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Abstract. We give new, purely combinatorial characterizations
of several kinds of large cardinals, such as strongly C(n)-compact
and C(n)-extendible, in terms of reflecting measures. We then
study the key property of tightness of elementary embeddings that
witness strong C(n)-compactness, which prompts the introduction
of the new large-cardinal notion of tightly C(n)-compact cardinal.
Then we prove, assuming the Ultrapower Axiom, that a cardinal
is tightly C(n)-compact if and only if it is either C(n−1)-extendible
or a measurable limit of C(n−1)-extendible cardinals. In the last
section we also give new characterizations of Σn-strong cardinals
in terms of reflecting extenders.

1. Introduction

Some of the most prominent large cardinals are given by two-valued
measures, i.e., ultrafilters, satisfying certain conditions. Thus, a cardi-
nal κ is measurable if there exists a κ-complete uniform measure over
κ; and a cardinal κ is λ-supercompact if there exists a κ-complete fine
and normal measure over Pκλ, etc. Nevertheless, the most common
presentation, and usage, of large cardinals is in the form of reflection
principles. For instance, κ is measurable iff it is the critical point (i.e.,
the least ordinal moved) of an elementary embedding j : V → M ,
with M transitive; and κ is λ-supercompact iff it is the critical point
of such an embedding with M closed under λ-sequences. That these
are reflection principles is easily seen by noticing that any elementary
property of κ that holds in M is reflected, via j, to some cardinal
smaller than κ. Further, higher-order reflection properties analogous
to the Skolem-Löwenheim theorem have been shown to characterize
many large cardinals. Thus, κ is the least supercompact cardinal (i.e.,
λ-supercompact for every λ) iff it is the least cardinal such that ev-
ery second-order statement (in a language of size less than κ) true in
any structure A is true in some substructure of A of size less than κ
([Mag71]). In fact, more general forms of Skolem-Löwenheim-type re-
flection, namely Structural Reflection, have been shown to characterize
most of the best known large-cardinal notions (see [Bag23]).

In this paper we show how to incorporate the reflection properties of
large cardinals into their combinatorial definitions in terms of measures.
The main notion is that of an n-reflecting measure (Definition 2.1),
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namely a measure that concentrates on the subset of Pκλ consisting
of those sets whose order-type, α, is Σn-correct in V , i.e., Vα is a Σn-
elementary substructure of V .

We begin with the observation that, for λ a Σ1-correct cardinal, a
cardinal κ < λ is λ-supercompact iff there exists a fine and normal
1-reflecting measure over Pκλ (Theorem 2.3). This yields a character-
ization of supercompactness in terms of 1-reflecting measures that is
then generalized to give analogous characterizations of extendible and
C(n)-extendible cardinals in terms of 2-reflecting and n-reflecting mea-
sures, respectively (Theorems 2.5 and 2.7). Let us emphasize that these
are the first known characterizations of extendible and C(n)-extendible
cardinals in terms of measures.

In [Tsa12, Tsa14], Tsaprounis defines strongly C(n)-compact cardi-
nals in accordance with the general framework for the study of C(n)-
cardinals initiated in [Bag12]. Namely, a strongly C(n)-compact cardi-
nal is given by the usual characterization of a strongly compact car-
dinal via elementary embeddings, but with the additional requirement
that the image of the critical point belongs to the class C(n), namely
the class of Σn-correct cardinals (see [Tsa14, Definition 1.6]). How-
ever, he shows that a cardinal is strongly compact if and only if it is
strongly C(n)-compact, for all n ([Tsa14, Theorem 3.6 and Corollary
3.7]), which demonstrates that this notion of strong C(n)-compactness
does not yield new large cardinals.

In section 3, starting with the (trivial) observation that a cardinal κ
is strongly compact iff there exists a 0-reflecting measure over Pκλ, for
a proper class of λ, we re-define the notion of a cardinal being strongly
C(n)-compact as carrying a fine n-reflecting measure over Pκλ, for a
proper class of λ (Definition 3.1). But our analysis of strongly C(n)-
compact cardinals turns out to yield rather disappointing results, for
we can show that a cardinal is strongly C(n)-compact iff it is strongly
compact and a limit of Σn-correct cardinals (Corollary 3.4). Because of
this, we shift our attention to a key property of elementary embeddings
that indicates their degree of compactness, namely the property of
being tight (Definition 4.1).

In section 4, we begin by proving several lemmas about the tightness
function for elementary embeddings, which prompt the definition of the
notion of tightly C(n)-compact cardinal (Definition 4.6). We show that
tightly C(n)-compact cardinals κ can be characterized in terms of fine
reflecting measures on Pκλ, for all λ ∈ C(n) greater than κ (Proposition
4.8). We also show that they are given by κ-complete measures on
some cardinals δ ≥ κ (Corollary 4.9). Further, we show that for every
regular cardinal in C(n), a cardinal κ < λ is tightly λ-C(n)-compact
iff there is a κ-complete weakly normal measure over λ concentrating
on the set of ordinals whose cofinality is Σn-correct and less than κ
(Proposition 4.10). These results may give the impression that the
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notion of tightly C(n)-compact cardinal, while naturally motivated, is
somewhat technical. But this is only apparent. The main result of
section 4 shows that assuming the Ultrapower Axiom, a cardinal is
tightly C(n)-compact (n > 1) iff it is either C(n−1)-extendible or a
measurable limit of C(n−1)-extendible cardinals (Theorem 4.15). The
proof uses several results from [Gol22] as well as the characterization of
C(n)-extendible cardinals in terms of reflecting measures from section
2.1. This characterization of extendibility under the Ultrapower Axiom
extends the theorem from [Gol22, 8.3.10] which shows, assuming the
Ultrapower Axiom, that a cardinal is strongly compact iff it is either
supercompact or a measurable limit of supercompact cardinals.

The characterization of large cardinals in terms of reflecting mea-
sures, given in the previous sections, is not exclusive of the region in
the large-cardinal hierarchy that lies between supercompactness (or
strong compactness) and Vopěnka’s Principle (i.e., the existence of a
C(n)-extendible cardinal, for every n [Bag12]). We show this in sec-
tion 5, the last one, where we consider the, much lower, region that
spans between the first strong cardinal and the large-cardinal principle
“OR is Woodin” (i.e., the existence of a Σn-strong cardinal, for every n
[BW22, 5.14]). As with strong cardinals, which cannot be given by sin-
gle measures, requiring the use of coherent systems of measures known
as extenders, we define the corresponding notion of (κ, λ)-n-reflecting
extender (Definition 5.1) which is then used to characterize Σn-strong
cardinals and “OR is Woodin” in terms of the existence of n-reflecting
extenders (Theorem 5.6 and Corollary 5.7).

2. Fine and normal reflecting measures

For each natural number n, C(n) is the Πn-definable club proper class
of ordinals κ that are Σn-correct, i.e., Vκ is a Σn-elementary substruc-
ture of V (written as Vκ ⪯Σn V ).

Note that λ ∈ C(1) iff λ is an uncountable cardinal and Vλ = Hλ.
Also, λ ∈ C(1) iff λ is uncountable and |Vλ| = λ, hence iff λ is a fixed
point of the Beth function. (See [Bag12] for further properties of the
C(n) classes.)

As customary, for any set S and cardinal κ, we write PκS for the set
of all subsets of S of cardinality less than κ.

Definition 2.1. Let κ be an infinite cardinal, and let λ be an ordinal
greater than or equal to κ. An n-reflecting measure on Pκλ is a κ-
complete ultrafilter U on Pκλ which contains the set T n

κ,λ of all σ ∈ Pκλ

such that ot(σ) ∈ C(n).

Notice that T n+1
κ,λ ⊆ T n

κ,λ, and therefore every (n + 1)-reflecting mea-

sure on Pκλ is also n-reflecting. Note also that if ot(σ) ∈ C(n), then
|σ| ∈ C(n).
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Recall that an ultrafilter U on PκS is fine if for every µ ∈ S the
set {σ ∈ PκS : µ ∈ σ} belongs to U . And U is normal if it is closed
under diagonal intersections, i.e., if X = ⟨Xi : i ∈ S⟩ is a sequence of
elements of U , then ∆X = {σ : σ ∈

⋂
i∈σ Xi} ∈ U .

Lemma 2.2. If there exists a fine and normal 1-reflecting measure on
Pκλ, then λ ∈ C(1).

