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Abstract

Kunen refuted the existence of an elementary embedding from the universe of sets
to itself assuming the Axiom of Choice. This paper concerns the ramifications of this
hypothesis when the Axiom of Choice is not assumed. For example, the existence of
such an embedding implies that there is a proper class of cardinals λ such that λ+ is
measurable.

1 Introduction

1.1 The Kunen inconsistency

One of the most influential ideas in the history of large cardinals is Scott’s reformulation of
measurability in terms of elementary embeddings [7]: the existence of a measurable cardinal
is equivalent to the existence of a nontrivial elementary embedding from the universe of sets
V into a transitive submodel M . In the late 1960s, Solovay and Reinhardt realized that by
imposing stronger and stronger closure constraints on the model M , one obtains stronger
and stronger large cardinal axioms, an insight which rapidly led to the discovery of most of
the modern large cardinal hierarchy. Around this time, Reinhardt formulated the ultimate
large cardinal principle of this kind: there is an elementary embedding from the universe of
sets to itself.1 Soon after, however, Kunen [5] showed that this principle is inconsistent:

Theorem (Kunen). There is no elementary embedding from the universe of sets to itself.

Kunen’s proof relies heavily on the Axiom of Choice, however, and the question of
whether this is necessary immediate arose.2 Decades later, Woodin returned to this question
and discovered that although the traditional large cardinal hierarchy stops short at Kunen’s
bound, there lies beyond it a further realm of large cardinal axioms incompatible with
the Axiom of Choice, axioms so absurdly strong that Reinhardt’s so-called ultimate axiom
appears tame by comparison. Yet since their discovery, despite significant efforts of many
researchers, no one has managed to prove the inconsistency of a single one of these choiceless
large cardinal axioms. “The difficulty,” according to Woodin [9], “is that without the Axiom
of Choice it is extraordinarily difficult to prove anything about sets.”

One remedy to this difficulty, proposed by Woodin himself [8, Theorem 227], is to sim-
ulate the Axiom of Choice using auxiliary large cardinal hypotheses, especially extendible

1Of course, the identity is such an elementary embedding. Whenever we write “elementary embedding,”
we will really mean “nontrivial elementary embedding.”

2The question was first raised by the anonymous referee of Kunen’s paper.
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cardinals. Cutolo [2] expanded on this idea to establish the striking result that the succes-
sor of a singular Berkeley limit of extendible cardinals is measurable. While the strength of
Cutolo’s large cardinal hypothesis far surpasses that of Reinhardt’s ultimate axiom, Asperó
[1] showed that a Reinhardt cardinal alone implies the existence of cardinals that resemble
extendible cardinals. Combining Woodin, Cutolo, and Asperó’s ideas, we show here that
one can simulate the Axiom of Choice using large cardinal axioms that can be derived from
Reinhardt’s principle. This allows us to establish some vast generalizations of Cutolo’s re-
sults. We are optimistic that these ideas will bring clarity to the question of the consistency
of the choiceless hierarchy.

1.2 Main results

Gitik showed that it is consistent with ZF that there are no regular uncountable cardinals.
On the other hand, if there is an elementary embedding j from the universe of sets to
itself, its critical point κ is measurable and hence regular.3 By elementarity, the cardinals
κ1(j) = j(κ), κ2(j) = j(j(κ)), κ3(j) = j(j(j(κ))), and so on are all regular as well. Asperó
asked whether there must be any regular cardinals larger than their supremum κω(j) =
supn<ω κn(j). The first theorem of this paper answers his question positively:

Theorem 2.16. Suppose there is an elementary embedding from the universe of sets to
itself. Then there is a proper class of regular cardinals.

This theorem is a consequence of the wellordered collection lemma, a weak choice prin-
ciple that we show follows from choiceless cardinals:

Theorem 2.20. Suppose there is an elementary embedding from the universe of sets to
itself. For every cardinal κ, there is a set I such for any sequence 〈Aα : α < κ〉 of nonempty
sets, there is a set σ = {ai : i ∈ I} such that Aα ∩ σ 6= ∅ for all α < κ.

Having answered Asperó’s question, it is natural to wonder whether an Reinhardt’s
principle in fact implies the existence a proper class of measurable cardinals. Given Cutolo’s
result, one would also like to know whether any of these measurable cardinals are successor
cardinals.

Theorem 3.14. Suppose there is an elementary embedding from the universe of sets to
itself. Then for a closed unbounded class of cardinals κ, either κ or κ+ is measurable.

In particular, for every regular cardinal γ, there are arbitrarily large cardinals λ of
cofinality γ such that λ+ is measurable.

