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RANK-TO-RANK EMBEDDINGS AND STEEL’S CONJECTURE

GABRIEL GOLDBERG

Abstract. This paper establishes a conjecture of Steel [6] regarding the structure of

elementary embeddings from a level of the cumulative hierarchy into itself. Steel’s question

is related to the Mitchell order on these embeddings, studied in [5] and [6]. Although this

order is known to be illfounded, Steel conjectured that it has certain large wellfounded

suborders, which is what we establish. The proof relies on a simple and general analysis of

the much broader class of extender embeddings and a variant of the Mitchell order called

the internal relation.

§1. Introduction. A basic result in the theory of large cardinals states that a
countably complete ultrafilter U is never an element of the inner model Ult(V,U),
the ultrapower of the universe of sets V by U . This suggests a more general
question, instances of which arise all over large cardinal theory: which countably
complete ultrafilters belong to which ultrapowers? In [4], Mitchell defined the
partial order on countably complete ultrafilters now known as the Mitchell order,
by setting U C W whenever U belongs to Ult(V,W ). Intuitively, this order
arranges the countably complete ultrafilters according to the degree to which
their ultrapowers resemble V . The fact that an ultrafilter does not belong to its
own ultrapower is the most basic structural property of the Mitchell order: C
is irreflexive. But having defined the order, one can prove a stronger structural
property: the Mitchell order is wellfounded. (Mitchell proved that his order
is wellfounded on normal ultrafilters, but in fact this result generalizes quite
easily to arbitrary countably complete ultrafilters; a proof can be found in in
[1, Theorem 4.2.47].)

It makes sense to generalize the Mitchell order to a broader class of objects
than ultrafilters, namely, certain directed systems of ultrafilters called extenders,
defined in Section 2. If E is an extender, or more generally a directed system of
ultrafilters, then Ult(V,E) denotes the direct limit of the ultrapowers of V asso-
ciated to the ultrafilters of the system E; one requirement in the definition of an
extender is that the limit Ult(V,E) be wellfounded, so that it can be identified
with the proper class inner model to which it is isomorphic. For extenders E0
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and E1, set E0 C E1 if E0 belongs to the ultrapower Ult(V,E1). The wellfound-
edness of this generalized Mitchell order turns out to be a very subtle question.
Applying the theory of iteration trees, Steel [6] showed that the Mitchell order
is wellfounded on certain restricted classes of extenders (for example, short ex-
tenders, and more generally, amenable extenders). It turns out, however, that
the Mitchell order is not wellfounded on arbitrary extenders.

The infinite descending sequences of extenders that thwart the wellfounded-
ness of the Mitchell order were first discovered by Martin as he investigated one
of the strongest known large cardinal hypotheses, dangerously close to the in-
consistent hypotheses proposed by Reinhardt and refuted by Kunen [3]. This
is the axiom I2, which states that there is a cardinal λ and a non-trivial el-
ementary embedding j : Vλ → Vλ that extends to an elementary embedding
from the universe of sets into an inner model. If E is the extender of length λ
derived from the embedding j (Definition 2.1), then the ultrapower embedding
jE : V → Ult(M,E) itself furnishes a canonical extension of j to an elementary
embedding from the universe of sets into an inner model.

Such an extender is called a λ-extender. One can produce a C-descending
sequence of λ-extenders as follows. Let E0 be a λ-extender. For n > 0, let
En = jEn−1

(E0). Then one can show that for all n < ω, En is a λ-extender,
and obviously En ∈ Ult(V,En−1), so En C En−1. So E0 B E1 B E2 B · · ·, and
hence the Mitchell order is illfounded on λ-extenders.

Are such large cardinals really necessary to prove the illfoundedness of the
Mitchell order? This question was taken up by Neeman [5], who showed that
the Mitchell order is wellfounded on all downward closed extenders that are
not λ-extenders. (An extender E is downward closed if for all ordinals δ with
jE(δ) < length(E), jE [δ] ∈ Ult(V,E).) The wellfoundedness of the Mitchell
order on arbitrary extenders that are not λ-extenders remains an open question.

Steel conjectured that the wellfoundedness of the Mitchell order generalizes to
certain sets of λ-extenders as well:

Conjecture (Steel [6]). For any δ < λ, the Mitchell order is wellfounded on
the set of λ-extenders whose critical points lie below δ.