Proof. Let U be a 1-reflecting measure on Pκλ, and let j : V → M ∼=
Ult(V,U) be the corresponding ultrapower embedding. Then standard
arguments (see [Kan03, §22]) show that crit(j) = κ, [Id]U = j[λ], and
M is closed under λ-sequences. Since T 1

κ,λ ∈ U , by  Los’ Theorem, in

M the order-type of j[λ], i.e., λ, belongs to C(1). So, in M , λ is an
uncountable cardinal and |Vλ| = λ. But since M is closed under λ-
sequences, V M

λ = Vλ, and thus, in V , λ is also an uncountable cardinal
and |Vλ| = λ, hence λ ∈ C(1). □

Recall that for any ordinal λ, a cardinal κ < λ is λ-supercompact if
there exists a κ-complete fine normal ultrafilter on Pκλ. Equivalently,
if there exists an elementary embedding j : V → M , M transitive, with
crit(j) = κ, j(κ) > λ, and M closed under λ-sequences (see [Kan03,
22.7]). A cardinal κ is supercompact if it is λ-supercompact for all
λ > κ (equivalently, for a proper class of λ > κ).

Notice that T 0
κ,λ = Pκλ. Thus, a cardinal κ is λ-supercompact iff

there exists a fine and normal 0-reflecting measure on Pκλ.

Theorem 2.3. For λ ∈ C(1), a cardinal κ ≤ λ is λ-supercompact iff
there exists a fine and normal 1-reflecting measure on Pκλ.

Proof. Assume κ is supercompact. Let λ ∈ C(1) be greater than κ,
and let j : V → M , M transitive, be an elementary embedding with
crit(j) = κ, j(κ) > λ, and M closed under λ-sequences. Define

X ∈ U iff X ⊆ Pκλ and j[λ] ∈ j(X).

We claim that U is a 1-reflecting measure. First, it readily follows that
U is a κ-complete ultrafilter on Pκλ. Moreover, standard arguments
(see [Kan03, §22]) show that U is fine and normal. Now, by elementar-
ity, j(T 1

κ,λ) is, in M , the set of all σ ⊆ j(λ) of cardinality less than j(κ)

such that ot(σ) ∈ C(1). Hence, j[λ] ∈ j(T 1
κ,λ), which yields T 1

κ,λ ∈ U .
The converse is well-known. In fact, the existence of a fine normal

ultrafilter on Pκλ yields that κ is λ-supercompact (see [Kan03, §22]).
□

Corollary 2.4. A cardinal κ is supercompact iff there exists a fine and
normal 1-reflecting measure on Pκλ for every λ in C(1) greater than or
equal to κ.
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2.1. 2-reflecting measures and extendible cardinals. Recall that,
for any ordinal λ, a cardinal κ < λ is λ-extendible if there exists an
elementary embedding j : Vλ → Vµ, some µ, with crit(j) = κ and
j(κ) > λ. A cardinal κ is extendible if it is λ-extendible for all λ > κ
(equivalently, for a proper class of λ > κ).

Let us note that the assertion “κ is λ-extendible” is Σ2 (with κ and
λ as parameters), hence extendibility is a Π3 property.

The following theorem gives a characterization of extendibility in
terms of 2-reflecting measures.

Theorem 2.5. A cardinal κ is extendible iff there exists a fine and
normal 2-reflecting measure on Pκλ for every (equivalently, for a proper
class of) λ in C(2) greater than or equal to κ.

Proof. Assume κ is extendible. Let λ ∈ C(2) be greater than or equal
to κ, and let j : Vλ+2 → Vλ′+2, some λ′, be an elementary embedding
with crit(j) = κ and j(κ) > λ. Define

X ∈ U iff X ⊆ Pκλ and j[λ] ∈ j(X).

We claim that U is a 2-reflecting measure. It readily follows that U is a
κ-complete ultrafilter on Pκλ. Also, standard arguments show that U
is fine and normal (see [Kan03, §22]). Now notice that since λ ∈ C(2),
and therefore by elementarity of j, λ′ ∈ C(1), Vλ′ satisfies that λ ∈ C(2).
Also note that T 2

κ,λ ∈ Vλ+2. By elementarity, j(T 2
κ,λ) is the subset of Vλ′

consisting of all σ ⊆ λ′ of cardinality less than j(κ) and such that Vλ′

satisfies that ot(σ) ∈ C(2). Hence, j[λ] ∈ j(T 2
κ,λ), which yields T 2

κ,λ ∈ U .
Conversely, suppose U is a fine and normal 2-reflecting measure, with

λ ∈ C(2). Let j : V → M ∼= Ult(V,U) be the corresponding ultrapower
embedding, with M transitive. We have that crit(j) = κ, [Id]U = j[λ],
and M is closed under λ-sequences (see [Kan03, §22]).

Since λ ∈ C(1), the restriction of j to Vλ belongs to M (because
|Vλ| = λ and M is closed under λ-sequences). So, M satisfies that κ is
γ-extendible for all γ < λ.

As j[λ] is represented in M by the identity function, and since T 2
κ,λ ∈

U ,  Los’ theorem yields that the order-type of j[λ] (namely, λ) is Σ2-
correct in M . Hence, Vλ = V M

λ satisfies that κ is γ-extendible, for all
γ < λ, and since λ is Σ2-correct, this is true in V . □

Remark 2.6. Note that if we use the definition of T 2
κ,λ given in [Gol21],

namely as the set of all subsets of λ of cardinality less than κ whose
order-type is Σ2-correct in Vκ, then the proof above shows that if U is
a fine and normal 2-reflecting measure on Pκλ, with λ ∈ C(2), then κ
is an extendible cardinal in Vλ.

Recall ([Bag12]) that for cardinals κ < λ, κ is λ-C(n)-extendible if
there is an elementary embedding j : Vλ → Vµ, some µ, with critical
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point κ and such that j(κ) > λ and j(κ) ∈ C(n). We say that κ is
C(n)-extendible if it is λ-C(n)-extendible for all λ > κ.

Note that a cardinal κ is extendible iff it is C(1)-extendible. Also
note that the assertion “κ is λ-C(n)-extendible” is Σn+1 (with κ and λ
as parameters), hence C(n)-extendibility is a Πn+2 property.

Arguing similarly as in the proof of Theorem 2.3, we can now give
the following characterization of C(n)-extendible cardinals.

Theorem 2.7. A cardinal κ is C(n)-extendible iff there exists a fine
and normal (n + 1)-reflecting measure on Pκλ, for all (equivalently, a
proper class of) cardinals λ ∈ C(n+1) greater than or equal to κ.

Proof. Assume κ is C(n)-extendible. Hence, κ ∈ C(n+2) ([Bag12, 3.4]).
Let λ ∈ C(n+1) be greater than or equal to κ, and let j : Vλ+2 → Vλ′+2,
some λ′, be an elementary embedding with crit(j) = κ, j(κ) > λ, and
j(κ) ∈ C(n). Define

X ∈ U iff X ⊆ Pκλ and j[λ] ∈ j(X).

We claim that U is an (n + 1)-reflecting measure. First, notice that
since j(κ) > λ and j(κ) ∈ C(n), Vj(κ) satisfies that λ ∈ C(n+1). Also,

by elementarity of j, Vλ′ satisfies that j(κ) ∈ C(n+2), and therefore
Vλ′ |= “λ ∈ C(n+1)”. We have that T n+1

κ,λ ∈ Vλ+2, and since λ ∈ C(n+1),

Vλ+1 satisfies that T n+1
κ,λ is the set of all σ ⊆ λ of cardinality less than

κ and such that Vλ satisfies that ot(σ) ∈ C(n+1). So, by elementarity,
Vλ′+1 satisfies that j(T n+1

κ,λ ) is the subset of Vλ′ consisting of all σ ⊆ λ′ of

cardinality less than j(κ) and such that Vλ′ satisfies that ot(σ) ∈ C(n+1).
Hence, j[λ] ∈ j(T n+1

κ,λ ). Now as in 2.3, it follows that U is as required.

Conversely, suppose there exists a fine and normal (n+ 1)-reflecting
measure U on Pκλ, where λ ∈ C(n+1). By induction on n, κ is C(n−1)-
extendible, and therefore κ ∈ C(n+1). Let j : V → M ∼= Ult(V,U) be
the corresponding ultrapower embedding, with M transitive. We have
that crit(j) = κ, [Id]U = j[λ], and M is closed under λ-sequences.