There is really only one other principle that is known to imply the existence of measurable
successor cardinals: the Axiom of Determinacy (AD). Famously, Solovay showed that under
AD, ℵ1 is measurable. Moreover, there is a unique normal ultrafilter on ℵ1: the closed
unbounded filter. Later, Martin showed that ℵ2 is measurable, and finally Kunen showed:

Theorem (Kunen). δ1
n is measurable for all n < ω.

All the projective ordinals are successor cardinals by results of Kechris, Kunen, and
Martin. In each case, the ω-closed unbounded filter is a normal ultrafilter.

3The critical point of j : V → M , denoted crit(j), is the least ordinal α such that j(α) > α. Scott [7]
showed that crit(j) is measurable.
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This raises the question of whether the structure of measures on ordinals assuming
choiceless large cardinal axioms is analogous to their structure assuming AD. An easy forc-
ing argument shows that it is consistent with choiceless axioms that for all cardinals δ of
uncountable cofinality, the ω-closed unbounded filter is not an ultrafilter, so we must temper
our aspirations accordingly. If F is a filter, a set S is an atom of F if F ∪ {S} generates an
ultrafilter. A filter F is atomic if every F -positive set contains an atom.

Theorem 3.12. Suppose there is an elementary embedding from the universe of sets to
itself. Then for all sufficiently large regular cardinals δ, the closed unbounded filter on δ is
atomic.

One might hope to establish in this way that all sufficiently large regular cardinals are
measurable. What is missing is a proof that the closed unbounded filter on δ is δ-complete.
Instead, one can only show:

Theorem 3.3. Suppose there is an elementary embedding from the universe of sets to itself.
Then for all cardinals κ, for all sufficiently large regular cardinals δ, the closed unbounded
filter on δ is κ-complete.

In a sense, the previous two theorems are stronger than what is known to follow from
AD. Assuming AD+, a theorem of Steel and Woodin shows that every regular cardinal less
than Θ is measurable, but it is open, for example, whether the ω1-club filter on a regular
cardinal greater than ω1 must be an ultrafilter, or even just an atomic filter.

The rest of this paper is centered around an order on ultrafilters known as the Ketonen
order, whose tortuous history we now describe. The discovery of the Ketonen order was
precipitated by Kunen’s construction of a normal ultrafilter that concentrates on nonmea-
surable cardinals. Ketonen, then completing his dissertation under Kunen, realized that
implicit in this proof was a natural order on weakly normal ultrafilters. He and Kunen
collaborated to prove the wellfoundedness of this order, which Ketonen needed to answer a
question posed by Kunen.4 The next year, also inspired by Kunen’s construction, Mitchell
[6] independently discovered Ketonen’s order, or rather its restriction to normal ultrafilters.
Mitchell proved that this order is linear in canonical inner models of large cardinal axioms.
Since then, the Mitchell order has become a fundamental object of study in large cardinal
theory.

Ketonen’s order, on the other hand, was forgotten completely until almost half a century
later, the author independently discovered a generalization of his order to all countably
complete ultrafilters on ordinals: if U and W are countably complete ultrafilters on ordinals,
set U <k W if there is a sequence ultrafilters Uα on α, defined for W -almost all ordinals
α, such that A ∈ U if and only if A ∩ α ∈ Uα for W -almost all α. Like Ketonen’s original
order, <k is wellfounded, although this requires an argument that is completely different
from Ketonen and Kunen’s. Like the Mitchell order, <k is linear in all known canonical
inner models of large cardinal axioms, although again the proof of this is completely different
from Mitchell’s.

The order <k is now known as the Ketonen order. In the context of the Axiom of Choice,
the linearity of the Ketonen order is equivalent to the Ultrapower Axiom [3], a principle
with many consequences in large cardinal theory, but in this paper, we will apply linearity
properties of the Ketonen order to the theory of choiceless cardinals. The key phenomenon
is that choiceless cardinals imply that the Ketonen order is almost linear:

4If every regular cardinal above κ carries a κ-complete uniform ultrafilter, then κ is strongly compact.
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Theorem 4.7. Suppose there is an elementary embedding j from the universe of sets to
itself. Then for some cardinal κ, any set of Ketonen incomparable κ-complete ultrafilters
has cardinality at most κω(j).

In other words, choiceless large cardinal axioms almost imply the Ultrapower Axiom.
One cannot hope to prove such a theorem from traditional large cardinal axioms. It is open
whether something analogous follows from the Axiom of Determinacy

This linearity phenomenon is a component of the proof of one of the main theorems of
this paper. In the context of ZFC, an uncountable cardinal κ is said to be strongly compact
if every κ-complete filter extends to a κ-complete ultrafilter. Kunen realized, however, that
this filter extension property occurs in nature:

Theorem (Kunen). Assume AD + DCR. If β is an ordinal that can be enumerated as
{αx : x ∈ R} then every countably complete filter on β extends to a countably complete
ultrafilter.

