clear that MU is a weak extender model for the strong compactness of
κ by Proposition 3.15 since MU is closed under κ-sequences. On the other hand,
MU does not have the κ-approximation property by the Laver-Hamkins uniqueness
theorem Theorem 2.13, since H(κ+) ∩MU = H(κ+) yet MU 6= V .

Despite Proposition 3.15, we will show that there is a variant of the notion of
a weak extender model for strong compactness that coincides with the property of
being a pseudoground.

Theorem 3.17. Suppose κ is strongly compact and M is a model of set theory with
the κ-cover property. Then the following are equivalent:

(1) M has the κ-approximation property.

(2) Every κ-complete ultrafilter over a set in M extends an ultrafilter of M .

For the proof, we need the concept of a close embedding. This is a special case
of a fine-structural notion introduced by Mitchell-Steel [9]. Its utility in the coarse
large cardinal setting was first realized by Woodin [2].

Definition 3.18. Suppose M and N are models of set theory. An elementary
embedding j : M → N is close to M if j is cofinal and every M -ultrafilter derived
from j belongs to M .
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The author noticed that closeness has a very simple model theoretic character-
ization that simplifies a number of proofs.

Theorem 3.19. Suppose M and N are models of set theory and j : M → N is an
elementary embedding. Then the following are equivalent:

(1) j is close to M .

(2) For any A ∈ N , j−1[A] ∈M .

Proof. (1) implies (2): Fix A ∈ N . Since j is cofinal, there is some X ∈M such that
N satisfies A ∈ j(X), and let U be the M -ultrafilter over X derived from j using A.
Let i : M → P be the ultrapower embedding associated with U and let k : P → N
be the unique factor embedding such that k ◦ i = j and k([id]U = A. Let Ā = [id]U .
Then since i is definable over M , i−1[Ā] ∈M . But i−1[Ā] = (k◦i)−1[i(Ā)] = j−1[A].

(2) implies (1): Fix X ∈ M and a ∈ N such that N satisfies that a ∈ j(X).
We will show that the M -ultrafilter U over X derived from j using a belongs to N .
Indeed, let P be the principal ultrafilter over j(X) concentrated at a, as computed
in N . Then P ∈ N and U = j−1[P ].

To see that j is cofinal, fix a ∈ N . Let α ∈ OrdN be least such that N satisfies
a ∈ Vα. Let ᾱ = j−1[α]. By (2), ᾱ ∈M , and so ᾱ is an ordinal of M . But α ≤ j(ᾱ):
otherwise N satisfies that ᾱ ∈ j−1[α] = ᾱ, which is impossible. Therefore N satisfies
that a ∈ j(X) where X = (Vᾱ)M .

Notice that Woodin’s lemma that close embeddings are closed under composition
is completely transparent given this characterization.

Proof of Theorem 3.17. (1) implies (2): This implication is due to Hamkins [15]
and does not require that κ is strongly compact. If κ is a strong limit cardinal, we
can use Proposition 3.8 to obtain the stronger theorem that every M -κ-complete
M -ultrafilter belongs to M . (This seems to be a new result.)

Assume M has the κ-approximation property. Let U be a κ-complete ultrafilter
over X ∈ M . We must show that U ∩M ∈ M . It suffices to show that U ∩M
is κ-approximated by M . Suppose σ ⊆ PM (X) such that |σ| < κ. We want to
show that U ∩ σ ∈ M . Clearly it suffices to prove this in the case that σ is closed
under relative complements in X. By the κ-completeness of U ,

⋂
(U ∩σ) 6= ∅, so fix

x ∈
⋂

(U ∩σ). Then since σ is closed under complements, U ∩σ = {A ∈ σ : x ∈ A}.
It follows that U ∩ σ ∈M .

(2) implies (1): Suppose X ∈ M and A ⊆ X is κ-approximated by M . Let
j : V → N be an elementary embedding with critical point κ such that j[X] is
contained in a set B ∈ N with |B|N < j(κ). By replacing B with B ∩ j(M), we
may assume without loss of generality that B ⊆ j(M). Since j(M) has the j(κ)-
cover property in N , there is some C ∈ j(M) with |C|N < j(κ) such that B ⊆ C.
Since j(A) is j(κ)-approximated by j(M), j(A) ∩ C ∈ j(M). We have assumed
that U ∩M ∈ M for every κ-complete ultrafilter U over a set in M ; therefore for
every M -ultrafilter W derived from j, W ∈ M . In other words, j is close to M .
Therefore by Theorem 3.19, j−1[j(A)∩C] ∈M . But j−1[j(A)∩C] = A, so A ∈M ,
as desired.
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Using Theorem 3.17, we prove Theorem 3.13.

Sketch of Theorem 3.13. Let Meas denote the class of measurable cardinals. Choose
~U = 〈Uδ : δ ∈ Meas∩κ〉 such that Uδ is a normal ultrafilter on δ with Meas∩δ /∈ Uδ.
We define a sequence of ordinals 〈δα : α < κ〉 and an iterated ultrapower

〈Mα,Wβ , jβ,α : β < α ≤ κ〉

by simultaneous recursion, letting δα be the least measurable cardinal δ of Mα

such that the set of preimages {β < α : jβ,α(δβ) = δ} of δ is finite. Let Wα =

j0α(~U)δα . The rest of the data of the iterated ultrapower is uniquely determined
by the sequence 〈Wα : α < κ〉 in the usual way.

For γ ≤ κ, let Gγ = {δα : α < γ}. One can show that κ is the least measurable
cardinal of Mκ[Gκ]. The proof appears in [19, Theorem 1.2].

It is easy to see that Mκ has the κ-cover property: this follows from the fact
that j0κ = κ and the proof of Proposition 3.10. Since Mκ ⊆Mκ[G], Mκ[G] has the
κ-cover property as well.

To finish we must show that Mκ[G] has the κ-approximation property. By
Theorem 3.17, it suffices to show that for any elementary embedding i : V → N
such that Nκ ⊆ N and crit(i) ≥ κ, i �Mκ is amenable to Mκ. The proof is due to
Mitchell and appears in [19, Theorem 1.2]. We have

i(j0κ) = (j0,i(κ))
N = jNκ,i(κ) ◦ j0κ � N

The final equality uses the κ-closure of N to deduce that (j0κ)N = j0κ � N . We
claim

i �Mκ = jNκ,i(κ) ◦ j0κ(i)

We have
i ◦ j0κ = i(j0κ) ◦ i = jNκ,i(κ) ◦ j0κ ◦ i = jNκ,i(κ) ◦ j0κ(i) ◦ j0κ

In other words, i and jNκ,i(κ) ◦ j0κ(i) agree on j0κ[V ]. They also agree on κ, since

both embeddings are the identity on κ. Since Mκ = HMκ(j0κ[V ] ∪ κ), it follows
that i = jNκ,i(κ) ◦ j0κ(i), as claimed. As a consequence, i is amenable to Mκ.