Since λ ∈ C(1), the restriction of j to Vλ belongs to M . By elementar-
ity, in M , j(κ) belong to C(n+1). Thus, M satisfies that for every γ < λ
greater than κ, there exists an elementary embedding j : Vγ → Vj(γ)

with critical point κ, j(κ) > γ, and j(κ) ∈ C(n+1), i.e., M satisfies that
κ is γ-C(n+1)-extendible.

Since j[λ] is represented in M by the identity function, and T n+1
κ,λ ∈ U ,

by  Los’ theorem M satisfies that the order-type of j[λ] (namely, λ) is
Σn+1-correct. Hence, Vλ = V M

λ satisfies that κ is γ-C(n+1)-extendible,
for all γ < λ, and since λ ∈ C(n+1) this is true in V . □

Corollary 2.8. A cardinal κ is C(n)-extendible iff for all (equivalently,
a proper class of) cardinals λ ∈ C(n+1) greater than or equal to κ, there
exists a fine and normal measure U on Pκλ such that MU |= “λ ∈
C(n+1)”, where MU is the transitive collapse of Ult(V,U).
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3. Reflecting measures and compact cardinals

By dropping the normality condition we may obtain similar charac-
terizations for strongly compact and strongly C(n)-compact cardinals
(defined below).

Recall that, for any ordinal λ, a cardinal κ < λ is λ-compact iff there
exists a κ-complete fine ultrafilter on Pκλ (see [Kan03, §22]). And κ is
strongly compact if it is λ-compact for all (equivalently, a proper class
of) ordinals λ > κ.

Thus, a cardinal κ is λ-compact iff there exists a fine 0-reflecting
measure on Pκλ. And κ is strongly compact iff there exists a fine 0-
reflecting measure on Pκλ for a proper class of λ. This suggests the
following definition.

Definition 3.1. A cardinal κ is λ-C(n)-compact if there exists a fine
n-reflecting measure on Pκλ.

A cardinal κ is strongly C(n)-compact if there exists a fine n-reflecting
measure on Pκλ for a proper class of λ.

Proposition 3.2. For cardinals κ ≤ λ, the following are equivalent:

(1) κ is λ-C(n)-compact.
(2) There is an elementary embedding j : V → M , M transitive,

with crit(j) = κ and such that for some D ∈ M , j[λ] ⊆ D and
M |= “ot(D) ∈ C(n) ∩ j(κ)”.

Proof. Assume κ is λ-C(n)-compact, some λ greater than or equal to κ.
Let U be a fine n-reflecting measure. Let j : V → M ∼= Ult(V,U) be the
corresponding ultrapower embedding, with M transitive. We have that
crit(j) = κ, and by fineness j[λ] ⊆ π([Id]U), where π : Ult(V,U) ∼= M
is the transitive collapse. Now note that, in M ,

λ = ot(j[λ]) ≤ ot(π([Id]U)) < j(κ).

Let D = π([Id]U). Then D ∈ M , j[λ] ⊆ D, and, since T n
κ,λ ∈ U , by

 Lós’ Theorem M |= “ot(D) ∈ C(n) ∩ j(κ)”.
Now assume (2) and let j : V → M , M transitive, be an elementary

embedding with crit(j) = κ and such that for some D ∈ M we have
that j[λ] ⊆ D and M |= “ot(D) ∈ C(n) ∩ j(κ)”. Define

X ∈ V iff X ⊆ Pκλ and D ∩ j(λ) ∈ j(X).

We claim that V is an n-reflecting measure. By elementarity, j(T n
κ,λ)

is, in M , the set of all σ ⊆ j(λ) of cardinality less than j(κ) such that
ot(σ) ∈ C(n). Hence, D ∩ j(λ) ∈ j(T n

κ,λ). It readily follows that V is
a κ-complete ultrafilter on T n

κ,λ. To check that V is fine note that if
µ < λ, then j(µ) ∈ D ∩ j(λ), and therefore D ∩ j(λ) belongs to the
image under j of the set Xµ := {σ ∈ T n

κ,λ : µ ∈ σ}, and so Xµ ∈ V . □

Proposition 3.3. A cardinal κ is λ-C(n)-compact iff it is λ-compact
and the class C(n) is unbounded below κ.
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Proof. One direction follows easily from the definition (3.1) of λ-C(n)-
compactness. For the other direction, suppose κ is λ-compact and the
class C(n) is unbounded below κ. Let j : V → M , M transitive, be an
elementary embedding such that crit(j) = κ, and there is some D ∈ M
such that j[λ] ⊆ D and M |= “|D| < j(κ)”.

In M , the class C(n) is unbounded below j(κ). So, we can find some
D′ of cardinality less than j(κ) such that D ⊆ D′ and ot(D′) ∈ C(n).
By Proposition 3.2, κ is λ-C(n)-compact. □

It follows from the proposition above that every λ-C(n)-compact car-
dinal belongs to C(n).

A reader familiar with [Bag12] may think that the first C(n)-super-
compact cardinal (see [Bag12, Definition 5.1]) is greater than or equal
to the first strongly C(n)-compact cardinal. But the proposition above
shows that this is not the case. For instance, it is consistent for the first
C(3)-supercompact cardinal to be the first strongly compact cardinal
(see [HMP22, Theorem 1.3]), but we have showed that the first strongly
C(3)-compact cardinal is necessarily a limit of cardinals in C(3).

Corollary 3.4.
(1) A cardinal κ is λ-compact iff it is λ-C(1)-compact.
(2) A cardinal κ is strongly compact iff it is strongly C(1)-compact.
(3) A cardinal κ is strongly C(n)-compact iff it is strongly compact

and the class C(n) is unbounded below κ.

Thus, the definitions of λ-C(n)-compact and strongly C(n)-compact
cardinal given above (3.1), while natural, turned out to be, perhaps,
too simple. An alternative stronger definition, which takes into account
the tightness of the λ-C(n)-compact embeddings, will be given in the
next section.

4. The tightness of an elementary embedding

An important function that determines the degree of compactness of
an elementary embedding is the following:

Definition 4.1. For any elementary embedding j : M → N , with M
and N transitive and any cardinal λ in M , let

tj(λ) = min{|A|N : j[λ] ⊆ A ∈ N}.
Thus tj :CARDM → CARDN , and we call it the tightness map for j.

Clearly, λ ≤ tj(λ) ≤ j(λ), for every cardinal λ. Also, it is easily seen
that tj is strictly increasing. Note that if j : V → M is an elemen-
tary embedding, with M transitive and closed under λ-sequences, then
tj(µ) = µ for every cardinal µ ≤ λ.

Let us say that, for M a model of ZFC, an elementary embedding
k : M → N is close to M if for all A ∈ N , k−1[A] ∈ M . (Note that if
M = V , then j is close to M .)
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Lemma 4.2. If i : V → M and k : M → N are elementary embed-
dings, k is close to M , and j = k ◦ i, then tj = tk ◦ ti.

Proof. Fix a cardinal λ. We first show that tj(λ) ≤ tk(ti(λ)). For
this, fix A ∈ M with i[λ] ⊆ A and |A|M = ti(λ). Fix B ∈ N with
|B|N = tk(ti(λ)) and k[A] ⊆ B. Then j[λ] = k ◦ i[λ] ⊆ B, which shows
tj(λ) ≤ tk(ti(λ)).

Next we show that tk(ti(λ)) ≤ tj(λ). Suppose B ∈ N and j[λ] ⊆ B.
We will show that |B|N ≥ tk(ti(λ)). Let A = k−1[B]. Then A ∈ M
since k is close to M , and so since i[λ] = k−1[j[λ]] ⊆ A, |A|M ≥ ti(λ).
But k[A] ⊆ B, and it follows that |B|N ≥ tk(|A|M) ≥ tk(ti(λ)). □

In general, the value of tj(λ) may not be easy to compute. Never-
theless, for particular j and λ, some information about its value may
be easily obtained, as shown in the next three lemmas.

Lemma 4.3. If j : V → M is an ultrapower embedding, via some
κ-complete ultrafilter, and λ is a cardinal such that cf(λ) ≤ κ, then
tj(λ) = supδ<λtj(δ).