In order to prove a version of Kunen’s theorem from choiceless large cardinal axioms, we
extend the Ketonen order to a wellfounded partial order on filters. We then prove the filter
extension property by induction on this order.

Theorem 4.9. Assume there is an elementary embedding from the universe of sets to itself.
Then for a closed unbounded class of cardinals κ, every κ-complete filter on an ordinal
extends to a κ-complete ultrafilter.

The semi-linearity of the Ketonen order on ultrafilters ends up being used here to avoid
using certain properties of filters that require the Axiom of Choice.

2 Choicelike consequences of choiceless axioms

2.1 Notation

We write |X| ≤ |Y | to mean that there is an injection from X to Y and |X| ≤∗ |Y | to mean
that there is a partial surjection from Y to X. The Scott rank of X, denoted by scott(X),
is the least ordinal α such that there is an injection from X to Vα, while |X| denotes the
family of sets of rank scott(X) that are in bijection with X. The dual Scott rank of X,
denoted by scott∗(X), is the least ordinal α such that there is a partial surjection from Vα
to X.

2.2 Almost extendibility and supercompactness

A cardinal λ is rank Berkeley if for all α < λ ≤ β, there is an elementary embedding
j : Vβ → Vβ with α < crit(j) < λ. First introduced by Schlutzenberg, rank Berkeley
cardinals are a weakening of Reinhardt cardinals that have the advantage of being first-
order. This enables us to work in ZF rather than a class theory like NBG, and this is how
we proceed for the rest of the paper.

Although the relationship between Reinhardt cardinals and rank Berkeley cardinals is
not entirely understood, a folklore argument shows that above every Reinhardt cardinal lies
a rank Berkeley cardinal. If j : M → N is a nontrivial elementary embedding between
transitive models of set thery, the critical sequence 〈κn : n ≤ ω〉 of j is defined by recursion,
setting κ0 = crit(j), and for n < ω, κn+1 = j(κn). Finally, we set κω = supn<ω κn. Of
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course, κ0 will be undefined if j has no critical point, and κn+1 will be undefined if κn /∈M .
If κn is defined, we denote it by κn(j).

Proposition 2.1 (NBG). If j : V → V is a nontrivial elementary embedding, then κω(j)
is rank Berkeley.

Proof. Let λ = κω(j). Assume the proposition fails, and consider the least α such that there
is no elementary k : Vα → Vα such that κω(k) = λ. Then α is definable from λ, and hence
j(α) = α. But the embedding k = j � Vα contradicts the definition of α.

The rest of this section deduces the existence of many pseudo-extendible and pseudo-
supercompact cardinals from the existence of a rank Berkeley cardinal. This is similar to
work of Asperó [1].

Proposition 2.2. Suppose α is a limit ordinal and j : Vα → Vα is elementary. Suppose
S is a subset of Vα consisting of structures in a fixed finite signature, j(S) = S,5 and
θ(S) ≥ κω(j). Then there exist distinct M0 and M1 in S such that M0 elementarily embeds
into M1.

Proof. Suppose not. Let κ = crit(j) and let λ = κω(j). For β < α, let Sβ = S ∩ Vβ . We
claim that for some β < α, θ(Sβ) > crit(j). Let f : S → κ be a surjection. For each β < α,
let ξβ = ot(f [Sβ ]). Then supβ<α ξβ = κ. Since j extends to a Σ0-elementary embedding
from Vα+1 to Vα+1, cf(α) 6= κ, and hence ξβ = κ for some β < α.

Fix β such that θ(Sβ) > κ. Let g : Sβ → κ be a surjection. Note that j(g) is a surjection
from j(Sβ) to j(κ), while j(g)(j(M)) = j(g(M)) = g(M) < κ for all M ∈ Sβ . It follows that
there is some M0 ∈ j(Sβ) such that M0 /∈ j[Sβ ]. As a consequence, letting M1 = j(M0), we
have M0 6= M1. Moreover, j restricts to an elementary embedding from M0 to M1.

The lightface Vopěnka principle states that for all parameter-free definable classes S of
structures in a fixed finite signature, there exist distinct structures M0 and M1 in S such
that M0 elementarily embeds into M1.

Corollary 2.3. If λ is rank Berkeley, then for any ordinal definable set of structures S in
a finite signature such that θ(S) ≥ λ, there exist distinct structures M0 and M1 in S such
that M0 elementarily embeds into M1. As a consequence, the lightface Vopěnka principle
holds.