Note that i(G) = G∪H where H is the sequence of indiscernibles generated by
jNκ,i(κ) in much the same way that G is generated from j0κ. Therefore i(G) ∈Mκ[G].

It follows that i is amenable to Mκ[G]: every element of Mκ[G] is Σ2-definable from
parameters in Mκ ∪ {G}, and i �Mκ ∪ {G} is amenable to Mκ[G].

In particular, it follows that for every κ-complete ultrafilter U over a set X in
M , jU � M is amenable to M , and therefore U ∩ M ∈ M , since U ∩ M is the
M -ultrafilter over X derived from jU � M using [id]U . Applying Theorem 3.17, it
follows that M has the κ-approximation property.

Combining Theorem 3.7, Proposition 3.10, and Theorem 3.17 immediately yields
that small ultrapowers are pseudogrounds:

Corollary 3.20. Suppose κ is a strongly compact cardinal and D ∈ Vκ is an ultra-
filter. Then MD has the κ-approximation property.
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In fact, by generalizing the Commuting Ultrapowers Lemma (Theorem 3.6) to
work in the case where one embedding is an external extender, one can prove a
much stronger result:

Corollary 3.21. Suppose κ is a strongly compact cardinal. Suppose N is κ-
pseudoground and E is an N -extender in Vκ. Then MN

E is a κ-pseudoground.

It is natural to ask whether one can drop the cover assumption in Theorem 3.17.
Suppose there is a proper class of extendible cardinals and M is an inner model
such that every sufficiently complete ultrafilter extends an ultrafilter of M . Must
M be a pseudoground? The answer is probably no, but our next theorem reaches
in this direction:

Theorem 3.22. Suppose κ is strongly compact and M is an inner model. Then
the following are equivalent:

(1) M is a κ-pseudoground.

(2) κ is strongly compact in M and the following hold:

• Every κ-complete ultrafilter over a set in M extends an ultrafilter of M .

• Every κ-complete ultrafilter of M extends to a κ-complete ultrafilter of V .

(3) Every regular cardinal of M above κ has cofinality at least κ and every κ-
complete ultrafilter over a set in M extends an ultrafilter of M .

Proof. (1) implies (2). The first bullet is just the theorem of Hamkins proved
in Theorem 3.17. The second bullet uses Proposition 3.8 to conclude that M -κ-
complete ultrafilters generate κ-complete filters.

The fact that κ is strongly compact in M is also due to Hamkins. We give a
different proof. By the κ-cover property, the M -filter over Pκ(λ)∩M generated by
sets of the form {σ ∈ Pκ(λ) ∩M : α ∈ σ} generates a κ-complete filter, and there-
fore extends to a κ-complete ultrafilter of V , which in turn extends a κ-complete
ultrafilter W of M ; W is fine and therefore witnesses that κ is λ-strongly compact
in M .

(2) implies (3): Fix anM -regular cardinal δ above κ. Since κ is strongly compact
in M , M satisfies that there is a κ-complete uniform ultrafilter U on δ. Since U
extends to a κ-complete ultrafilter, δ must have cofinality at least κ: indeed, any
ordinal that carries a κ-complete fine ultrafilter is necessarily of cofinality at least
κ.

(3) implies (1): By Theorem 3.17, it suffices to prove that M has the κ-cover
property. Fix a regular uncountable cardinal δ. We will find a set X ∈ M with
|X|M = δ and a κ-complete fine ultrafilter over Pκ(X) such that Pκ(X) ∩M ∈ U .
It then follows immediately that M has the κ-cover property at X: indeed, if
σ ∈ Pκ(X), then {τ ∈ Pκ(X) : σ ⊆ τ} ∈ U since U is κ-complete and fine, so
{τ ∈ Pκ(X) : σ ⊆ τ}∩M is nonempty since Pκ(X)∩M ∈ U . In other words, there
is some τ ∈ Pκ(X) ∩M with σ ⊆ τ . This proves that M has the κ-cover property
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at X. Since we can make X arbitrarily large, it follows that M has the κ-cover
property.

Let j : V → N be an elementary embedding with critical point κ such that
for some B ∈ N with |B|N < j(κ), j[δ] ⊆ B. In particular, N satisfies that
cf(sup j[δ]) < j(κ). It follows that j(M) satisfies that cf(sup j[δ]) < j(κ): if

cfj(M)(sup j[δ]) ≥ j(κ), then by our assumption shifted to j(M), its cofinality in
N is at least j(κ), a contradiction. Therefore we may fix a closed unbounded set
C ⊆ sup j[δ] such that C ∈ j(M) and |C|j(M) < j(κ).

Since every κ-complete ultrafilter over a set in M extends an ultrafilter of M ,
the embedding j is close to M . Therefore by Theorem 3.19, since C ∈ j(M),
j−1[C] ∈M .

Let X = j−1[C]. Since j[δ] and C are ω-closed unbounded subsets of the ordinal
sup j[δ] (which has uncountable cofinality), j[δ] ∩ C is unbounded in sup j[δ]. But
j[X] = j[δ] ∩ C, so X must also be unbounded in δ. Therefore since δ is regular,
|X| = δ.

Let D = C ∩ j(X). Then D ∈ j(M), j[X] ⊆ D, D ⊆ j(X), and |D|j(M) < j(κ).
In particular, D ∈ j(Pκ(X)), so it makes sense to derive an ultrafilter U over Pκ(X)
from j using D. Since j has critical point κ, U is κ-complete. Since j[X] ⊆ D, U is
fine. Since D ∈ j(M), Pκ(X) ∩M ∈ U by the definition of a derived ultrafilter.

Thus we have found a set X of cardinality δ and a κ-complete fine ultrafilter U
over Pκ(X) such that Pκ(X) ∩M ∈ U . This completes the proof.

Of course, Theorem 3.22 (3) is equivalent to the statement that ultrafilters
extend ultrafilters of M and M correctly computes the class of cardinals of cofinality
less than κ.

Corollary 3.23. Suppose κ is strongly compact and M is an inner model. Assume
M is cardinal correct and every κ-complete ultrafilter over a set in M extends an
ultrafilter of M . Then M is a κ-pseudoground.

Proof. We will show that any M -regular cardinal δ greater than or equal to κ has
cofinality at least κ, which by Theorem 3.22 implies the corollary.

A theorem of Viale [20, Theorem 27] states that if κ is strongly compact, M is
an inner model, and λ ≥ κ is an M -regular cardinal such that λ+M = λ+, then
cf(λ) ≥ κ.

Now fix an M -regular cardinal δ ≥ κ. Since δ+M = δ+, cf(δ) ≥ κ by Viale’s
theorem.

An immediate consequence of Theorem 3.17 is the transitivity of the pseu-
doground order:

Corollary 3.24. If κ is a strongly compact cardinal, then a κ-pseudoground of a
κ-pseudoground is a κ-pseudoground.