Proof. We may assume λ > κ. Let η = cf(λ), and let f : η → λ∩CARD
be cofinal. Then j[λ] =

⋃
δ<η j[f(δ)]. For each δ < η, let Aδ ∈ M be

such that j[f(δ)] ⊆ Aδ and |Aδ|M = tj(f(δ)). Since M is closed under
η-sequences, the union A of all Aδ, δ < η, belongs to M and witnesses
that tj(λ) = supδ<ηtj(f(δ)) = supδ<λtj(δ). □

Lemma 4.4. If j : V → M is an elementary embedding and δ is a
regular cardinal such that j(δ) = sup j[δ], then tj(δ) = j(δ).

Proof. Since j[δ] ⊆ j(δ), tj(δ) ≤ j(δ). For the other inequality, if j[δ] ⊆
A ∈ M , then A ∩ j(δ) is a cofinal subset of j(δ). Since j(δ) is regular
in M , |A|M ≥ j(δ). □

Lemma 4.5. Suppose κ < λ are cardinals with cf(λ) < κ and j : V →
M is an ultrapower embedding via a κ-complete ultrafilter on a set of
cardinality γ < λ. Then tj(λ) = j(λ).

Proof. First, note that if δ is a regular cardinal greater than γ, then
j(δ) = sup j[δ]. For if α < j(δ), then α = [f ]U for some f : γ → δ.
Take β such that f [γ] ⊆ β < δ. Then α < j(β).

Thus, by Lemma 4.4, for all regular cardinals δ < λ greater than γ,
we have that tj(δ) = j(δ). Now by Lemma 4.3, tj(λ) = supδ<λ tj(δ) =
supδ<λ j(δ) = j(λ), the last equality holding because cf(λ) < κ. □

Definition 4.6. A cardinal κ is tightly λ-C(n)-compact if λ ∈ C(n)

and there is an elementary embedding j : V → M , M transitive, with
critical point κ such that tj(λ) ∈ (C(n))M ∩ j(κ).

A cardinal κ is tightly C(n)-compact if it is tightly λ-C(n)-compact
for all λ ∈ C(n) greater than κ.
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By Proposition 3.2, if κ is tightly λ-C(n)-compact, then it is λ-C(n)-
compact. Hence, by Proposition 3.3, every tightly λ-C(n)-compact car-
dinal belongs to C(n).

Question 4.7. Does κ being tightly C(n)-compact imply κ ∈ C(n+1)?

We shall prove below (Corollary 4.17) that if the Ultrapower Axiom
holds, then the answer is yes. In contrast, Toshimichi Usuba has just
sent us a note in which he shows that, modulo a supercompact cardinal,
it is consistent that the first measurable cardinal is also the first tightly
C(1)-compact cardinal, and therefore it does not belong to C(2).

Let us give next an exact characterization of a cardinal κ being
tightly λ-C(n)-compact, for any λ ∈ C(n), in terms of fine n-reflecting
measures over Pκλ.

Proposition 4.8. If λ ∈ C(n), then a cardinal κ < λ is tightly λ-C(n)-
compact iff there is a fine n-reflecting measure U over Pκλ, with the
property that for every function f : Pκλ → Pκλ such that |f(σ)| < |σ|
for almost all σ, there exists α < λ such that α ∈ σ \ f(σ) for almost
all σ.

Proof. Fix λ ∈ C(n) and assume κ < λ is tightly λ-C(n)-compact. Let
j : V → M witness this, so that κ is the critical point of j, and
tj(λ) ∈ (C(n))M ∩ j(κ).

Fix A ∈ M such that j[λ] ⊂ A ⊆ j(λ) and |A|M = tj(λ). Let U be
the κ-complete fine ultrafilter on Pκλ given by

X ∈ U iff A ∈ j(X)

and let jU : V → Ult(V,U) be the ultrapower embedding. The map
k : Ult(V,U) → M given by k([f ]U) = j(f)(A) is such that k ◦ jU = j.
Let Ā = [Id]U . Thus, k(Ā) = A. We claim that tjU (λ) = |Ā|M . First
notice that jU [λ] ⊆ Ā, and so tjU (λ) ≤ |Ā|M . But if tjU (λ) < |Ā|M ,
then

tj(λ) = k(tjU (λ)) < k(|Ā|M) = |A|M = tj(λ)

which yields the claim. So,

k(tjU (λ)) = k(|Ā|M) = tj(λ)

and therefore, by the elementarity of k,

tjU (λ) ∈ (C(n))M ∩ jU(κ).

Thus, as tjU (λ) = |[Id|U |M ∈ (C(n))M , by  Lós’ Theorem we have that
T n
κ,λ ∈ U , and so U is an n-reflecting measure.
Now fix a function f : Pκλ → Pκλ such that {σ : |f(σ)| < |σ|} ∈ U .

So, |j(f)(A)|M < |A|M . Since |A|M = tj(λ), we must then have that
j[λ] ̸⊆ j(f)(A). Pick α < λ such that j(α) ̸∈ j(f)(A). Then, as
j[λ] ⊆ A, we have that {σ : α ∈ σ \ f(σ)} ∈ U , as wanted.
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For the converse, let U be a fine n-reflecting measure over Pκλ, such
that for every function f : Pκλ → Pκλ with |f(σ)| < |σ| for almost all
σ, there exists α < λ such that α ∈ σ \ f(σ) for almost all σ.

Let j : V → M ∼= Ult(V,U). By κ-completeness, crit(j) = κ. Also,
by fineness, j[λ] ⊆ [Id]U . Moreover, since T n

κ,λ ∈ U , by  Lós’ Theorem

we have that |[Id]U |M ∈ (C(n))M . So it only remains to check that
|[Id]U |M = tj(λ). Let A ∈ M be such that j[λ] ⊆ A ⊆ j(λ) and |A|M =
tj(λ). Aiming for a contradiction, assume that |A|M < |[Id]U |M . Let
f : Pκλ → Pκλ be such that [f ]U represents A in the ultrapower. Then
|f(σ)| < |σ| for almost all σ. So let α < λ be such that α ∈ σ \ f(σ)
for almost all σ. Then j(α) ̸∈ A, yielding a contradiction. □

It follows easily from the proposition above that, for any λ ∈ C(n),
the property of a cardinal κ < λ being tightly λ-C(n)-compact is ∆2,
with parameter λ. Moreover, the property of κ being tightly C(n)-
compact is Πn+1.

The following direct consequence of Proposition 4.8 shows that an
elementary embedding witnessing the tight λ-C(n)-compactness of κ
may be assumed to be an ultrapower embedding by some κ-complete
ultrafilter on some ordinal greater than or equal to λ.

Corollary 4.9. If κ is a tightly λ-C(n)-compact cardinal, then there
exists a κ-complete ultrafilter U on some cardinal δ ≥ λ such that
letting jU : V → MU

∼= Ult(V, U) be the ultrapower embedding, we have
that tjU (λ) ∈ (C(n))MU ∩ jU(κ).

Proof. Let j : V → M be an elementary embedding, M transitive,
with critical point κ, and such that tj(λ) ∈ (C(n))M ∩ j(κ). As in the
proof of Proposition 4.8, fix A ∈ M such that j[λ] ⊂ A ⊆ j(λ) and
|A|M = tj(λ). Let U be the κ-complete fine ultrafilter on Pκλ given by

X ∈ U iff A ∈ j(X)

and let jU : V → Ult(V,U) be the ultrapower embedding. Then κ =
crit(jU), and as in 4.8 we can show that

tjU (λ) ∈ (C(n))M ∩ jU(κ).

The claim now follows by taking a bijection between Pκλ and δ = |Pκλ|,
and letting U be the induced ultrafilter on δ given by U . □

Recall that an ultrafilter U over a cardinal λ is weakly normal if it is
uniform (i.e., all elements of U have the same cardinality), and for any
set A ∈ U and every regressive function f : A → λ there exists some
B ⊆ A such that B ∈ U and f [B] has cardinality less than λ.