The purpose of this paper is to prove Steel’s conjecture. This is the content
of Corollary 6.8. The proof involves a variant of the Mitchell order called the
internal relation, which coincides with the Mitchell order on λ-extenders: an
extender F is said to be internal to an extender E if jF � Ult(V,E) is definable
over Ult(V,E). The internal relation is not wellfounded, but by Theorem 5.8,
its restriction to extenders with a common discontinuity point is. This identifies
an aspect of the wellfoundedness of the Mitchell order orthogonal to the notions
underlying the wellfoundedness proofs of Neeman and Steel. Theorem 5.8 easily
yields a proof of Steel’s conjecture.

§2. Extenders. This section contains a terse account of the basic theory of
extenders.

Suppose M is a model of set theory. If U is an M -ultrafilter on a set X
in M and f : X → Y is a function in M then the pushforward of U by f
is the M -ultrafilter f∗(U) = {A ∈ PM (Y ) : f−1[A] ∈ U}. The function f
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induces an embedding of ultrapowers in the opposite direction: one can define
k : Ult(M,f∗(U))→ Ult(M,U) by k([g]W ) = [g ◦ f ]U .

A directed system of M -ultrafilters is a sequence

D = 〈Ua, Xa, fb,a : a ≤ b ∈ D〉
where D is a directed partial order, Ua is an M -ultrafilter over Xa ∈ M , and
fb,a : Xb → Xa is a partial function in M , defined on a Ub-measure one set, such
that Ua is the pushforward of Ub under fb,a.

Associated to a directed system of ultrafilters D is the directed system of
ultrapowers

〈Ma, ja,b : a ≤ b ∈ D〉
where Ma = Ult(M,Ua) is the ultrapower of M by Ua and ja,b : Ma → Mb is
the elementary embedding induced by fa,b:

ja,b([g]Ua
) = [g ◦ fa,b]Ub

Let Ult(M,D) denote the direct limit of this system of ultrapowers, and for
each a ∈ D, let ja,D : Ma → Ult(M,D) denote the direct limit embedding. For
each a ∈ D, let ja : M → Ma denote the the ultrapower embedding associated
to Ua, and let

jD : M → Ult(M,D)

be the embedding ja,D ◦ ja, which is independent of the choice of a. Finally, we
denote ja,D([g]Ua

) by [g, a]D so that

Ult(M,D) = {[g, a]D : a ∈ D and g ∈MXa ∩M}
An arbitrary elementary embedding i : M → N between two transitive mod-

els of set theory can be approximated by a particularly simple kind of directed
system of ultrafilters called an extender derived from i. More precisely, for each
ordinal λ ∈ N , will show how to form a directed system E from i that approxi-
mates i up to λ in the sense that for any set A ⊆ [Ord]<ω,

jE(A) ∩ [λ]<ω = i(A) ∩ [λ]<ω

The ultrafilters that make up our derived extender will themselves come from
the derived ultrafilter construction: given X ∈M , and a ∈ i(X), the M -ultrafilter
on X derived from i using a is the ultrafilter U = {A ∈ PM (X) : a ∈ i(A)}. The
associated factor embedding is the elementary embedding k : Ult(M,U) → N
defined by

k([g]U ) = i(g)(a)

This is the unique elementary embedding from Ult(M,U) to N such that ka,i ◦
jU = i and ka,i([id]U ) = a.

Definition 2.1. Suppose i : M → N is elementary embedding between tran-
sitive models of set theory and λ is an ordinal in N . Then the M -extender of
length λ derived from i is the directed system of ultrafilters

E = 〈Ua, Xa, fb,a : a ⊆ b ∈ [λ]<ω〉
where
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• Xa = [δa]|a| for δa the least ordinal δ such that a ∈ i(δ).
• Ua is the M -ultrafilter on Xa derived from i using a.
• fb,a : Xb → Xa is the partial function sending each w ∈ Xb to the unique
u ∈ Xa such that (w, u,∈) ∼= (b, a,∈).