Corollary 3.25. Suppose κ is a strongly compact cardinal and M is a κ-pseudoground
of V . Assume P ∈ Vκ ∩M is a partial order and G ⊆ P is an M -generic filter that
belongs to V . Then M [G] is a κ-pseudoground of V .
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Proof. Clearly M [G] has the κ-cover property. We will show that M [G] inherits
κ-complete ultrafilters. It easily suffices to show that M [G] inherits κ-complete
ultrafilters over sets in M . Suppose U is a κ-complete ultrafilter over a set in M .
We must show that U ∩M [G] ∈M [G]. Note that U ∩M ∈M by Theorem 3.17. By
the Lévy-Solovay theorem, the filter W generated by U ∩M in M [G] is an M [G]-
ultrafilter. Clearly W ∈ M [G] since U ∩M ∈ M [G]. But since W ⊆ U ∩M [G], in
fact W = U ∩M [G] (by the maximality of ultrafilters).

It is tempting to doubt that this corollary really requires a strongly compact
cardinal, but the following fact comes close to showing that this hypothesis is opti-
mal:

Proposition 3.26. Suppose κ ≤ λ are regular cardinals and κ is <λ-strongly com-
pact. Then there is a cofinality preserving forcing extension N of V with the fol-
lowing properties:

• κ remains <λ-strongly compact in N .

• V is an ω1-pseudoground of N .

• For some V -generic Cohen real g ∈ N , V [g] does not have the λ-approximation
property in N .

Proof. Let g be a V -generic Cohen real and G ⊆ (Add(λ, 1))V [g] be V [g]-generic.
Let N = V [g][G]. Then V has the ω1-approximation and cover properties in N by
a theorem of Hamkins [17, Lemma 13], and obviously V [g] does not have the λ-
approximation property in N , since by the λ-closure of (Add(λ, 1))V [g], N satisfies
that G is λ-approximated by V [g], and yet G /∈ V [g] by genericity.

The Lévy-Solovay theorem implies that κ remains <λ-strongly compact in V [g].
The λ-closure of (Add(λ, 1))V [g] therefore implies that κ remains <λ-strongly com-
pact in N : every N -regular cardinal δ with κ ≤ δ < λ carries a uniform κ-complete
ultrafilter in V [g], which is in fact an N -ultrafilter since PN (δ) = PV [g](δ).

4 Silver’s question

4.1 Indecomposable ultrafilters

Let us reintroduce some concepts defined in the introduction.

Definition 4.1. Suppose δ < λ are cardinals. An ultrafilter U over a set X is
(δ, λ)-indecomposable if any partition 〈Aν〉ν<α of X with α < λ has a subsequence
〈Aνξ〉ξ<β with β < δ whose union belongs to U .

The following combinatorial characterization of indecomposability is sometimes
convenient.

Definition 4.2. Suppose U is an ultrafilter over a set X and γ is a cardinal. A
γ-decomposition of U is a function f : X → γ such that for any A ∈ U , f [A]
has cardinality γ; U is γ-decomposable if it has a γ-decomposition, and U is γ-
indecomposable otherwise.
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Thus U is γ-indecomposable if and only if U is (γ, γ+)-indecomposable and U
is (δ, λ)-indecomposable if and only if U is not γ-decomposable for any cardinal γ
such that δ ≤ γ < λ.

The concept of a γ-decomposition is best understood in terms of pushforwards
(Definition 2.7). Notice that f : X → γ is a γ-decomposition of U if and only if the
pushforward f∗(U) is a uniform ultrafilter over γ. Thus U is γ-decomposable if and
only if U pushes forward to a uniform ultrafilter over γ.

We remark that if γ is regular, then an ultrafilter U is γ-indecomposable if and
only if U is closed under intersections of descending sequences of sets of length γ.

The following theorem, due to Silver, is a key element in all of our applications:

Theorem 4.3 (Silver). Suppose δ and κ are cardinals with δ regular and 2δ < κ.
Suppose U is a (δ, κ)-indecomposable ultrafilter over a set X. Then jU = jMD

W ◦ jD
where D is an ultrafilter over a cardinal less than δ and W is an MD-κ-complete
MD-ultrafilter over jU (X).

Silver [3, Lemma 2] sketches a proof in the case that δ = ω1. The author’s thesis
[1, Theorem 7.5.24] contains a more detailed proof, assuming for superficial reasons
that U is countably complete.

4.2 Silver’s question above a strongly compact

As an immediate consequence of Theorem 3.7 and Silver’s factorization theorem
(Theorem 4.3), we obtain a factorization theorem for indecomposable ultrafilters:

Theorem 4.4. Suppose δ < κ are cardinals and X is a set. Assume δ is regular, κ
is a strong limit cardinal, and every κ-complete filter over X extends to a δ-complete
ultrafilter. Suppose U is a (δ, κ)-indecomposable ultrafilter over X. Then

jU = (jW )MD ◦ jD

where D is an ultrafilter over a cardinal less than δ and W is a κ-complete ultrafilter
of MD over jD(X).

Proof. Applying Silver’s Theorem (Theorem 4.3) to U yields that jU = jMD

W ◦ jD
where D is an ultrafilter over a cardinal less than δ and W is an MD-ultrafilter
over jD(λ) that is MD-κ-complete. By Theorem 3.7, W ∈ MD. Moreover by
Proposition 3.8 and Proposition 3.10, W is κ-complete.

Theorem 4.5. Suppose δ < κ ≤ λ are cardinals. Assume δ is regular, κ is a
strong limit cardinal and every κ-complete filter over λ extends to a δ-complete
ultrafilter. Suppose there is a (δ, λ)-indecomposable ultrafilter over λ. Then λ either
is a measurable cardinal or λ has cofinality less than δ and λ is a limit of measurable
cardinals.

Proof. Applying Theorem 4.4,

jU = (jW )MD ◦ jD
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where D is an ultrafilter over a cardinal less than δ and W is a κ-complete ultrafilter
of MD over jD(λ).

Since U is (δ, λ)-indecomposable, W must be (jD(δ), jD(γ))-indecomposable
in MD for all cardinals γ < λ. To see this, fix an MD-cardinal η and an η-
decomposition f : jD(λ) → η of W in MD. Let γ be the least cardinal such
that jD(γ) ≥ η, and assume γ < λ. We must show that η < jD(δ). Let g : λ → γ
be such that [g]U = [f ]MD

W . Since W is γ-indecomposable, there is a set A ∈ U such
that |g[A]| < γ.

Since γ is least such that jD(γ) ≥ η, jD(|g[A]|) < η. Since

[f ]MD

W = jU (g)([id]U ) ∈ jU (g[A]) = jMD

W (jD(g[A]))

 Loś’s Theorem implies that f(α) ∈ jD(g[A]) for all α in a W -large set B. In other
words, f [B] ⊆ jD(g[A]), and hence |f [B]|MD ≤ jD(|g[A]|) < η. This contradicts
that f is an η-decomposition in MD.