Proposition 4.10. If λ ∈ C(n) is regular, then a cardinal κ < λ is
tightly λ-C(n)-compact iff there is a κ-complete weakly normal ultrafilter
U over λ such that S := {α < λ : cf(α) ∈ C(n) ∩ κ} ∈ U .
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Proof. Assume λ ∈ C(n) is regular and κ < λ is tightly λ-C(n)-compact.
Let j : V → M be an elementary embedding with M transitive and
with critical point κ such that tj(λ) ∈ (C(n))M ∩ j(κ). By Ketonen’s
Theorem (see [Gol22, 7.2.12]), tj(λ) = cfM(sup j[λ]). Thus, sup j[λ] <
j(λ), and so the ultrafilter U over λ derived from j using sup j[λ] is
κ-complete and weakly normal (see [Gol22, 4.4.18]). Now note that

sup j[λ] ∈ j(S) = {α < j(λ) : cfM(α) ∈ (C(n))M ∩ j(κ)}

and so S ∈ U .
For the converse, suppose U is a κ-complete weakly normal ultrafilter

on λ such that S ∈ U . Let j : V → M be the corresponding ultrapower
embedding. By κ-completeness, crit(j) = κ, and by weak normality
[Id]U = sup j[λ] (see [Gol22, 4.4.17]). Since S ∈ U , by  Loś’s Theorem
in M we have that

cf([Id]U) ∈ C(n) ∩ j(κ)

and so, since λ is regular, by Ketonen’s Theorem, in M ,

tj(λ) = cf(sup j[λ]) ∈ C(n) ∩ j(κ)

hence κ is tightly λ-C(n)-compact. □

For γ a successor cardinal, let γ− denote its predecessor.

Proposition 4.11. If λ ∈ C(n) and cf(λ) < κ < λ, then the following
are equivalent:

(1) κ is tightly λ-C(n)-compact, witnessed by an embedding j : V →
M such that tj(λ

+) = (tj(λ)+)M .
(2) There is a κ-complete weakly normal ultrafilter U on λ+ such

that S := {α < λ+ : cf(α)− ∈ C(n) ∩ κ} ∈ U and, moreover, if
jU : V → MU is the corresponding ultrapower embedding, then
tjU (λ+) = (tjU (λ)+))MU .

Proof. Assume cf(λ) < κ < λ and κ is tightly λ-C(n)-compact. Let
j : V → M be an elementary embedding with critical point κ such
that tj(λ) ∈ (C(n))M ∩ j(κ) and tj(λ

+) = (tj(λ)+)M . As in Corollary
4.9, let U be a κ-complete ultrafilter on δ = |Pκλ| such that letting
jU : V → MU be the ultrapower embedding, tjU (λ) ∈ (C(n))MU ∩jU(κ).
Since we are assuming tj(λ

+) = (tj(λ)+)M , arguing as in the proof of
Proposition 4.8 we also have that tjU (λ+) = (tjU (λ)+)MU . Note that
since cf(λ) < κ, δ ≥ λ+. By Ketonen’s Theorem (see [Gol22, 7.2.12]),
tjU (λ+) = cfMU (sup jU [λ+]).

Claim 4.12. sup jU [λ+] < jU(λ+)

Proof of Claim. Since tjU (λ) < jU(κ), and tjU (λ+) = (tjU (λ)+)MU , it
follows that

cfMU (sup jU [λ+]) = tjU (λ+) = (tjU (λ)+)MU < jU(κ) < jU(λ) < jU(λ+)
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hence, since jU [λ+] ⊆ jU(λ+) and jU(λ+) is a regular cardinal in MU ,
the Claim follows. □

So the ultrafilter U over λ+ derived from jU using sup jU [λ+] is weakly
normal (see [Gol22, 4.4.18]).

Now using the fact that tjU (λ) ∈ (C(n))MU ∩ jU(κ), we have

sup jU [λ+] ∈ jU(S) = {α < jU(λ+) : cfMU (α)− ∈ (C(n))MU ∩ jU(κ)}

and so S ∈ U .
For the converse, suppose U is a κ-complete weakly normal ultra-

filter on λ+ such that S ∈ U and tjU (λ+) = (tjU (λ)+))MU . By κ-
completeness, crit(j) ≥ κ, and by weak normality [Id]U = sup jU [λ+]
(see [Gol22, 4.4.17]). Since S ∈ U , by  Loś’s Theorem, in MU we have
that

cf([Id]U)− ∈ C(n) ∩ jU(κ).

Since λ+ is regular, by Ketonen’s Theorem, in MU ,

tjU (λ+) = cf(sup jU [λ+]).

Thus, in MU ,

tjU (λ) = tjU (λ+)− = cf(sup jU [λ+])− = cf([Id]U)− ∈ C(n) ∩ jU(κ)

hence κ is tightly λ-C(n)-compact. □

The concept of tightly C(n)-compact cardinal leads to a characteri-
zation of extendibility under the Ultrapower Axiom analogous to the
theorem from [Gol22, 8.3.10], which shows that a cardinal is strongly
compact iff it is either supercompact or a measurable limit of supercom-
pact cardinals. To show this, let us first prove the following lemmas.

Lemma 4.13. If κ is C(n−1)-extendible, then it is tightly C(n)-compact.

Proof. If κ is C(n−1)-extendible, then by Corollary 2.8, for all cardinals
λ ∈ C(n) greater than or equal to κ, there exists a fine and normal mea-
sure U on Pκλ such that Ult(V,U) |= “λ ∈ C(n)”. The corresponding
ultrapower embedding jU : V → MU then witnesses that κ is tightly
λ-C(n)-compact, because tjU (λ) = λ. □

Lemma 4.14. If κ is a measurable limit of tightly C(n)-compact car-
dinals, then κ is tightly C(n)-compact.

Proof. Fix a cardinal λ > κ in C(n), and we will show that κ is tightly
λ-C(n)-compact. Let D be a κ-complete nonprincipal ultrafilter on κ.
Let i : V → N be the elementary embedding given by the ultrapower
of V by D. In N , let δ be a tightly i(λ)-C(n)-compact cardinal such
that κ ≤ δ ≤ i(κ). Let k : N → M witness that δ is tightly i(λ)-C(n)-
compact. Therefore

tk(i(λ)) ∈ (C(n))M ∩ k(δ).
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We claim that j = k ◦ i witnesses that κ is tightly λ-C(n)-compact. For
this it suffices to show that tj(λ) ∈ (C(n))M ∩ j(κ), which will follow by
showing that tj(λ) = tk(i(λ)). By Proposition 4.8, we may assume that
k is an ultrapower embedding defined in N via a δ-complete ultrafilter
U over Pδi(λ), hence k is close to N , and therefore by Lemma 4.2
we have that tj = tk ◦ ti. Moreover, by Lemma 4.5 we have that
ti(λ) = i(λ). □

It now follows from Proposition 4.13 and the lemma above that, for
any n ≥ 2, if a cardinal κ is either C(n−1)-extendible or a measurable
limit of C(n−1)-extendible cardinals, then κ is tightly C(n)-compact.
We will show next that if we assume the Ultrapower Axiom, then the
converse is also true.

Theorem 4.15. Assuming the Ultrapower Axiom, for any n ≥ 2, a
cardinal κ is tightly C(n)-compact if and only if it is either C(n−1)-
extendible or a measurable limit of C(n−1)-extendible cardinals.

To keep this paper as self-contained as possible, let us define here
some notions associated with the Ultrapower Axiom that are treated
more thoroughly in [Gol22].

The Ketonen order partially orders the countably complete ultrafil-
ters on an ordinal δ by U <k W if for a W -large set of α < δ, there is
an ultrafilter Uα on α such that for A ⊆ δ

A ∈ U ⇐⇒ {α < δ : A ∩ α ∈ Uα} ∈ W.

For a countably complete ultrafilter U , let MU denote the transitive
collapse of the ultrapower Ult(V, U), with jU : V → MU being the
corresponding ultrapower embedding.

The Rudin-Froĺık order preorders the class of countably complete
ultrafilters by D ≤RF U if in MD, there is a countably complete ul-
trafilter U∗ such that Ult(MD, U

∗) = MU and jU∗ ◦ jD = jU where
jU∗ : MD → MU denotes the ultrapower embedding.1

The Ultrapower Axiom states that the Rudin-Froĺık order on count-
ably complete ultrafilters is upwards directed. In other words, for any
countably complete ultrafilters D0 and D1, there is a countably com-
plete ultrafilter U above both of them in the Rudin-Froĺık order; equiv-
alently, there are countably complete ultrafilters U0 and U1 in MD0

and MD1 , respectively, such that Ult(MD0 , U0) = Ult(MD1 , U1) and
jU0 ◦ jD0 = jU1 ◦ jD1 . This statement holds in all the known canonical
inner models of set theory (for example, L[U ] and HODL(R) assuming

ADL(R)) as an immediate consequence of the Comparison Lemma. UA
is expected to hold in all canonical inner models of set theory, and

1Note that U∗ may not be an ultrafilter in V . Instead, it is assumed to be
an ultrafilter in the model MD. For this reason, the ultrapower Ult(MD, U∗) is
constructed using only functions in MD. Equivalently, we relativize the definition
of the ultrapower to the inner model MD, forming (MU∗)MD .
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it is hoped that there will be canonical models for all large cardinal
hypotheses. Thus it makes sense to study UA in the presence of ex-
tendible cardinals.