A cardinal η is (γ,∞)-extendible if for all ν > η, there is an elementary embedding
π : Vν → Vν′ such that π(η) > ν and π(γ) = γ.

Lemma 2.4. Assume the lightface Vopěnka principle. Then for all ordinals γ, there is a
(γ,∞)-extendible cardinal.

Proof. Assume not. Define a continuous sequence of ordinals 〈ηξ : ξ ∈ Ord〉 by transfinite
recursion, letting ηξ+1 be the least ordinal ν > ηξ such that there is no π : Vν → Vν′

such that π(ηξ) ≥ ν. Let S be the class of structures Mξ = (Vηξ+1
, ηξ, γ). Applying the

lightface Vopěnka principle to the ordinal definable class S, we obtain ordinals ξ0 < ξ1
and an elementary embedding π : Mξ0 → Mξ1 . This means π : Vηξ0+1

→ Vηξ1+1
is

elementary, π(ηξ0) = ηξ1 , and π(γ) = γ. This contradicts the definition of ηξ0+1 since
π(ηξ0) = ηξ1 ≥ ηξ0+1.

5More formally, we mean that
⋃

x∈Vβ
j(S ∩ x) = S.
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A cardinal η is almost extendible if it is (γ,∞)-extendible for all γ < η.

Corollary 2.5. Assume the lightface Vopěnka principle. Then there is a club class of almost
extendible cardinals.

A cardinal η is (γ,∞)-supercompact if for all ν > η, for some ν̄ < η, there is an elementary
embedding π : Vν̄ → Vν such that π(γ) = γ. A cardinal η is almost supercompact if it is
(γ,∞)-supercompact for all γ < η.

Lemma 2.6. Any almost extendible cardinal is a limit of almost supercompact cardinals.

For one of our applications (the filter extension property, proved in Section 4), we require
a slight strengthening of these notions. A cardinal λ is X-closed rank Berkeley if for all
γ < λ < α, there is an elementary embedding j : Vα → Vα such that γ < crit(j) < λ and
j(X) = j[X]. If κ is a cardinal and X ∈ Vκ, then κ is X-closed almost extendible if for
all γ < κ < α there is an elementary embedding j : Vα → Vα′ such that j(γ) = γ and
j(X) = j[X].

Theorem 2.7. For any cardinal λ, for a club class of κ, κ is X-closed almost extendible
for every X such that λ is X-closed rank Berkeley.

The proofs above easily yield the following proposition:

Proposition 2.8. If there is an X-closed rank Berkeley cardinal, then there is a club class
of X-closed almost extendible cardinals.

Theorem 2.7 is a trivial consequence of Proposition 2.8 once one realizes that there is
essentially just a set of X such that λ is X-closed almost extendible. We will use the
following lemma, which will also be important later.

Lemma 2.9. Suppose j : Vα → Vα is an elementary embedding, κ is almost supercompact,
and cf(κ) ≥ crit(j). Suppose A ∈ Vα is a set such that j(A) = j[A]. Then there is an
injection from A into Vβ for some β < κ.

Proof. Let S be the set of Scott ranks of subsets of A. Then j(S) = S since A and j(A)
are in bijection. Moreover for all ν ∈ S, j(ν) = ν since for all B ⊆ A, j(B) = j[B]. Hence
|S| < crit(j).

Let ξ = sup(S ∩ κ), and note that ξ < κ since cf(κ) ≥ crit(j).
Let π : Vᾱ → Vα such that ξ < ᾱ < κ, A ∈ ran(π), and π(ξ) = ξ. Let Ā = π−1(A) and

let ν be the Scott rank of Ā. Since π[Ā] ⊆ A, ν ∈ S. Therefore ν ∈ S ∩ κ, which implies
that ν < ξ, and hence π(ν) < π(ξ) = ξ < κ. This completes the proof, noting that π(ν) is
the Scott rank of A.

Proof of Theorem 2.7. We may assume that λ is rank Berkeley, since otherwise the theorem
is vacuous. Applying Corollary 2.5 and Lemma 2.6, for each regular γ, let ργ be the least
almost supercompact cardinal of cofinality γ, and let ρ = sup{ργ : γ ∈ Reg ∩ λ}.

Let Γ denote the class of X such that λ is X-closed rank Berkeley. By Lemma 2.9, for
each X ∈ Γ, there is some Y ∈ Vρ such that |X| ≤ |Y |. If |X| ≤ |Y | and κ is Y -closed almost
extendible, then κ is X-closed almost extendible, so it suffices to show that there is some κ
that is Y -closed almost extendible for all Y ∈ Γ ∩ Vρ. This is an immediate consequence of
Proposition 2.8 and the closure of club classes under set-sized intersections.
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2.3 Regular cardinals

Definition 2.10. If Γ is family of sets, then δ(Γ) denotes the supremum of the ranks of all
prewellorders in Γ.