In the context of Definition 2.1, letting 〈Ma, ja,b : a ⊆ b ∈ [λ]<ω〉 be the
associated directed system of ultrapowers associated to E, one can check that
kb,E ◦ ja,b = ka,E . Therefore the universal property of the direct limit supplies a
canonical embedding

kE,i : Ult(M,E)→ N

called factor embedding associated to the derived extender E, given by the for-
mula kE,i([g, a]E) = i(g)(a). By setting g equal to the identity function, one sees
that a lies in the range of kE,i for all a ∈ [λ]<ω. In other words, the critical point
of kE,i, if it exists, is greater than or equal to λ.1 As a consequence, for any
B ∈ Ult(M,E) contained in [Ord]<ω, kE,i(B)∩ [λ]<ω = B∩ [λ]<ω, and therefore
for any A ∈M with A ⊆ [Ord]<ω,

jE(A) ∩ [λ]<ω = kE,i(jE(A)) ∩ [λ]<ω = i(A) ∩ [λ]<ω

as promised. The derived extender ultrapower can be characterized as the min-
imum embedding with this property:

Lemma 2.2. Suppose i : M → N is an elementary embedding and E is the

M -extender of length λ derived from i. Suppose M
j−→ P

k−→ N is a sequence
of embeddings with k ◦ j = i and crit(k) ≥ λ. Then there is a unique elementary
embedding ` : Ult(M,E)→ P with crit(`) ≥ λ such that ` ◦ jE = j. a

Note that if E is the M -extender of length λ derived from some embedding
i : M → N , then in fact E is the M -extender of length λ derived from its own
ultrapower embedding jE : M → Ult(M,E). Therefore, one can kick away the
initial embedding to obtain the notion of an extender simpliciter:

Definition 2.3. Suppose M is a transitive model of set theory. A directed
system of M -ultrafilters E is an M -extender of length λ if E is the M -extender
of length λ derived from its own ultrapower embedding jE : M → Ult(M,E).
An extender is a V -extender.

We will need some basic facts about iterated of extender ultrapowers.

Lemma 2.4. Suppose E is an M -extender and F is an Ult(M,E)-extender.
Then there is an M -extender G such that Ult(M,G) = Ult(Ult(M,E), F ) and
jG = jF ◦ jE.

Sketch. Let λ = length(E) and µ = length(F ). Let G be the extender of
length max{jF (λ), µ} derived from jG. a

Definition 2.5. Suppose M is a transitive model of set theory, E is an M -
extender, and F is an Ult(M,E)-extender. Then E ∗F denotes the M -extender
G of minimum length such that Ult(M,G) = Ult(Ult(M,E), F ) and jG = jF ◦jE .

1Recall that if k : P → Q is an elementary embedding of transitive models of set theory, its
critical point of k is the least ordinal κ such that k(κ) > κ.
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Figure 1. The diagram of a comparison

There is a sort of dual to Lemma 2.4:

Lemma 2.6. Suppose E and G are M -extenders. Then for any elementary
embedding k : Ult(M,E) → Ult(M,G) such that k ◦ jE = jG, there is an
Ult(M,E)-extender F such that Ult(M,E ∗ F ) = Ult(M,G) and jF = k.

Sketch. Let ν = length(G) and let F be the extender of length ν derived
from k. a

§3. Comparison. The fundamental Comparison Lemma of inner model the-
ory roughly states that any pair of canonical models of large cardinal axioms can
be amalgamated into a common model. The notion of a comparison turns out
to be a convenient construct outside the context of fine structure theory.

Definition 3.1. Suppose M is a transitive model of set theory and E and F
are M -extenders. A comparison of (E,F ) is a pair (F ∗, E∗) with the following
properties:

• F ∗ is an Ult(M,E)-extender.
• E∗ is an Ult(M,F )-extender.
• jF∗ ◦ jE = jE∗ ◦ jF .

The comparison (F ∗, E∗) is right-internal if E∗ ∈ Ult(M,F ) and left-internal if
F ∗ ∈ Ult(M,E). A comparison that is simultaneously left-internal and right-
internal is said to be internal.

Remark 3.2. The first bullet-point in the definition of a comparison can be
weakened slightly. Suppose E and F are M -extenders, E∗ is an Ult(M,F )-
extender, and

k : Ult(M,E)→ Ult(M,F ∗ E∗)
is an elementary embedding such that k ◦ jE = jF∗ ◦ jE . Then there is an
Ult(M,E)-extender F ∗ such that k = jF∗ . To see this, let G = E ∗ F ∗, so
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that jG = jF∗ ◦ jE = k ◦ jE . One can then apply Lemma 2.6 to obtain an
Ult(M,E)-extender F ∗ such that jG = jF∗ ◦ jE .