Let ρ be the completeness of W as computed in MD, the least MD-cardinal
such that W is not ρ-complete in MD. The completeness of a countably complete
ultrafilter is always a measurable cardinal, and so since W is κ-complete, ρ ≥ κ
and ρ is measurable. Moreover, W is ρ-decomposable, so since W is (jD(δ), jD(γ))-
indecomposable for all γ < λ, ρ must be greater than jD(γ) for all γ < λ. On
the other hand, since W is an MD-ultrafilter over λ, W is γ-indecomposable for all
MD-cardinals greater than λ, and hence ρ ≤ jD(λ).

Assume first that λ has cofinality at least δ. Then jD(λ) = sup jD[λ]. This is a
general fact; to see it let ι be the underlying set of D, and note that any α < jD(λ)
is equal to [f ]U for some function f : ι → λ, and ran(f) ⊆ β for some β < λ since
ι < δ ≤ cf(λ), so α < jD(β). Since jD(λ) = sup jD[λ] and jD(γ) < ρ ≤ jD(λ) for
all γ < λ, ρ = jD(λ). Therefore jD(λ) is measurable in MD, and so λ is measurable
by elementarity. This proves the theorem in the case that λ has cofinality at least
δ.

Otherwise, λ has cofinality less than δ. We finish by proving that in this case λ
is a limit of measurable cardinals. Since ρ is regular in MD, ρ 6= jD(λ). Therefore
ρ < jD(λ). This is a standard reflection argument. Suppose γ < λ. We will show
that there is a measurable cardinal between γ and λ. Of course, MD satisfies that
there is a measurable cardinal between jD(γ) and jD(λ), namely ρ. Therefore by
elementarity, there is a measurable cardinal between γ and λ, as desired.

We state a special case which answers Silver’s question above the least strongly
compact cardinal:

Theorem 4.6. Suppose λ is greater than or equal to the least strongly compact
cardinal and carries an indecomposable ultrafilter. Either λ is measurable or else
cf(λ) = ω and λ is a limit of measurable cardinals.

From Theorem 4.4, one can extract a topological characterization of indecom-
posable ultrafilters above the least strongly compact cardinal. Recall that β(λ)
denotes the space of ultrafilters on λ with the Stone-Čech topology.
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Theorem 4.7. Suppose λ is greater than or equal to the least strongly compact
cardinal and U is an ultrafilter over λ. Then the following are equivalent:

• U is indecomposable.

• Either U is λ-complete or U lies in the closure of a countable discrete set of
ultrafilters S ⊆ β(λ) such that for any γ < λ, all but finitely many ultrafilters
in S are γ+-complete.

5 Almost strong compactness

The principles of Bagaria-Magidor laid out in Section 2.3 offer a spectrum of strong
compactness properties. In a perfect world (for example, assuming UA), these would
be characterized in terms of the classical notion of strong compactness. But given
Bagaria-Magidor’s theorem [13] that it is consistent with ZFC that the first ω1-
strongly compact cardinal is singular, it is natural to wonder whether there are any
nontrivial relationships between these principles at all. The results of this section
show that there are subtle implications between classical strong compactness and
Bagaria-Magidor’s notion of almost strong compactness.

5.1 Decomposability spectra

Our results in this section make use of the observation that assuming the Singular
Cardinals Hypothesis, countably complete ultrafilters have very simple decompos-
ability spectra, a concept first studied by Lipparini.

Definition 5.1. If U is an ultrafilter, the decomposability spectrum of U , denoted
KU , is the set of all cardinals λ such that U is λ-decomposable.

We use the following theorem of Lipparini:

Theorem 5.2 (Lipparini). Suppose U is an ultrafilter and (λα)α<η is an increas-
ing sequence of infinite cardinals in KD. Then there is a cardinal δ ∈ KD with
supα<η λα ≤ δ ≤

∏
α<η λα.

Proof. For each α < η, choose a λα-decomposition fα of U . Thus fα is a function
from the underlying set X of U to λα. Define f : X →

∏
α<η λα by f(x) =

(fα(x))α<η.
Fix A ∈ U such that |f [A]| = δ is as small as possible. Note that δ ≤

∏
α<η λα.

Moreover, for all α < η, δ ≥ λα: for A ∈ U , |f [A]| ≥ |fα[A]| ≥ λα since fα is a
λα-decomposition.

Let p :
∏
α<η λα → δ be injective on A and 0 on the complement of A. Then

p ◦ f is a δ-decomposition of U .

Lemma 5.3 (SCH). Suppose U is a countably complete ultrafilter. Suppose KU is
unbounded below a limit cardinal λ. Then all sufficiently large regular cardinals less
than λ belong to KU .
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For this, we need a well-known fact, a special case of a more general theorem of
Ketonen [21]. For one approach, see [1, Theorem 7.2.12].

Lemma 5.4. Suppose U is a θ+-complete ultrafilter, λ is a singular cardinal of
cofinality θ, and λ+ ∈ KU . Then all sufficiently large regular cardinals below λ are
in KU .

Proof of Lemma 5.3. We first handle the case in which λ has countable cofinality.
Assume towards a contradiction that the lemma fails. Let (λn)n<ω be a sequence of
cardinals unbounded in λ such that λn /∈ KU for all n < ω. By Theorem 5.2 there
is some δ ∈ KU with supn<ω λn ≤ δ ≤

∏
n<ω λn. Since U is countably complete,

δ 6= supn<ω λn. Note however that
∏
n<ω λn ≤ λω = λ+ by SCH. Therefore δ = λ+.

Since U is countably complete, λ has countable cofinality, and λ+ ∈ KU , Lemma 5.4
implies that all sufficiently large regular cardinals less than λ belong to KU .

Now we take on the case that λ has uncountable cofinality. Let S be the set
of limit points of KU of countable cofinality. Then S is ω-closed unbounded in λ.
Define f : S → λ by setting f(α) equal to the least γ < α such that every regular
cardinal between γ and α belongs to KU . Note that there is such a cardinal γ by
the previous case. The function f is nondecreasing and regressive, so there is some
γ < κ such that f(α) = γ for all sufficiently large α < S. In other words, every
regular cardinal between γ and κ belongs to KU , as desired.

5.2 On the next almost strongly compact cardinal

To discover the nontrivial relationships between compactness principles, one must
first dispense with the trivial ones. For example, any limit of strongly compact
cardinals is almost strongly compact. One is therefore led to ask whether every
almost strongly compact cardinal is either strongly compact or a limit of strongly
compacts. This is provable under the Ultrapower Axiom ([1, Proposition 8.3.7]),
but it is conceivable that this hypothesis is unnecessary.

There is an easy characterization of precisely those almost strongly compact
cardinals that are strongly compact, essentially due to Menas, although he proved
it before the concept of an almost strongly compact cardinal had been formulated:

Theorem 5.5 (Menas). An almost strongly compact cardinal is strongly compact
if and only if it is measurable.

This theorem would seem to be optimal (since after all it is an equivalence). We
will show, however, that there are a priori weaker notions than measurability that
suffice to conclude that an almost strongly compact cardinal is strongly compact.