Proposition 2.11. Suppose Γ is a set such that there is a γ-descendingly closed fine filter
F on P (Γ) that concentrates on σ ⊆ Γ such that δ(σ) < δ(Γ). Then cf(δ(Γ)) 6= γ.

Proof. Let f : γ → δ(Γ) be an increasing function. We will show that f [γ] is bounded below
δ(Γ). For α < γ, let Aα denote the set of all σ ∈ Y such that rank(E) ≥ f(α) for some
E ∈ σ. Notice that Aα ⊆ Aβ for β ≤ α and by fineness, Aα ∈ F . Since F is γ-descendingly
closed, A =

⋂
α<γ Aα ∈ F ; note that A is the set of σ ⊆ Γ such that δ(σ) ≥ sup f [γ]. By

our assumptions on F , any F -large set contains some σ such that δ(σ) < δ(Γ), so we may
fix such a σ belongs to A. Now sup f [γ] ≤ δ(σ) < δ(Γ), so f [γ] is bounded below δ(Γ), as
desired.

Let θ(X) = δ(P (X × X)). Note that θ(X) is the least ordinal that is the surjective
image of a subset of X, which is also known as the Lindenbaum number of X.

Corollary 2.12. Suppose that γ ≤ η are cardinals, X is a set such that η ≤∗ X×X ≤∗ X,
and there is a γ-descendingly closed fine filter on P (P (X)) that concentrates on the set of
σ ⊆ P (X) such that θ(σ) < η. Then cf(θ(X)) 6= γ.

Proof. Let Γ = P (X × X). We will show that for all σ ⊆ P (X) such that θ(σ) < η,
supE∈σ rank(E) < θ(X). Then Proposition 2.11 implies the desired conclusion.

Fix σ ⊆ P (X) such that θ(σ) < η, and let ρ = supE∈σ rank(E). For each x ∈ X, let
gx : σ → ρ be defined by gx(E) = rankE(x). Let Ax = gx[σ] and let fx : αx → Ax be the
increasing enumeration of Ax. Since Ax is the surjective image of σ, αx < θ(σ) = η < θ(X).
Let g : X → θ(σ) be a surjection. Then define a partial surjection F : X×X → ρ by setting
F (x, y) = fx(g(y)) whenever g(y) < αx. It follows that ρ < θ(X), as claimed.

A standard argument shows that if η is almost supercompact, then for all γ < η and all
sets X, there is a γ-descendingly closed normal fine ultrafilter on P (P (X)) that concentrates
on the set of σ ⊆ P (X) such that θ(σ) < η.

Corollary 2.13. If η is almost supercompact and X is a set such that η ≤∗ X ×X ≤∗ X,
then cf(θ(X)) ≥ η.

Corollary 2.14. If η is almost supercompact, then every successor cardinal greater than or
equal to η has cofinality at least η.

Corollary 2.15. Assume there is an almost extendible cardinal. Then there is a proper
class of regular cardinals. In particular, if there is a rank Berkeley cardinal, there is a
proper class of regular cardinals.

Theorem 2.16. Assume there is a rank Berkeley cardinal. Then there is a proper class of
regular cardinals.
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2.4 The wellordered collection lemma

Theorem 2.17. Suppose X is a set and Λ is a family of subsets of X such that for all
γ ≤ β, there is a γ-descendingly closed fine filter on P (Λ) concentrating on the set of σ ⊆ Λ
such that

⋃
σ ∈ Λ. Then for any sequence 〈Sξ : ξ < β〉 of nonempty subsets of X, there is

some τ ∈ Λ such that Sξ ∩ τ 6= ∅ for all ξ < β.

Proof. By induction, assume the theorem is true for all α < β. We may assume that β is a
limit ordinal. Let F be a β-descendingly closed fine filter on P (Λ) concentrating on σ ⊆ Λ
such that

⋃
σ ∈ Λ. Let Tα denote the set of τ ∈ Λ such that Sξ ∩ τ 6= ∅ for all ξ < α. Let

Bα ⊆ P (Λ) be the set of σ ⊆ Λ such that Tα ∩ σ 6= ∅. Note that the sequence 〈Bα : α < β〉
is descending (since 〈Tα : α < β〉 is), and by fineness and our induction hypothesis, Bα ∈ F
for all α < β. Therefore B =

⋂
α<β Bα belongs to F since F is β-descendingly closed. Fix

σ ∈ B such that
⋃
σ ∈ Λ. Then τ =

⋃
σ is as desired.