By [Gol22, Theorem 3.5.1], the Ultrapower Axiom is equivalent to
the statement that for all ordinals δ, the Ketonen order wellorders the
countably complete ultrafilters on δ.

It is quite surprising that there could be such a simply definable well-
order of all countably complete ultrafilters in the presence of strong as-
sumptions like supercompactness (granting the consistency of UA with
very large cardinals). Still, the proof of the linearity of the Ketonen
order from the Ultrapower Axiom is straightforward compared to the
converse, which uses a concept that will also be needed for the proof
of Theorem 4.15. This is the notion of the translation of an ultrafilter,
whose relationship to the tightness function is close enough to justify
the following very similar notation.

In the context of the Ultrapower Axiom, if D and U are countably
complete ultrafilters and the underlying set of U is an ordinal δ, then
tD(U) denotes the Ketonen least ultrafilter U∗ of MD on jD(δ) such that
jD[U ] ⊆ U∗. The ultrafilter tD(U) clarifies the connection between
the Rudin-Froĺık order and the Ketonen order: if D ≤RF U , then
U∗ = tD(U) witnesses this, in the sense that Ult(MD, U

∗) ∼= MU and
jU∗ ◦ jD = jU . Moreover, given countably complete ultrafilters D0

and D1 on an ordinal δ, U0 = tD0(D1) and U1 = tD1(D0) witness the
Ultrapower Axiom for D0 and D1.

Proof. We will show that under the Ultrapower Axiom, if κ is the least
tightly C(n)-compact cardinal greater than some ordinal γ, then κ is
C(n−1)-extendible. From this, it follows from Lemma 4.14 that every
tightly C(n)-compact cardinal is either C(n−1)-extendible or a limit of
C(n−1)-extendible cardinals, which implies the result (since tightly C(n)-
compact cardinals are measurable).

Fix a cardinal λ > κ in C(n) such that cf(λ) < κ. (It is important
that λ is singular in order to apply [Gol22, Lemma 5.4.4] below. The
fact that cf(λ) < κ will be used to apply Lemma 4.5.) By taking λ
sufficiently large, we may assume that κ is the least tightly λ-C(n)-
compact cardinal above γ.

By Corollary 4.9 there exists a γ+-complete ultrafilter U on some
ordinal δ ≥ λ such that letting jU : V → MU be the associated ul-
trapower embedding, tjU (λ) ∈ (C(n))MU ∩ jU(κ). Let U be the Keto-
nen minimum ultrafilter with this property. We will show that U is
λ-irreducible, namely, if D is a countably complete ultrafilter on a car-
dinal less than λ, and D is a Rudin-Froĺık predecessor of U , then D is
principal.

So let D be such an ultrafilter. There is an internal ultrapower
embedding k : MD → MU such that k ◦ jD = jU . In MD, let U ′ be the
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ultrafilter on jD(δ) derived from k using [id]U . Namely,

X ∈ U ′ iff [id]U ∈ k(X).

Claim 4.16. U ′ = tD(U)

Proof. Let jU ′ : MD → MU ′ be the ultrapower embedding defined in
MD. Then the embedding i : MU ′ → MU given by

i([f ]U ′) = jD(f)([Id]U)

is such that i ◦ jU ′ = k, and we have the commutative diagram

V
jU //

jD
��

MU

MD jU′
//

k
<<

MU ′

i

OO

We claim that i is surjective. Note that, as in [Kan03, 5.13],

MU = {jU(f)([Id]U) : f : δ → V }
and so MU is the Skolem hull in MU of the set jU [V ] ∪ {[Id]U}. Thus
it suffices to show that jU [V ] ∪ {[Id]U} ⊆ i[MU ′ ]. One can easily check
that i([Id]U ′) = [Id]U . And for every a ∈ V ,

jU(a) = k(jD(a)) = i(jU ′(jD(a)).

Hence, MU and MU ′ are isomorphic, and therefore identical. It then
follows from [Gol22, Lemma 5.2.6] that U ′ = tD(U). □

To show D is principal, by [Gol22, Lemma 5.4.4], it suffices to show
that U ′ = jD(U). By [Gol22, Lemma 5.4.3], we have that U ′ ≤k
jD(U) in MD, so it remains to prove the reverse inequality. For this,
invoking the minimality of jD(U) in MD under the Ketonen ordering, it
suffices to see that in MD, U ′ is a jD(γ+)-complete ultrafilter such that
tjU′ (jD(λ)) ∈ (C(n))MU′ ∩ jU ′(jD(κ)). On the one hand, the jD(γ+)-
completeness of U ′ follows easily from the fact that jD(γ+) = γ+. On
the other hand, to see that tjU′ (jD(λ)) ∈ (C(n))MU′ ∩ jU ′(jD(κ)), since

tjU (λ) ∈ (C(n))MU ∩ jU(κ) and MU ′ = MU , it suffices to show that
tjU′ (jD(λ)) = tjU (λ). But since jD(λ) = tjD(λ) by Lemma 4.5, and
since jU ′ is close to MD, the fact that tjU′ (jD(λ)) = tjU (λ) follows from
Lemma 4.2. This completes the proof that U is λ-irreducible.

We now apply one of the main theorems of [Gol22, Corollary 8.2.21]:
if λ is a singular strong limit cardinal and U is a countably complete λ-
irreducible ultrafilter, then jU is a λ-supercompact embedding, which
means that MU is closed under λ-sequences. Note that this implies
tjU (λ) = λ.

The rest of the proof makes no further use of UA. Thus the as-
sumption is used in two places: first, in the proof that a ≤k-minimal
ultrafilter U witnessing our large cardinal property is λ-irreducible,
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and second, in concluding that this irreducibility leads to supercom-
pactness.

Next, we claim that κ is the critical point of jU . Let η = crit(jU).
So γ < η ≤ κ, since jU(κ) > tjU (λ) = λ. Notice that for some m <
ω, jmU (η) > λ: otherwise, letting ηω = supℓ<ω j

ℓ
U(η), we contradict

the Kunen inconsistency theorem since jU(ηω) = ηω and MU is closed
under ηω-sequences (see [Kan03, 23.12 and 23.14]). We claim that jmU
witnesses that η is strongly λ-C(n)-compact, where jmU is defined as
in [Kan03, 23.15]. For this, one must check that λ ∈ (C(n))N where
N = jmU (V ). This is true for m = 1, i.e., for N = MU . So let us
assume it is true for m and show it holds for m + 1 as well. Let
j = jU(jmU ) : jmU (V ) → N be so that j ◦ jmU = jm+1

U . Since λ belongs to
C(n) and also to (C(n))MU , and since MU is closed under λ-sequences,
and therefore Vλ = (Vλ)MU , we may assume, by induction, that

(1) (VjmU (λ))
jmU (V ) = (VjmU (λ))

N

(2) jmU (λ) belongs to both (C(n))j
m
U (V ) and (C(n))N

(3) λ ∈ (C(n))j
m
U (V ).

Hence, since λ < jmU (λ), it easily follows that λ ∈ (C(n))N , as wanted.
Since κ was taken to be the least tightly λ-C(n)-compact cardinal

above γ, we have that κ ≤ η, and therefore κ = η.

We have shown that jU : V → MU is an elementary embedding with
critical point κ such that MU is closed under λ-sequences, jU(κ) > λ,
and λ ∈ (C(n))MU . Since λ was chosen to be in C(n), by defining U as

X ∈ U iff X ⊆ Pκλ and j[λ] ∈ j(X)

and arguing as in the proof of Theorem 2.3, we have that U is an n-
reflecting measure over Pκλ. Therefore, since λ was chosen arbitrarily
large, by Theorem 2.7, κ is a C(n−1)-extendible cardinal. □

Since C(n)-extendible cardinals belong to C(n+2) ([Bag12]), we have
the following corollary:

Corollary 4.17. Assuming the Ultrapower Axiom, if κ is tightly C(n)-
compact, then κ ∈ C(n+1).