Proposition 5.6 (SCH). Suppose ν is a cardinal such that the least (ν,∞)-strongly
compact cardinal κ is almost strongly compact. Then κ is strongly compact.

Proof. By Theorem 5.5, it suffices to show that κ is measurable. Let U be a ν-
complete uniform ultrafilter over κ+. We claim that KU is bounded below κ. As-
sume KU is unbounded, towards a contradiction. By Lemma 5.3 (using our SCH
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assumption), there is some cardinal η < κ such that every regular cardinal δ with
η ≤ δ < κ is in KU . In other words, U can be pushed forward to a uniform ul-
trafilter on δ for every regular cardinal δ with η ≤ δ < κ. A pushforward of U
is necessarily ν-complete. It follows that every regular cardinal greater than or
equal to η carries a ν-complete uniform ultrafilter. Therefore by Ketonen’s The-
orem (Theorem 2.19), η is (ν,∞)-strongly compact, and this contradicts the fact
that κ is the least (ν,∞)-strongly compact cardinal.

Since KU is bounded below κ, we can now apply Theorem 4.4 to factor U : thus
jU = (jW )MD ◦ jD where D is an ultrafilter on a cardinal γ < κ and W ∈MD is a
uniform κ-complete MD-ultrafilter over jD(κ+).

We will show that κ is regular. Given this, we can conclude the proposition
by the following argument. Since D lies on a cardinal less than κ and κ is regular,
jD(κ) = sup jD[κ], and so every MD-cardinal δ < jD(κ) has true cardinality strictly
less than κ. Therefore since W is κ-complete, W is jD(κ)-complete in MD. By
elementarity, κ+ carries a κ-complete uniform ultrafilter, as desired.

To finish, we show κ is regular. Suppose towards a contradiction that κ is
singular, and let θ = cf(κ). Since MD satisfies that W is MD-jD(θ+)-complete and
jD(κ+)-decomposable, (KW )MD contains all sufficiently large MD-regular cardinals
below jD(κ) by Lemma 5.4. Therefore W witnesses that there is a (jD(ν),∞)-
strongly compact cardinal below jD(κ) in MD, contradicting the definition of κ
(since jD is elementary).

At first glance, the proof appears to show that the least (ν,∞)-strongly compact
cardinal is always strongly compact, but by a theorem of [13], one cannot prove
(assuming ZFC + GCH) that the least (ω1,∞)-strongly compact cardinal is regular.
Where does Proposition 5.6 use the almost strong compactness of κ? The answer
is that this hypothesis is required to apply Theorem 4.4.

Theorem 5.7 (SCH). Suppose κ is an almost strongly compact cardinal of un-
countable cofinality. Then one of the following holds:

• κ is a strongly compact cardinal.

• κ is the successor of a strongly compact cardinal.

• κ is a limit of almost strongly compact cardinals.

Proof. We may assume that κ is not a limit of almost strongly compact cardinals.
We may also assume that κ is a limit cardinal.

Let δ < κ be the supremum of the almost strongly compact cardinals below
κ. For each α < κ with α > δ, let f(α) be the least cardinal ν such that α is not
(ν,∞)-strongly compact. The function f : κ\δ → κ is regressive and nondecreasing,
so since κ has uncountable cofinality, f assumes a constant value at all sufficiently
large ordinals below κ. In other words, there is a cardinal ν < κ and an ordinal α0

such that for all α > α0, f(α) = ν. Thus κ is the least (ν,∞)-strongly compact
cardinal. By Proposition 5.6, κ is strongly compact.
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Theorem 5.8. For any ordinal α, if the (α + 1)-st almost strongly compact limit
cardinal has uncountable cofinality, it is strongly compact.

Proof. Let κ be the (α + 1)-st almost strongly compact limit cardinal and assume
that κ has uncountable cofinality. Note that κ is not the least almost strongly
compact cardinal. We work in the collapse forcing extension N of V in which the
least strongly compact is countable. Notice that SCH holds in N since SCH holds
above the least almost strongly compact cardinal in V . Therefore we can apply
Theorem 5.7 to conclude that κ is strongly compact in N . By Lévy-Solovay, it
follows that κ is strongly compact in V .

If one wants to avoid forcing, one can just check that all the previous theorems
go through under the assumption that SCH holds at all sufficiently large cardinals
below κ.

6 Cardinal preserving embeddings

6.1 Strong compactness and the Kunen inconsistency

Kunen famously proved the inconsistency of Reinhardt’s “ultimate large cardinal
axiom” asserting the existence of an elementary embedding from the universe of sets
to itself. From a technical perspective, the Kunen inconsistency places a bound on
the degree of supercompactness an elementary embedding j : V → M can exhibit:
there is always some λ < κω(j) such that Mλ 6⊆ M . Here κω(j) is the supremum
of the critical sequence of j:

Definition 6.1. Suppose j : M → N is an elementary embedding between two
transitive models of set theory. The critical sequence of j is the sequence 〈κn(j)〉n<ω
defined by setting κn(j) = j(n)(crit(j)). The ordinal κω(j) is the supremum of the
critical sequence of j.

A natural (vague) question is whether there is a similar inconsistency theorem
for strong compactness, or in other words, a limitation on the covering properties
of inner models M such that there is an elementary embedding j : V →M .

For example, one might ask whether there can be an elementary embedding
j : V →M where M is an inner model that has the λ-cover property for all cardinals
λ; in other words, every A ⊆ M is contained in some B ∈ M with |B| = |A|. The
answer to this question, perhaps surprisingly, is yes. Suppose U is a κ-complete
ultrafilter over κ. If 2κ > κ+, then MU does not have the κ+-cover property, but
assume instead that the Generalized Continuum Hypothesis holds. Then MU has
the λ-cover property for every cardinal λ. To see this, it suffices to see that for any
cardinal λ, jU [λ] is covered by a set A ∈MU with |A| = λ. In fact, we can just take
A = sup jU [λ].

A second question is whether there can be an elementary embedding j : V →M
where M is an inner model with the tight cover property at every cardinal: every
A ⊆M is contained in some B ∈M with |B|M = |A|. (This is easily equivalent to
the question of whether there can be an embedding j : V →M where M is an inner
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model with the λ-cover property for all cardinals λ as in the previous paragraph,
with the additional requirement that M and V have the same cardinals.) The
answer here is an easy no.

First note that M must be closed under ω-sequences. To see this, fix a countable
set σ ⊆ M . Let τ ∈ M be an M -countable set containing σ, and let let f : ω → τ
be a surjection. Let x = f−1[σ]. Since j : V → M is elementary and j(ω) = ω,
x = j(x) ∈M . Since σ = f [x], σ ∈M .