Corollary 2.18 (Wellordered collection lemma). Suppose β ≤ η are ordinals such that η is
(γ,∞)-supercompact for all regular γ ≤ β. Then for any sequence 〈Sξ : ξ < β〉 of nonempty
sets, there is a set τ such that scott∗(τ) ≤ η and Sξ ∩ τ 6= ∅ for all ξ < β. If η is regular,
one can find such a τ with scott(τ) < η.

Proof. Let X =
⋃
ξ<β Sξ. Let Λ be the set of τ ⊆ X such that scott∗(τ) ≤ η. Fix a regular

cardinal γ ≤ β, and we will show that there is a γ-descendingly closed normal fine ultrafilter
on P (Λ) concentrating on σ ⊆ Λ such that

⋃
σ ∈ Λ. Applying Theorem 2.17 then yields

the first part of the theorem, and the second part is similar.
Since η is (γ,∞)-supercompact, there is an elementary embedding π : Vν̄ → Vν with

ν̄ < η, π(γ) = γ, and P (Λ) ∈ ran(π). Let Λ̄ = π−1(Λ), let Ū be the normal fine ultrafilter
on P (Λ̄) derived from π using π[Λ̄]. We claim that Ū concentrates on σ such that

⋃
σ ∈ Λ̄.

To see this, it suffices to show that
⋃
j[Λ̄] ∈ Λ. Define a partial function F : Vν̄ × Vη → X

by setting F (g, x) = π(g)(x) if g is a function and x ∈ dom(π(g)). Then
⋃
j[Λ̄] ⊆ ran(F ),

which shows that scott∗(
⋃
j[Λ̄]) ≤ η. Finally let U = π(Ū). Then U is a γ-descendingly

closed normal fine ultrafilter on P (Λ) concentrating on σ ⊆ Λ such that
⋃
σ ∈ Λ.

Proposition 2.19. Suppose κ is almost extendible. Then for any β < κ, for any sequence
〈Sξ : ξ < β〉, there is a set σ with scott(σ) < κ such that Sξ ∩ σ 6= ∅ for all ξ < β.

Proof. This follows from the fact that almost extendible cardinals are limits of almost su-
percompact cardinals (Lemma 2.6). Note here that if |X| ≤∗ |Y | then |X| ≤ |P (Y )|.

Theorem 2.20. Suppose there is a rank Berkeley cardinal. For every cardinal κ, there is
a set I such for any sequence 〈Aα : α < κ〉 of nonempty sets, there is a set σ = {ai : i ∈ I}
such that Aα ∩ σ 6= ∅ for all α < κ.

3 Filters, saturation, and atoms

3.1 Terminology

A filter base is a family of nonempty sets B with the finite intersection property. If X is a
set, a filter base B is X-closed if for any 〈Ax : x ∈ X〉 ⊆ B, there is some A ∈ B such that
A ⊆

⋂
x∈X Ax. If Y is a family of sets, B is Y -complete if it is X-closed for all X ∈ Y . A
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filter base F is a filter if it is closed upwards under inclusion. The filter generated by a filter
base B is the family of sets that contain some element of B.

If F is a filter on X, a set A is F -null if X \A belongs to F . The dual ideal of F , denoted
by F ∗, is the set of A ⊆ X such that X \ A ∈ F . A set S is F -positive if S ∩ A 6= ∅ for all
A ∈ F , or equivalently, if S is not F -null. The set of F -positive subsets of X is denoted by
F+. If F is a filter and S ∈ F+, F � S denotes the filter generated by F ∪ {S}.

3.2 Filter bases

A filter base is a family of nonempty sets B such that for any two sets in B, there is a third
set in B contained in their intersection. If X is a set, a filter base B is X-closed if for any
〈Ax : x ∈ X〉 ⊆ B, there is some A ∈ B such that A ⊆

⋂
x∈X Ax. If Y is a family of sets, B

is Y -complete if it is X-closed for all X ∈ Y . The filter generated by a filter base B is the
family of sets that contain some element of B.

The following theorem on the completeness of the filter generated by a filter base is
almost a restatement of Theorem 2.17.

Theorem 3.1. Suppose B is a filter base on a set X and β is an ordinal such that for all
regular γ ≤ β, there is a γ-descendingly closed fine filter on P (B) concentrating on the set
of σ ⊆ B such that

⋂
σ ∈ B. Then the filter generated by B is β-closed.

The following consequence of supercompactness bears a similar relationship to Corol-
lary 2.18.

Theorem 3.2. Suppose β < η are ordinals such that η is (γ,∞)-supercompact for all regular
γ ≤ β. Then any Vη-complete filter base generates a β-closed filter.