One cannot fail to notice the somewhat strange mirroring convention in the
definition of a comparison, in which (E,F ) is compared by (F ∗, E∗). Heuristi-
cally, we treat E∗ as a copy of E into Ult(M,F ), and jF∗ as an embedding of E
into E∗.

The most important example of a comparison is the shift comparison.

Example 3.3. Suppose E and F are M -extenders and E belongs to M . Then
Ult(M,E) is a definable inner model of M . Let E∗ = jF (E), so E∗ is an
Ult(M,F )-extender that belongs to Ult(M,F ). Then by elementarity, for any
x ∈M ,

jF (jE(x)) = jE∗(jF (x))

In other words, jF ◦ jE = jE∗ ◦ jF . As a consequence, jF restricts to an elemen-
tary embedding k : Ult(M,E) → Ult(M,F ∗ E∗). By Remark 3.2, there is an
Ult(M,E)-extender F ∗ such that jF∗ = k. Therefore jF∗ ◦ jE = jE∗ ◦ jF . This
shows that (E,F ) admits a right-internal comparison.

Definition 3.4. In the context of Example 3.3, the comparison (F ∗, E∗) is
called the shift comparison of (E,F ).

§4. Pointed extenders. In [2], Ketonen introduces a combinatorial gener-
alization of the Mitchell order to countably complete weakly normal ultrafilters
which he proved to be wellfounded. In [1], the author (independently) intro-
duced a generalization of this order to arbitrary countably complete ultrafilters
on ordinals, now called the Ketonen order. This order is again wellfounded, and
the author showed it can be linear.

Here it turns out to be useful to generalize Ketonen order to extenders:

Definition 4.1. A pointed extender is a pair (E,α) such that E is an extender
and α is an ordinal. The Ketonen order on pointed extenders is defined as follows:

• (E,α) <k (F, β) if there is a right-internal comparison (F ∗, E∗) of (E,F )
such that jF∗(α) < jE∗(β).

• (E,α) ≤k (F, β) if there is a right-internal comparison (F ∗, E∗) of (E,F )
such that jF∗(α) ≤ jE∗(β).

• (E,α) =k (F, β) if E ≤k F and F ≤k E.

We do not know whether in general (E,α) ≤k (F, β) if and only if either
(E,α) <k (F, β) or (E,α) =k (F, β). (This is true, however, if E and F have an
internal comparison.) The Ketonen order on ultrafilters embeds into the Ketonen
order on extenders by sending U to (EU , [id]U ), where EU is the extender E of
least length such that Ult(V,E) = Ult(V,U) and jE = jU .

The main result of this section is that the Ketonen order is wellfounded. First
we show it is transitive, which involves a stacking operation on comparisons.

Lemma 4.2. Suppose E,F , and G are M -extenders. Suppose

• (F •, E•) is a comparison of (E,F ).
• (G◦, F ◦) is a comparison of (F,G).
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Figure 2. Stacking comparisons

• (G•, E◦) is a comparison of (E•, G◦).

Then (F • ∗G•, F ◦ ∗ E◦) is a comparison of (E,G).

Proof. The lemma is clear from Figure 2. a

Lemma 4.3. Suppose (E,α) ≤k (F, β) ≤k (G, γ). Then (E,α) ≤k (G, γ), with
strict inequality if (E,α) <k (F, β) or (F, β) <k (G, γ).

Proof. We start by choosing some comparisons:

• Let (F •, E•) witness (E,α) ≤k (F, β).
• Let (G◦, F ◦) witness (F, β) ≤k (G, γ).
• Let (G•, E◦) be the shift comparison of (E•, G◦) (Example 3.3).

By Lemma 4.2, (F • ∗ G•, F ◦ ∗ E◦) is a comparison of (E,G), and clearly it is
right-internal since E◦ and F ◦ belong to their domain models. Finally,

jG•(jF•(α)) ≤ jG•(jE•(β))(1)

= jE◦(jG◦(β))

≤ jE◦(jF◦(γ))(2)

so jG∗(α) ≤ jE∗(α). One has strict inequality if and only if either (1) or (2) is
strict, which one can secure by choosing (F •, E•) to witness (E,α) <k (F, β) or
(G◦, F ◦) to witness (F, β) <k (G, γ). a

The proof of the wellfoundedness of the Ketonen order is a matter of iterating
the stacking construction. The proof is reminiscent of both the proof of the
Dodd-Jensen Lemma from fine structure theory, exposited in [7] and [8], and
also the proof of the wellfoundedness of the Mitchell order on normal ultrafilters.