We now reach a contradiction following Zapeltal’s proof of the Kunen inconsis-
tency. Now let λ = κω(j). Applying Shelah’s Representation Theorem [22], there
exist regular cardinals 〈δn〉n<ω cofinal in λ for which there is a scale, or in other
words an increasing cofinal sequence 〈fα〉α<λ+ in the preorder (

∏
n<ω δn, <

∗). Here
f <∗ g if f(n) < g(n) for all but finitely many n < ω. Let 〈gα〉α<λ+ = j(〈fα〉α<λ+).
Bu elementarity 〈gα〉α<λ+ is a scale for 〈j(δn)〉n<ω in M , but since M is closed un-
der countable sequences, this is upwards absolute to V . Since j[λ+] is cofinal in λ+,
〈gα〉α∈j[λ+] is also a scale for 〈j(δn)〉n<ω. Of course gj(α) = j(fα), so 〈j(fα)〉α<λ+

is a scale for 〈j(δn)〉n<ω.
Finally let h = 〈sup j[δn]〉n<ω. We have sup j[δn] < j(δn) since j(δn) is a regular

cardinal larger than δn. Therefore h ∈
∏
n<ω j(δn). But j(fα) < h for all α < λ+,

gα = j ◦ fj−1(α) for any α ∈ j[λ+]. This contradicts that 〈gα : α ∈ j[λ+]〉 is cofinal
in (
∏
n<ω j(δn), <∗).

6.2 Strongly discontinuous embeddings

The preceding proof shows that the tight cover property is not really the right
notion in this context. A much more difficult question seems to be whether there
can be an elementary embedding j : V → M such that for all cardinals λ, j[λ]
is contained in a set in M of M -cardinality λ. We call this the local tight cover

property because for any a ∈ M and any cardinal λ, j factors as V
i−→ N

k−→ M
where N has the tight cover property at λ and a ∈ ran(k).

We will show that if there is a proper class of strongly compact cardinals, then
no such embedding can exist. In fact, our proof rules out the weaker concept of a
strongly discontinuous embedding:

Definition 6.2. Suppose j : V → M is an elementary embedding. Then j is
strongly discontinuous if for all cardinals λ, if j(λ+) 6= λ+ then j[λ+] is bounded
below j(λ+).

Obviously if δ is regular, j(δ) > δ, and j[δ] is covered by a set C in M of
M -cardinality δ, then C, and hence j[δ], must be bounded below the M -regular
cardinal j(δ). Thus every elementary embedding with the local tight cover property
is strongly discontinuous.

Strongly discontinuous embeddings also generalize the concept of a cardinal
preserving embedding:

Definition 6.3. Suppose M is an inner model. A nontrivial elementary embedding
j : V →M is said to be cardinal preserving if CardM = Card.
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If j(λ+) is a cardinal, then j(λ+) = j(λ)+. In particular, j(λ+) is regular,
so either j[λ+] is bounded below j(λ+) or j(λ+) = λ+. It follows that cardinal
preserving embeddings are strongly discontinuous.

Proposition 6.4. Suppose j : V → M is a strongly discontinuous elementary
embedding with critical point κ and δ ≥ κ is an almost strongly compact cardinal.
Then j(δ) > δ.

Proof. It suffices to prove this in the case that δ is an almost strongly compact limit
cardinal. Suppose towards a contradiction that j(δ) = δ. Note that for all α < κ,
j(δα) = (δ+α)M ≤ δ+α, and so j(δ+α) = δ+α. It follows that (δ+κ)M = δ+κ. In
fact, (δ+κ+1)M = δ+κ+1 by a standard argument. (For any wellorder � of δ+κ,
j(�) ∩ δ+κ belongs to M and has length at least ot(�). Thus (δ+κ+1)M > ot(�).)

On the other hand, j(δ+κ) = (δ+j(κ))M > (δ+κ+1)M = δ+κ+1. Since j is
strongly discontinuous, we must therefore have j(δ+κ+1) > sup j[δ+κ+1].

Let U be the ultrafilter over δ+κ+1 derived from j using sup j[δ+κ+1]. Then for
all α < κ, jU (δ+α) = δ+α, so U is δ+α-indecomposable.

Since δ is almost strongly compact, jU = (jW )MD ◦ jD where D is an ultrafilter
over a cardinal η < δ and W ∈ MD is an MD-ultrafilter over jD(δ+κ+1) that is
MD-jD(γ)-complete in MD for all γ < δ+κ. Working in MD, let ζ = crit(W ).
Then δ < ζ ≤ (δ+jD(κ)+1)MD . This contradicts that ζ is measurable and therefore
inaccessible.

Theorem 6.5. If there is a proper class of almost strongly compact cardinals, then
there are no strongly discontinuous embeddings.

Proof. If j : V → M is an elementary embedding, then j must fix an almost
strongly compact cardinal above its critical point κ since j is continuous at ordinals
of cofinality ω and the class of almost strongly compact cardinals is closed. (Let δ0
be the least almost strongly compact cardinal, and for n < ω, let δn+1 be the least
almost strongly compact cardinal above j(δn). Then supn<ω δn is an almost strongly
compact cardinal that is fixed by j.) Therefore j is not strongly discontinuous by
Proposition 6.4.

Given our observations above, the following is an immediate corollary:

Theorem 6.6. If there is a proper class of almost strongly compact cardinals, then
there are no cardinal preserving embeddings.

We note the following fact, which improves on an observation due to Caicedo:

Proposition 6.7. Suppose j : V → M is a strongly discontinuous embedding with
critical point κ. Then κ is λ-strongly compact for every λ < κω(j).

Proof. Suppose δ is a regular cardinal such that κ ≤ δ < κω(j). Then δ+ carries
a uniform κ-complete ultrafilter U , namely the ultrafilter derived from j using
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sup j[δ+]. Since δ is regular, then U is necessarily δ-decomposable by a theo-
rem of Kunen-Prikry [23]. In particular, δ carries a uniform κ-complete ultrafil-
ter. Applying Ketonen’s Theorem (Theorem 2.19), κ is λ-strongly compact for all
λ < κω(j).

On the other hand, κω(j) cannot be a limit of κω(j)+κ-strongly compact cardi-
nals by the proof of Theorem 6.6.

7 Definability and ultrafilters

The results of this section are a ZFC analog of the following theorem:

Theorem 7.1. Assume the Ground Axiom,8 the Ultrapower Axiom, and the ex-
istence of a strongly compact cardinal. Then every set is definable from an ordi-
nal.

We will prove the following generalization:

Theorem 7.2. Assume the Ground Axiom. Then for any strongly compact cardinal
κ, every set is definable from a κ-complete ultrafilter over an ordinal.

Under UA, every countable complete ultrafilter over an ordinal is ordinal defin-
able, so Theorem 7.2 implies Theorem 7.1.

The proof (which appears below Theorem 7.8) involves the following collection
of structures:

Definition 7.3. Let κ-OD denote the class of sets that are definable from a κ-
complete ultrafilter over an ordinal, and let κ-HOD denote the class of hereditarily
κ-OD sets.

Note that x is κ-OD if and only if x is in ODU for some κ-complete ultrafilter
U over an ordinal, so κ-OD is first-order definable, and therefore so is κ-HOD.