Recall the following principle of Structure Reflection from [Bag23]:

Πn-SR(κ): (Πn-Structural Reflection at κ) For every Πn-definable,
with parameters in Vκ, class C of relational struc-
tures of the same type, and for every A ∈ C, there
exists B ∈ C ∩ Vκ together with an elementary em-
bedding j : B → A.

The following is a corollary of Theorem 4.15 above and the results
from section 3 of [Bag23]. The case n = 1 uses [Gol22, 8.3.10].

Corollary 4.18. Assuming the Ultrapower Axiom, for any n ≥ 1,
a cardinal is tightly C(n)-compact if and only if it is measurable and
Πn-SR(κ) holds.
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5. Reflecting extenders

The characterization in terms of reflecting measures, given in the
previous sections, of large cardinals lying in the region of the large-
cardinal hierarchy between supercompactness (or strong compactness)
and Vopěnka’s Principle (i.e., the existence of a C(n)-extendible car-
dinal, for every n [Bag12]) can similarly be given for large cardinals
lying in the, much lower, region that spans between the first strong
cardinal and the principle “OR is Woodin” (i.e., the existence of a Σn-
strong cardinal, for every n [BW22, 5.14]). However, as with strong
cardinals, which cannot be given by single measures and thus require
the use of extenders, we need to define the corresponding notion of a
(κ, λ)-n-reflecting extender (Definition 5.1) which is then applied to
characterize Σn-strong cardinals and “OR is Woodin” in terms of the
existence of n-reflecting extenders (Theorem 5.6 and Corollary 5.7).

Definition 5.1. Given a cardinal κ and an ordinal λ greater than or
equal to κ, a (κ, λ)-n-reflecting extender is a set E := {Ea : a ∈ [λ]<ω}
such that

(1) (a) Each Ea is a κ-complete ultrafilter over [κ]|a|.
(b) If a ⊆ C(n), then Ea is n-reflecting, i.e., [C(n) ∩ κ]|a| ∈ Ea.
(c) Ea is not κ+-complete for some a.
(d) For each ξ ∈ κ, there is some a ∈ [λ]<ω with

{s ∈ [κ]|a| : ξ ∈ s} ∈ Ea.

(2) Coherence: If a ⊆ b are in [λ]<ω and such that b = {α1, . . . , αn}
and a = {αi1 , . . . , αin}, and πba : [κ]|b| → [κ]|a| is the projection
map given by πba({ξ1, . . . , ξn}) = {ξi1 , . . . , ξin}, then

X ∈ Ea if and only if {s ∈ [κ]|b| : πba(s) ∈ X} ∈ Eb .

(3) Normality: Whenever a ∈ [λ]<ω and f : [κ]|a| → V are such
that {s ∈ [κ]|a| : f(s) ∈ max(s)} ∈ Ea, there is b ∈ [λ]<ω with
a ⊆ b such that

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb .

(4) Well-foundedness: Whenever am ∈ [λ]<ω and Xm ∈ Eam for
m ∈ ω, there is a function d :

⋃
m am → κ such that d“am ∈ Xm

for every m.

Note that the definition above is just the usual definition of a (κ, λ)-
extender (as in [Kan03, §26]), plus the requirement, given in (1)(b), of
Ea being n-reflecting in the case a ⊆ C(n).

Recall the following standard direct limit ultrapower construction,
given by a (κ, λ)-extender E := {Ea : a ∈ [λ]<ω} (for details see [Kan03,
§26]). Namely, for each a ∈ [λ]<ω, let Ult(V,Ea) be the ultrapower of
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V by Ea. Since Ea is κ-complete, the ultrapower is well-founded, so
we let

ja : V → Ma
∼= Ult(V,Ea)

with Ma transitive, be the corresponding elementary embedding. As
usual, we denote the elements of Ma by their corresponding elements
in Ult(V,Ea).

For each a ⊆ b in [λ]<ω, let πba be the projection map given as in (2)
above, and let iab : Ma → Mb be the map given by

iab([f ]Ea) = [f ◦ πba]Eb

for all f : [κ]|a| → V . By coherence, the maps iab are well-defined and
commute with the ultrapower embeddings ja. Thus we can form the
direct limit ME of the directed system

⟨⟨Ma : a ∈ [λ]<ω⟩, ⟨iab : a ⊆ b⟩⟩
and let jE : V → ME be the corresponding limit elementary embedding,
given by

jE(x) = [a, [cax]Ea ]

for some (any) a ∈ [λ]<ω, and where cax : [κ]|a| → {x}.
For each a ∈ [λ]<ω, let kaE : Ma → ME be given by

kaE([f ]Ea) = [a, [f ]Ea ] .

It is easily checked that jE = kaE ◦ ja and kbE ◦ iab = kaE , for all a ⊆ b
in [λ]<ω.

Let us recall the following definitions from [BW22]:

Definition 5.2. [BW22] For n ≥ 1, a cardinal κ is λ-Σn-strong if for
every Σn-definable (without parameters) class A there is an elementary
embedding j : V → M with M transitive, crit(j) = κ, Vλ ⊆ M , and
A ∩ Vλ ⊆ j(A).

κ is Σn-strong if it is λ-Σn-strong for every ordinal λ.

Every strong cardinal is Σ2-strong ([BW22, 5.2]), and every Σn-
strong cardinal belongs to C(n) ([BW22, 5.6]). The following gives
a characterization of Σn-strong cardinals in terms of Σn-strong exten-
ders.

Definition 5.3. [BW22, 5.7] Given n ≥ 1 and given cardinals κ < λ, a
Σn-strong (κ, λ)-extender is a (κ, |Vλ|+)-extender E such that j(κ) > λ,
Vλ ⊆ ME , and ME |= “λ ∈ C(n−1)”, where ME is the transitive collapse
of the direct limit ultrapower of V by E, and j : V → ME is the
corresponding elementary embedding.

Proposition 5.4. [BW22, 5.8] If n ≥ 2 and λ ∈ C(n), then a cardinal
κ < λ is λ-Σn-strong if and only if there exists a Σn-strong (κ, λ)-
extender.
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We will give a simpler, purely combinatorial characterization of λ-Σn-
strong cardinals in terms of reflecting extenders (Theorem 5.6 below).
First, let us prove the following lemma.

Lemma 5.5. For every Σn-definable class A, every cardinal λ ∈ C(n),
and every m, if κ is λ-A-strong (i.e., there exists an elementary em-
bedding j : V → M with M transitive, crit(j) = κ, Vλ ⊆ M , and
A ∩ Vλ ⊆ j(A)), then there is such an embedding j which in addition
satisfies j(κ) ∈ C(m).

Proof. Let j : V → M be an elementary embedding with M transitive,
crit(j) = κ, Vλ ⊆ M , and A∩Vλ ⊆ j(A). Since in M , j(κ) is a measur-
able cardinal, we can obtain, via an iterated ultrapower construction of
length some α ∈ C(m), an elementary embedding jα : M → M ′, some
transitive M ′, with crit(jα) = j(κ) and with jα(j(κ)) = α. Letting
k = jα ◦ j, we have that k is a λ-strong embedding with crit(k) = κ
and with k(κ) ∈ C(m). Moreover, since A ∩ Vλ ⊆ j(A), for every
γ ∈ A ∩ Vλ we have that M |= “γ ∈ j(A)”, hence by elementarity, and
since crit(jα) = j(κ) > λ, M ′ |= “γ ∈ jα(j(A))”. Hence, γ ∈ k(A).
Thus, A ∩ Vα ⊆ k(A). □

Theorem 5.6. If n ≥ 1 and λ ∈ C(1), then a cardinal κ < λ is λ-
Σn+1-strong if and only if there exists a (κ, λ+1)-n-reflecting extender.

Proof. Suppose first that κ is λ-Σn+1-strong. Since C(n) is a Πn-
definable class, hence also Σn+1-definable, there is an elementary em-
bedding j : V → M with M transitive, crit(j) = κ, j(κ) > λ, Vλ ⊆ M ,
and C(n) ∩ λ ⊆ j(C(n)). By Lemma 5.5, we may assume j(κ) is a
cardinal.

We shall obtain a (κ, λ+1)-n-reflecting extender E from j, as follows:
for every a ∈ [λ + 1]<ω let Ea be given by:

X ∈ Ea if and only if X ⊆ [κ]|a| and a ∈ j(X).

We need to check that E := {Ea : a ∈ [λ + 1]<ω} satisfies conditions
(1) − (4) of Definition 5.1.