Theorem 3.3. Suppose η is almost supercompact. Then for all ordinals δ of cofinality at
least η, the club filter on δ is η-complete.

Proof. By Theorem 3.2, it suffices to show that the set of club subsets of δ is a Vη-complete
filter base. The proof of this fact is familiar from the standard theory of clubs. Suppose
X ∈ Vη and 〈Cx : x ∈ X〉 is a sequence of club subsets of δ. The set

⋂
x∈X Cx is clearly

closed, so it suffices to show it is unbounded.
Fix α0 < δ, and we will exhibit an ordinal αω > α0 that belongs to

⋂
x∈X Cx. For n < ω

and x ∈ X, let αn+1(x) be the least element of Cx above αn, and let αn+1 = supx∈X αn+1(x).
Since cf(δ) ≥ η > θ(X), αn is defined for all n < ω. Let αω = supn<ω αn. Then αω is a
limit point of Cx for all x ∈ X, and therefore αω ∈

⋂
x∈X Cx.

3.3 Wellfounded filters

A filter F on a set X is γ-wellfounded if the reduced product O = γX/F is wellfounded. We
say that F is wellfounded if it is γ-wellfounded for all ordinals γ. If F is a γ-wellfounded filter
on X and 〈Px : x ∈ X〉 is a sequence of wellfounded structures of rank at most γ, then the
reduced product P =

∏
x∈X Px/F is again wellfounded. Indeed, define o :

∏
x∈X Px → γX

by setting o(f)(x) = rankPx(f(x)). Then o descends to an order-preserving function from P
to O, which easily implies that P is wellfounded.

A set A ⊆ P (X) lies below a set B ⊆ P (Y ) in the Katětov order, denoted A ≤kat B, if
there is a function f : Y → X such that for all S ∈ A, f−1[S] ∈ B. If F ≤kat G where G is
a γ-wellfounded filter, then F is a γ-wellfounded filter as well.

9



The following universality fact for fine filters, due to Kunen, allows us to conclude that
under large cardinal hypotheses all sufficiently complete filters are wellfounded. If B is a
filter base on X and σ is a subset of P (X), let AB(σ) =

⋂
A∈B∩σ A. If X is wellordered,

define a partial funcion χB : P (P (X))→ X by χB(σ) = min(AB(σ))).

Theorem 3.4 (Kunen). Assume δ is an ordinal, B is a filter base on δ, and W is a filter
on P (P (δ)) concentrating on the set Γ of all σ such that

⋂
(B ∩ σ) 6= ∅. Then B lies below

W in the Katětov order.

Proof. Note that χB is defined on the W-large set Γ, and for all A ∈ B, χ−1
B [A] ∈ W since

W is fine and {σ ∈ P (P (δ)) : A ∈ σ} ⊆ χ−1
B [A].

The following lemma on the completeness of filters on ordinals is useful to keep in mind.

Lemma 3.5. Suppose κ is an ordinal, X is a set, and there is no κ-sequence of distinct
subsets of X. If F is a κ-complete filter on an ordinal δ, then F is X-closed.

Proof. Suppose 〈Sx : x ∈ X〉 is a sequence of sets that
⋃
x∈X Sx is F -positive, and we will

show that Sx is F -positive for some x.
Let S =

⋃
x∈X Sx. For each α ∈ S, Dα = {x ∈ X : α ∈ Sx}. Then {Dα : α < δ} is a

wellorderable family of subsets of X, and hence it has cardinality less than κ.
Let Aα =

⋂
f [Dα]. Then |{Aα : α ∈ S}| < κ and

⋃
α∈S Aα = S since α ∈ Aα. into

fewer than κ-many sets, and so since F is κ-complete there is some α ∈ S such that Aα is
F -positive. Fix x ∈ X such that α ∈ Sx, and note that Aα ⊆ Sx, and hence Sx is F -positive,
as desired.

A filter F is weakly x-closed if the intersection of an x-indexed family of sets in F is
F -positive, and weakly X-complete if it is x-closed for all x ∈ X. In the context of ZFC, if
κ is an infinite cardinal and F is a weakly κ-closed filter, then {

⋂
σ : σ ∈ [F ]κ} generates a

κ-closed filter, but this is not clear in ZF.

Lemma 3.6. Suppose there is a wellfounded ν-complete fine ultrafilter W on P (P (δ)) that
concentrates on the set of σ ⊆ P (δ) such that ℵ(P (σ)) < ν. Then every weakly ε-complete
filter F on δ extends to a ν-complete ultrafilter. Moreover the set of ε-complete ultrafilters
on δ can be wellordered.