Theorem 4.4. The Ketonen order on pointed extenders is wellfounded.

Proof. We isolate the main construction of the proof in a claim:

Claim 1. Suppose (E0, α0) >k (E1, α1) >k (E2, α2) >k · · · is a descending
sequence of pointed extenders. Then there is a descending sequence of pointed
extenders (F1, β1) >k (F2, β2) >k (F3, β3) >k · · · and an Ult(V,E0) extender
G ∈ Ult(V,E0) such that F1 = E0 ∗G and jG(α0) > β1.
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Figure 3. A descending sequence self-replicates

Proof. The proof is illustrated by Figure 3.
For each n < ω, let (E∗n+1, E

†
n) be a left-internal comparison of (En, En+1)

witnessing (En, αn) >k (En+1, αn+1). For n < ω, let Fn+1 = En ∗ E∗n+1 and let
βn+1 = jE†n(αn+1). Let G = E∗1 . To prove the claim, it remains to show that

(F1, β1) >k (F2, β2) >k (F3, β3) >k · · ·. For this, let (E∗∗n+2, E
††
n ) be a comparison

of (E†n, E
∗
n+2), which is guaranteed to exist by Example 3.3. Then

jE∗∗n+2
◦ jFn+1 = jE∗∗n+2

◦ jE∗n+1
◦ jEn

= jE∗∗n+2
◦ jE†n ◦ jEn+1

= jE††n ◦ jE∗n+2
◦ jEn+1

= jE††n ◦ jFn+2

so (E∗∗n+2, E
††
n ) is a comparison of (Fn+1, Fn+2). That this comparison witnesses

(Fn+1, βn+1) >k (Fn+2, βn+2) is an easy computation, left to the reader. a

Suppose now that the lemma fails. Let O denote the trivial extender. There
is a minimum ordinal α such that the Ketonen order is illfounded below (O,α),
and we denote this ordinal by α0

0. Let E0
0 = O, and let

(E0
0 , α

0
0) >k (E0

1 , α
0
1) >k (E0

2 , α
0
2) >k · · ·

be a Ketonen descending sequence. Repeatedly applying Claim 1, one obtains,
for each m < ω, pointed extenders

(Emm , α
m
m) >k (Emm+1, α

m
m+1) >k (Emm+2, α

m
m+2) >k · · ·

and an Ult(V,Emm)-extender Gm with Em+1
m+1 = Emm ∗Gm and jGm

(αmm) > αm+1
m+1.

Let H1 be the trivial Ult(V,G0)-extender, and for each integer m ≥ 1, let

Hm+1 = G1 ∗ · · · ∗Gm
Then for all m ≥ 1, Hm is an Ult(V,G0)-extender, and in Ult(V,G0), the com-
parison (Gm, O) witnesses that (Hm, α

m
m) >k (Hm+1, α

m+1
m+1).
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Thus the Ketonen order of Ult(V,G0) is illfounded below (H1, α
1
1) = (O,α1

1).
By the absoluteness of wellfoundedness, Ult(V,G0) satisfies that the Ketonen
order is illfounded below (O,α1

1). By the elementarity of jG0 : V → Ult(V,G0),
however, Ult(V,E0

0) satisfies that jG0
(α0

0) is the least ordinal α such that for some
extender E, the Ketonen order is illfounded below (E,α). But α1

1 < jG0
(α0

0),
and this is a contradiction. a

§5. The internal relation. This section introduces a variant of the Mitchell
order which can be analyzed using the Ketonen order.

Definition 5.1 (Internal relation). Suppose E and F are extenders. Then F
is internal to E, denoted F @ E, if jF � Ult(V,E) is definable over Ult(V,E).