The following basic observation sets things in motion:

Theorem 7.4. For any cardinal κ, the class κ-HOD is an inner model of ZF. If κ
is strongly compact, then κ-HOD satisfies the Axiom of Choice.

Proof. The proof that κ-HOD satisfies ZF is just like the usual proof that HOD
satisfies ZF, so we omit it. The issue in showing that κ-HOD satisfies the Axiom
of Choice is that the class of κ-complete ultrafilters over ordinals is not naturally
wellordered.

Assume that κ is strongly compact. The key idea is that in this case, for any
ordinal δ, there is actually a κ-OD wellorder of the κ-complete ultrafilters over δ.
Let W be a κ-complete fine ultrafilter over Pκ(P (δ)). Let W be an ultrafilter over
an ordinal such that W and W are Rudin-Keisler equivalent, or in other words,

8The Ground Axiom asserts that V is not a set generic extension of any inner model M ( V .
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jW = jW . For each κ-complete ultrafilter U over δ, let αU be the least ordinal such
that U is the ultrafilter on δ derived from jW using αU .9

The function U 7→ αU is injective and κ-OD. It follows that there is a κ-OD
wellorder of the set of κ-complete ultrafilters over δ.

Now that one has a κ-OD wellorder of the κ-complete ultrafilters over δ for each
δ, it is easy to construct a κ-OD wellorder of the sets that are ordinal definable
from a κ-complete ultrafilter over δ. This suffices to show that κ-HOD satisfies the
Axiom of Choice. The proof is the same as the proof that AC holds in HOD.

Note that the Axiom of Choice also holds ω-HOD, since in fact ω-HOD is V :

Proposition 7.5. V = ω-HOD.

Proof. Let M = ω-HOD. By the definition of M , ω-complete ultrafilters descend to
M : in fact, if U is an M -ultrafilter, then U ∈ M , since U extends to an ultrafilter
W which is isomorphic to an ultrafilter Z over an ordinal; jZ is ω-OD, so jZ � M
is close to M , and so since U is a derived M -ultrafilter of jZ �M , U ∈M .

Since M is closed under finite sequences, M has the ω-cover property. Although
we have not shown that ω-HOD satisfies the Axiom of Choice, the proof of Theo-
rem 3.17 still goes through with κ = ω. It follows that M has the ω-approximation
property, which of course implies that V = M .

We will need the analog of Vopenka’s Theorem for κ-HOD. (The proof requires
no real modification.)

Lemma 7.6. For any strongly compact cardinal κ, for any set of ordinals A,
κ-HODA is a set-generic extension of κ-HOD.

Proof. We first note that Theorem 7.4 relativizes to show that κ-HODA is an in-
ner model of ZFC. To show that κ-HODA is a set-generic extension of κ-HOD, it
therefore suffices to verify Bukovsky’s criterion [24] by showing that κ-HOD has the
(2ρ)+-uniform cover property in κ-HODA where ρ = supA.10

Let γ be an ordinal and let f : γ → γ be a function that is κ-OD from A. The
function g : γ × P (ρ) → γ defined by f(α) = g(α,A) for all α < γ is then κ-OD.
Let F (α) = {g(α,B) : B ⊆ γ}. Then F is κ-OD, |F (α)| < (2ρ)+ for all α < γ,
and f(α) ∈ F (α) for all α < γ. This verifies that κ-HODA has the (2ρ)+-uniform
covering property.

Proposition 7.7. Suppose κ is strongly compact and A is a set of ordinals such
that Vκ ⊆ κ-HODA. Then V = κ-HODA.

9It is a standard fact that αU exists, so we include the proof in fine print. Let σ = [id]W . Since
W is a fine ultrafilter over Pκ(P (δ)), |σ|MW < jW (κ) and jW [P (δ)] ⊆ σ. Therefore jW [U ] ⊆
σ ∩ jW (U). Since jW (U) is jW (κ)-complete,

⋂
(σ ∩ jW (U)) is nonempty. It follows that there is

some ordinal α ∈
⋂
jW [U ]. Clearly U is the ultrafilter over δ derived from jW using α.

10To apply Bukovsky’s Theorem, it is essential that κ-HOD is a model of AC; this is our only
significant use of Theorem 7.4.
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Proof. Let N denote κ-HODA. We first show that N is closed under κ-sequences.
To show N is closed under κ-sequences, it therefore suffices to show that for all
ordinals λ, κλ ⊆ N . Let U be a κ-complete ultrafilter over an ordinal ν such that
jU (κ) > λ. Then

κλ ⊆ jU (Vκ) ⊆ jU (N) ⊆ N

We justify this last inclusion. It suffices to show that every set that MU thinks
is definable from a jU (κ)-complete ultrafilter over an ordinal is truly definable (in
V ) from a κ-complete ultrafilter over an ordinal. Since MU is definable from the
κ-complete ultrafilter U , it therefore suffices to show that every jU (κ)-complete
ultrafilter W of MU over an ordinal γ is definable from a κ-complete ultrafilter over
an ordinal. But consider the following κ-complete ultrafilter:

U -
∑
W = {A ⊆ ν × γ̄ : [α 7→ Aα]U ∈W}

where γ̄ is the least ordinal such that jU (γ̄) ≥ γ. We have

W = {[f ]U : ran(f) ⊆ P (γ̄) and {(α, β) : β ∈ f(α)} ∈ U -
∑
W}

so W is definable from U -
∑
W .

We now show that N has the κ-approximation and cover properties. Since N is
closed under <κ-sequences, N certainly has the κ-cover property. Since N satisfies
the Axiom of Choice and U ∩N ∈ N for any κ-complete ultrafilter over an ordinal,
it easily follows that U ∩N ∈ N for any ultrafilter U over a set that belongs to N .
Therefore by Theorem 3.17, N has the κ-approximation property.

It follows that V = N , since V is the unique inner model with the κ-approximation
and cover properties that contains Hκ+ . (This last fact is a consequence of the
proof of the definability of inner models with the κ-approximation and cover prop-
erties.)

Theorem 7.8. For any strongly compact cardinal κ, V is a set generic extension
of κ-HOD.

Proof. Let A be a set of ordinals such that Vκ ⊆ κ-HODA; for example, A can
be chosen to code a wellfounded extensional relation R ⊆ κ × κ whose transitive
collapse is Vκ. By Proposition 7.7, V = κ-HODA, and by Lemma 7.6, κ-HODA is
a generic extension of κ-HOD, so V is a generic extension of κ-HOD.

Theorem 7.8 of course immediately implies Theorem 7.2.
Given Proposition 7.5, it is natural to speculate that Theorem 7.8 is just a

precursor to a proof that V = κ-HOD for all strongly compact cardinals κ. But of
course this is not the case:

Proposition 7.9. It is consistent with ZFC that there is a strongly compact cardinal
κ such that V 6= κ-HOD.