(1): Since crit(j) = κ and j(κ) > λ, each Ea is easily seen to be
a κ-complete ultrafilter over [κ]|a|. And since C(n) ∩ λ ⊆ j(C(n)), if
a ⊆ C(n), then [C(n) ∩ κ]|a| ∈ Ea. Moreover, E{κ} is not κ+-complete,
as the set [κ\α]1 is in E{κ}, for every α < κ. As for (d), for each ξ ∈ κ,
{ξ} ∈ j({s ∈ [κ]1 : ξ ∈ s}). Hence, {s ∈ [κ]1 : ξ ∈ s} ∈ E{ξ}.

(2) Coherence: Assume a ⊆ b and are in [λ+1]<ω. Suppose X ∈ Ea.
Thus, X ⊆ [κ]|a| and a ∈ j(X). We need to show that

b ∈ j({s ∈ [κ]|b| : πba(s) ∈ X}).

Now notice that

j({s ∈ [κ]|b| : πba(s) ∈ X}) = {s ∈ [j(κ)]|b| : πba(s) ∈ j(X)}.
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But since πba(b) = a, and a ∈ j(X), we have that

b ∈ {s ∈ [λ + 1]|b| : πba(s) ∈ j(X)} ⊆ {s ∈ [j(κ)]|b| : πba(s) ∈ j(X)}
as wanted.

Conversely, if {s ∈ [κ]|b| : πba(s) ∈ X} ∈ Eb, we have that

b ∈ j({s ∈ [κ]|b| : πba(s) ∈ X}) = {s ∈ [j(κ)]|b| : πba(s) ∈ j(X)}.
Hence, πba(b) = a ∈ j(X), and therefore X ∈ Ea.

(3) Normality: Assume a ∈ [λ + 1]<ω and f : [κ]|a| → V are such
that

X := {s ∈ [κ]|a| : f(s) ∈ max(s)} ∈ Ea.

We need to find some b ∈ [λ + 1]<ω with a ⊆ b such that

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb .

We have

j(X) = {s ∈ [j(κ)]|a| : j(f)(s) ∈ max(s)} .
Also, since X ∈ Ea, we have that a ∈ j(X), and therefore j(f)(a) ∈
max(a).

Let δ = j(f)(a), and let b = a ∪ {δ}. Thus,

b ∈ {s ∈ [λ + 1]|b| : j(f)(πba(s)) ∈ s}
where πba : [λ + 1]|b| → [λ + 1]|a| is the projection function. So, since

{s ∈ [λ + 1]|b| : j(f)(πba(s)) ∈ s} ⊆ j({s ∈ [κ]|b| : f(πba(s)) ∈ s})

we have

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb

as wanted.

(4) Well-foundedness: Assume am ∈ [λ + 1]<ω and Xm ∈ Eam , for
every m ∈ ω. We need to find a function d :

⋃
m am → κ such that

d“am ∈ Xm for every m. Assuming such function does not exist, one
can show similarly as in [Kan03, 15.7 (a)] that the direct limit ultra-
power ME is not well-founded. Now letting kE : ME → M be given by
kE([a, [f ]Ea ]) = j(f)(a), we have that kE ◦jE = j. But this implies ME is
well-founded, as any infinite ∈E -descending sequence in ME would yield
an infinite ∈-descending sequence in V , thus yielding a contradiction.

We have thus shown that E is a (κ, λ + 1)-n-reflecting extender.

For the converse, assume E = {Ea : a ∈ [λ + 1]<ω} is a (κ, λ + 1)-n-
reflecting extender and we will show that κ is λ-Σn+1-strong.

Let jE : V → ME be the elementary embedding given by E . Let
us write M for the transitive collapse of ME , and let j : V → M
be the corresponding elementary embedding, i.e., j = π ◦ jE , where
π : ME → ME is the transitive collapse.

Condition (1) ensures that κ is the critical point of j (see [Kan03,
26.2].
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By [BW22, 5.5], we only need to show that j(κ) > λ, M |= “λ ∈
C(n)”, and Vλ ⊆ M .

Let us first show that j(κ) > λ.
For each a ∈ [λ + 1]<ω, let ka : Ma → M be the composition of kaE

with the transitive collapse. Thus, j = ka ◦ ja.
Let Id1 be the identity function on [κ]1, let c[κ]1 : [κ]1 → {[κ]1}, and

let cκ : [κ]1 → {κ}. Now, for every α < λ + 1, in M{α} we have

[Id1]E{α} ∈ [c[κ]1 ]E{α} = [[cκ]E{α} ]1 = [j{α}(κ)]1.

Hence in M ,

k{α}([Id1]E{α}) ∈ k{α}([j{α}(κ)]1) = [j(κ)]1.

Similarly as in [Jec02, 26.2 (a)], one can show that for every α < λ+ 1,
k{α}([Id1]E{α}) = {α}. Therefore,

{α} ∈ [j(κ)]1.

In particular, {λ} ∈ [j(κ)]1, which yields λ < j(κ).

We next show that M |= “λ ∈ C(n)”.
Since λ ∈ C(n), E{λ} is n-reflecting, hence [C(n) ∩ κ]1 ∈ E{λ}, which

implies M{λ} |= “[Id1]E{λ} ∈ [C(n)]1”. Now, since we observed above,

k{λ}([Id1]E{λ}) = {λ}, by the elementarity of k{λ} we have that M |=
“{λ} ∈ [C(n)]1”, and so M |= “λ ∈ C(n)”, as wanted.

It only remains to show that Vλ ⊆ M .
Let f ∈ V be a bijection between [κ]1 and Vκ with the property that,

if µ < κ belongs to C(1), then the restriction of f to [µ]1 is a bijection
between [µ]1 and Vµ.

Then j(f) : [j(κ)]1 → V M
j(κ) is a bijection in M with the same prop-

erty. Thus, since λ ∈ (C(1))M , for every x ∈ V M
λ there exists γ < λ

such that j(f)({γ}) = x.
Letting D := {[{γ}, [f ]] : γ < λ}, we have just shown that the map

i : ⟨D,∈E↾ D⟩ → ⟨Vλ,∈⟩ given by

i([{γ}, [f ]]) = j(f)({γ})

is onto. Moreover, if [{γ}, [f ]] ∈E [{δ}, [f ]], then for some X ∈ E{γ,δ},
we have

(f ◦ π{γ,δ}{γ})(s) ∈ (f ◦ π{γ,δ}{δ})(s)

for every s ∈ X. Hence, for every s ∈ j(X),

(j(f) ◦ π{γ,δ}{γ})(s) ∈ (j(f) ◦ π{γ,δ}{δ})(s) .

In particular, since {γ, δ} ∈ j(X),

j(f)({γ}) ∈ j(f)({δ}) .

A similar argument shows that i is one-to-one. Hence, i is an isomor-
phism, and so i is just the transitive collapsing map. Since D ⊆ ME ,
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to conclude that Vλ ⊆ M it will be sufficient to show that the transi-
tive collapse of D is the same as the restriction to D of the transitive
collapse of ME . For this, it suffices to see that every ∈E -element of an
element of D is =E -equal to an element of D. So, suppose [{γ}, [f ]] ∈ D
and [a, [g]] ∈E [{γ}, [f ]], with [a, [g]] ∈ ME . Then j(g)(a) ∈ j(f)(γ).
Since the restriction of j(f) to [λ]1 is surjective on Vλ, and Vλ is tran-
sitive, there is some δ < λ such that j(f)({δ}) = j(g)(a). Hence,
[{δ}, [f ]] =E [a, [g]]. □

Recall from [BW22, 5.14] that the statement“OR is Woodin” is the
schema asserting that for every (definable, with parameters) proper
class A, there exists some cardinal κ which is A-strong, i.e., for every
λ, there is an elementary embedding j : V → M , with M transitive,
such that crit(j) = κ, j(κ) > γ, Vγ ⊆ M and A ∩ Vγ = j(A) ∩ Vγ.

In [BW22, 5.13] it is shown that “OR is Woodin” is equivalent to
the schema asserting that, for every n ≥ 1, there exist a proper class of
Σn-strong cardinals. Thus the following is a corollary to Theorem 5.6:

Corollary 5.7. “OR is Woodin” iff for every n ≥ 1 there is a proper
class of cardinals κ such that for every λ ∈ C(1) greater that κ there
exists a (κ, λ + 1)-n-reflecting extender.
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