By Remark 3.2, F @ E if and only if every Ult(V,E)-extender derived from
jF � Ult(V,E) belongs to Ult(V,E). In fact, a closer look at this remark
shows that it suffices that the Ult(V,E)-extender of length sup jE [λ] derived
from jF � Ult(V,E) belongs to Ult(V,E), where λ is the length of F . In this
sense, the internal relation looks a lot like the Mitchell order, except that instead
of demanding F ∈ Ult(V,E), one demands that F ∗ ∈ Ult(V,E), where F ∗ is an
Ult(V, F )-extender that serves as a copy of F .

Even if F C E, Ult(V,E) may not contain enough functions to correctly
compute the ultrapower of F . In other words, (jF )Ult(V,E) need not be equal to
jF � Ult(V,E). This raises a question that will become important later.

Definition 5.2. Suppose M is an inner model and F is an extender of length
λ. Let F ∩M denote the M -extender of length λ derived from jF �M .

This notation is motivated by the fact that

Ua,F∩M = Ua,F ∩Ult(V,E)

Under what conditions is jF∩M equal to jF � M? Obviously it suffices that
jUa∩M = jUa

�M for cofinally many a ∈ [λ]<ω, so we first consider the case that
F is a single ultrafilter. The answer then is fairly obvious:

Lemma 5.3. Suppose M is a transitive model of set theory, X ∈M , and U is
an ultrafilter on X. Then jU∩M = jU � M if and only if for every f : X → M ,
there is some g : X →M such that f = g mod U . a

When M is an extender ultrapower, this requirement can be relaxed slightly:

Lemma 5.4. Suppose E is an extender of length λ. Let M = Ult(V,E) and
suppose U is an ultrafilter on a set X in M . Then jU∩M = jU � M if and only
if the following hold:

• For all f : X → λ, there is some g : X → [λ]<ω such that f = g mod U .
• For some h : X → λ in M , h = jE � X mod U .

Proof. By Lemma 5.3, we need only show that the bullet points imply
jU∩M = jU � M . Moreover it suffices to show that for every f : X → M ,
there is a function i ∈M such that f = i mod U .

First pick functions ` : X → M and a : X → [λ]<ω such that for all x ∈ X,
f(x) = [`(x), a(x)]E . Then take g : X → [λ]<ω such that g(x) = a(x) for
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U -almost all x. Then let

i(x) = jE(`)(h(x))(g(x))

Then for U -almost all x, h(x) = jE(x) and g(x) = a(x), so

i(x) = jE(`)(jE(x))(a(x)) = jE(`(x))(a(x)) = [`(x), a(x)]E

as desired. a

We now turn to the wellfoundedness properties of the internal relation. The
internal relation is not wellfounded. Obviously the trivial extender is internal
to itself, but more interestingly, there can be mutually internal extenders. For
example, in the fairly common situation that E and F are extenders, κ is a
cardinal, E ∈ Vκ, crit(F ) ≥ κ, and Ult(V, F ) is closed under κ-sequences, one
has E @ F (obviously) and F @ E (nontrivially).

Definition 5.5. Suppose E is an extender. A limit ordinal δ is a discontinuity
point of E if jE(δ) > sup jE [δ].

Proposition 5.6. Suppose δ is an ordinal, E and F are extenders, F is δ-
discontinuous, and F @ E. Then (F, sup jF [δ]) <k (E, sup jE [δ]).

Proof. Let (F ∗, E∗) be the shift comparison of (E,F ), so E∗ = jF (E)
and jF∗ = jF � Ult(V,E). Since F @ E, the shift comparison is internal. It
therefore suffices to show that jE∗(sup jF [δ]) < jF∗(sup jE [δ]). Notice, however,
that jF∗(sup jE [δ]) = jF (sup jE [δ]) = sup jE∗ [jF (δ)]. Since sup jF [δ] < jF (δ),
jE∗(sup jF [δ]) is strictly less that sup jE∗ [jF (δ)]. a

Proposition 5.6 has the following consequence:

Theorem 5.7. If E @ F and F @ E, then E and F have no common discon-
tinuity points.

Proof. Assume towards a contradiction that δ is a common discontinuity
point of E and F . By Theorem 5.6,

(E, sup jE [δ]) >k (F, sup jF [δ]) >k (E, sup jE [δ]) >k · · ·
contradicting the wellfoundedness of the Ketonen order (Theorem 4.4). a

More generally:

Theorem 5.8. The internal relation is wellfounded on any set of extenders
with a common discontinuity point. a

§6. Steel’s conjecture. In this section, we apply Theorem 5.8 to prove
Steel’s conjecture. First, recall the relevant definitions:

Definition 6.1 (Mitchell order). If E and F are extenders, then E C F if
E ∈ Ult(V, F ).