33



Proof. Assume there is a strongly compact cardinal. Let g be V -generic for Cohen
forcing. Note that any κ-complete ultrafilter U of V [g] over an ordinal is definable
over V [g] from a κ-complete ultrafilter in V : indeed, U is the unique ultrafilter
extending U ∩ V , and U ∩ V ∈ V , by the Lévy-Solovay Theorem [25]. It follows
that

κ-HODV [g] ⊆ κ-HODV

by the homogeneity of Cohen forcing. Therefore g /∈ κ-HODV [g].

Under large cardinal hypotheses, the Ground Axiom is equivalent to the state-
ment that every set is ordinal definable from a countably complete ultrafilter on an
ordinal in all generic extensions:

Theorem 7.10. Assume there is a proper class of strongly compact cardinals. Then
the following are equivalent:

(1) The Ground Axiom.

(2) V is the intersection of all models of the form (δ-HOD)V
B

where δ is a cardinal
and B is a complete Boolean algebra.

(3) In any generic extension N , every set in V is ordinal definable using an internal
ultrapower embedding of N as a predicate.

(4) Every generic extension N satisfies that every set in V is ordinal definable
using an elementary embedding from N into an inner model that is closed under
(ω1)N -sequences.

Proof. (1) implies (2): Fix a set x, a cardinal δ, and a complete Boolean algebra
B. We must show that x is δ-OD in V B. Let κ > δ · |B| be a strongly compact
cardinal. Then x is κ-OD in V by Theorem 7.2. But since the Ground Axiom holds,
V is definable over V B without parameters (as the intersection of all grounds of V B.
Moreover since κ > |B|, every κ-complete ultrafilter of V is ordinal definable in V B

from its unique extension to V B. It follows that x is κ-OD in V B. Since κ ≥ δ, this
implies (2).

(2) implies (3): This is easy given the observation that a countably complete
ultrafilter over an ordinal is ordinal definable from its associated ultrapower em-
bedding.

(3) implies (4): Trivial.
(4) implies (1): Fix a ground M of V . We must show M = V . Let B be a

complete Boolean algebra of M such that V = M [G] for some M -generic ultrafilter
G on B. Let δ > |B| and let H ⊆ Col(ω, δ) be a V -generic filter. By the universality
of collapse forcing, there is an M -generic filter F ⊆ Col(ω, δ) in M [G][H] such that
M [F ] = M [G][H].

Fix a set of ordinals x ∈ V , and we will show that x ∈M . Now let N = M [G][H]

and fix in N an elementary embedding j : N → P such that P (ω1)N ∩N ⊆ P and
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x is ordinal definable using j as a predicate. By the Reflection Theorem,11 there is
some ordinal α such that x is ordinal definable in Nα using j � Nα as a predicate.
(Here Nα = N ∩ Vα.)

Since M is an ωN1 -pseudoground of N and P (ω1)N ∩ N ⊆ P , the Hamkins
Universality Theorem (Theorem 2.15) implies that j � Mα belongs to M . Note
however that j � Nα is definable in N from j � Mα and M . It follows that x is
definable in N from the predicate for M and parameters in M . Since N = M [F ]
where F ⊆ Col(ω, δ) is M -generic, the homogeneity of collapse forcing implies that
x ∩M is definable over M . Since x is a set of ordinals, x ∩M = x, so x ∈M .

It follows that every set of ordinals belongs to M , which proves V = M . Since
M was an arbitrary ground, the Ground Axiom holds.

Suppose κ is strongly compact. We do not know whether κ must be strongly
compact in κ-HOD. We can, however, prove the following “cheap HOD Conjecture”:

Theorem 7.11. Suppose κ is supercompact. Then κ is supercompact in κ-HOD,
and in fact κ-HOD is a weak extender model for the supercompactness of κ.

Proof. Let N denote κ-HOD. By Theorem 7.8, N is a ground of V , so there is some
cardinal λ such that for all regular cardinals δ ≥ λ, any set S that is stationary in
N is stationary in V .

Fix δ ≥ λ. We will show that for any normal fine κ-complete ultrafilter U over
Pκ(δ), U ∩N ∈ N and Pκ(δ) ∩N ∈ U . This establishes that N is a weak extender
model for the supercompactness of κ.

Of course, U ∩ N ∈ N by the definition of N for any κ-complete normal fine
ultrafilter U over Pκ(δ); this is because U is the unique normal fine ultrafilter on
Pκ(δ) that is Rudin-Keisler equivalent to U , and hence U is ordinal definable from
jU .

We now show that Pκ(δ)∩N ∈ U . Let j : V →M be the ultrapower embedding
associated to U . By  Loś’s Theorem, and since [id]U = j[δ], we just need to show that
j[δ] ∈ j(N). Let T be the set of ordinals less than δ that have cofinality ω in N . Let
〈Sα〉α<δ ∈ N be a partition of T into stationary sets. Let 〈S∗α〉α<j(δ) = j(〈Sα〉α<δ).
Thus 〈S∗α〉α<j(δ) ∈ j(N). Then j[δ] = {α < j(δ) : S∗α∩ sup j[δ] is stationary} by the
proof of Solovay’s Theorem; see [1, Corollary 4.4.31]. Thus j[δ] is ordinal definable
in M from 〈S∗α〉α<j(δ), so j[δ] ∈ j(N).

8 Questions

Question 8.1 (Boney-Unger and Brooke-Taylor). If there is a proper class of almost
strongly compact cardinals, is there a proper class of strongly compact cardinals?

11Formally, we are working in von Neumann-Bernays-Gödel class theory (NBG). For any formula
ϕ in the language of first-order set theory with an additional predicate symbol, NBG proves that
for all classes A, there is an ordinal α such that for all x ∈ Vα, (Vα, A ∩ Vα) satisfies ϕ(x) if and
only if (V,A) satisfies ϕ(x).
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Question 8.2 (Caicedo). Can there be cardinal preserving or cofinality preserving
embeddings from the universe of sets into an inner model?

Question 8.3. Suppose κ is strongly compact. Is κ strongly compact in κ-HOD?
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[25] A. Lévy and R. M. Solovay. Measurable cardinals and the continuum hypoth-
esis. Israel J. Math., 5:234–248, 1967.

37


	Introduction
	The Ultimate L Conjecture
	The Ultrapower Axiom
	Consequences of UA from large cardinal axioms alone
	Indecomposable ultrafilters and Silver's question
	Almost strong compactness
	Cardinal preserving embeddings
	Definability from ultrafilters

	Preliminaries
	Ultrafilters
	The approximation and cover properties
	Compactness principles

	Ultrafilters in ultrapowers
	Commuting ultrafilters and ultrapowers
	Sufficiently complete MD-ultrafilters are in MD
	The approximation property

	Silver's question
	Indecomposable ultrafilters
	Silver's question above a strongly compact

	Almost strong compactness
	Decomposability spectra
	On the next almost strongly compact cardinal

	Cardinal preserving embeddings
	Strong compactness and the Kunen inconsistency
	Strongly discontinuous embeddings

	Definability and ultrafilters
	Questions