Definition 6.2. Suppose λ is an ordinal. A nontrivial extender E of length
λ is a λ-extender if jE(Vλ) = Vλ.

In the context of ZFC, the structure of λ-extenders is highly constrained by
the Kunen inconsistency theorem.
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Theorem 6.3 (Kunen [3]). Suppose that j : V →M is an elementary embed-
ding. Then for any ordinal δ ≥ crit(j), j(Vδ+1) 6= Vδ+1. a

The proof of Steel’s conjecture requires two consequences of Kunen’s theorem:

Lemma 6.4. Suppose λ is an ordinal and E is a λ-extender. Then for any
ordinal δ such that crit(jE) ≤ δ < λ, jE(δ) > δ. Therefore if δ is regular, then δ
is a discontinuity point of jE.

Proof. First, one cannot have jE(δ) = δ, since otherwise jE(Vδ+1) = Vδ+1

(because δ + 1 ≤ λ), contradicting Theorem 6.3. Second, if δ is regular, then
jE(δ) is regular and in Ult(V,E). Since jE(δ) < jE(λ) = λ, P (jE(δ)) ⊆ Vλ ⊆
Ult(V,E), and therefore jE(δ) is regular in V . Since jE(δ) > δ, the set jE [δ]
cannot be cofinal in jE(δ). Therefore jE(δ) > sup jE [δ], as desired. a

Lemma 6.5. If there is a λ-extender, then λ is a limit cardinal of countable
cofinality.

Proof. Let E be a λ-extender. Let κ0 = crit(jE) and for n < ω, let κn+1 =
jE(κn). An obvious induction shows that for all n < ω, κn < λ and κn is
a cardinal. Let δ = supn<ω κn. By elementarity, jE(δ) = supn<ω κn+1 = δ.
Therefore by Lemma 6.4, δ ≥ λ, so δ = λ. In other words, λ = supn<ω κn, which
implies the lemma. a

In the context of λ-extenders, the Mitchell order and the internal relation
coincide.

Lemma 6.6. Suppose E and F are λ-extenders and F C E. Then F @ E,
and in fact, (jF )Ult(V,E) = jF � Ult(V,E).

Proof. Let M = Ult(V,E). It suffices to show that for all a ∈ [λ]<ω,
jUa,F∩M = jUa,F

� M . Note that Ua,F is an ultrafilter on a set in Vλ, so it
will be enough to show the following: for any countably complete ultrafilter U
on a set X ∈ Vλ, jU∩M = jU �M .

For this, we verify the conditions of Lemma 5.4. First, we check that for all
f : X → [λ]<ω, there is some g ∈M such that f = g mod U . Since λ is singular,
it is not necessarily the case that f ∈ Vλ. Recall, however, that λ has countable
cofinality (Lemma 6.5), and fix a countable set {κn}n<ω cofinal in λ. For every
n, let An = {x ∈ X : f(x) ∈ [κn]<ω}. Since

⋃
n<ω = X and U is countably

complete, there is some n < ω such that An ∈ U . Therefore f � An ∈ Vλ. Let
g = f � An. Then g ∈ M and g = f mod U . Finally, we check that there is
a function h ∈ M such that h = jE � X mod U . In fact, since jE(Vλ) = Vλ,
jE � X ∈ Vλ, and therefore jE � X ∈M . a

This yields Steel’s conjecture:

Theorem 6.7. Suppose λ is an ordinal and E0 B E1 B E2 B · · · is a descend-
ing sequence of λ-extenders. Then supn<ω crit(jEn) = λ

Proof. Suppose not. Let δ = (supn<ω crit(jEn
))+. Since λ is a limit cardinal,

δ < λ. For each n, since crit(jEn
) ≤ δ < λ and δ is regular, δ is a discontinuity

point of En. By Lemma 6.6, E0 A E1 A E2 A · · ·. The existence of an internally
descending sequence of extenders with a common discontinuity point contradicts
Theorem 5.8. a
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Corollary 6.8. Suppose δ < λ are cardinals. Then the Mitchell order is
wellfounded on the set of λ-extenders with critical point less than δ. a
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