Proof. Lemma 3.5 puts us in a position to apply Theorem 3.4, which implies that F lies
belowW in the Katětov order. Let f : P (P (δ))→ δ be such that for all A ∈ F , f−1[A] ∈ W.
Then the ultrafilter {A ⊆ δ : f−1[A] ∈ W} extends F .

One can wellorder the set of ε-complete ultrafilters on δ by setting U0 < U1 if χU0(σ) <
χU1

(σ) forW-almost all σ. This is linear becauseW is an ultrafilter and wellfounded because
W is wellfounded.

The proof of this theorem derives from Kunen’s theorem on ultrafilters under AD:

Theorem (Kunen). Assume AD + DCR. Then the set of all ultrafilters on ordinals less
than θ(R) is wellorderable. In fact, every ultrafilter on an ordinal less than θ(R) is ordinal
definable.
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3.4 Saturated filters in normal measures

Lemma 3.7. Suppose U is a normal fine ultrafilter on P (X) and E ∈ U . Suppose there
is an I-indexed family of disjoint E-positive sets. Then every function f : P (X) → I is
constant on a set in U .

Proof. Let f : P (X) → I be a function. Suppose 〈Si : i ∈ I〉 is a family of E-positive sets.
For U-almost all σ, σ ∩ Sf(σ) 6= ∅, and so since U is normal, there is some x ∈ X such that
for U-almost all σ, x ∈ Sf(σ). Since the sets 〈Si : i ∈ I〉 are disjoint, there is a unique i ∈ I
such that x ∈ Si. Thus for U-almost all σ, f(σ) = i.

For any ultrafilter U , let κU denote the largest cardinal κ such that U is κ-complete. If
U is a normal fine ultrafilter on P (δ), either κU is defined or U is principal.

A family of sets B is γ-weakly saturated if any collection of disjoint B-positive sets has
cardinality less than γ.

Corollary 3.8. Suppose δ is an ordinal, U is a nonprincipal normal fine ultrafilter on P (δ),
and E ∈ U . Then E is κU -weakly saturated.

Proof. If P is a family of disjoint E-positive sets, then P is wellorderable since there is an
injection f : P → δ defined by f(S) = min(S ∩ δ). By Lemma 3.7, no family of disjoint
E-positive sets has cardinality κU , and therefore every family of disjoint E-positive sets has
cardinality less than κU .

A filter F is (κ, ε)-indecomposable if any family P of disjoint sets with |P | < ε has a sub-
family Q such that |Q| < κ and

⋃
(P \Q) is F -null. Note that if F is (κ, ε)-indecomposable,

so is every extension of F .

Lemma 3.9. Suppose F is a filter that is ε-complete and κ-weakly saturated. Then F is
(κ, ε)-indecomposable.

Proof. Suppose P is a family of disjoint sets with |P | < ε. Let Q ⊆ P be the collection
of F -positive sets in P . Since F is κ-weakly saturated, |Q| < κ. Since F is ε-complete,⋃

(P \Q) is F -null, being the union of fewer than ε-many F -null sets.

Corollary 3.10. Suppose δ is an ordinal and U is a nonprincipal normal fine ultrafilter on
P (δ). Suppose F is an ε-complete filter in U . Then every κU -complete filter extending F is
ε-complete.

Proof. Suppose G is a κU -complete filter extending F . Since F ∈ U , F is κU -weakly
saturated, and therefore F is (κU , ε)-indecomposable, and hence so is G. Since G is (κU , ε)-
indecomposable and κU -complete, G is ε-complete.

If F is a filter, an F -positive set A is an atom of F if F � A is an ultrafilter. In other
words, A cannot be partitioned into distinct F -positive sets.

Theorem 3.11. Suppose δ is an ordinal, U is a nonprincipal normal fine ultrafilter on
P (δ), and F ∈ U is an ε-complete filter. Suppose there is a wellfounded κ+

U -complete fine
ultrafilter W on P (P (δ)) that concentrates on the set of σ ⊆ P (δ) such that ℵ(P (σ)) < ε.
Then δ can be partitioned into fewer than κU -many atoms of F .
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Proof. Let S be the set of ε-complete ultrafilters extending F . We start by showing that for
any T ⊆ S such that |T | ≤ κU , there is a family P of disjoint subsets of δ such that each
A ∈ P belongs to exactly one U ∈ T .

Since W is fine, for any U0, U1 ∈ S, for W-almost all σ, there is some A ∈ σ such that
A ∈ U0 \ U1. Since W is κ+

U -complete and |T | ≤ κU , for W-almost all σ, for all U0, U1 ∈ T ,
there is an A ∈ σ such that A ∈ U0 \ U1. Fix such a set σ such that ℵ(P (σ)) < ε. Then
P = {AU (σ) : U ∈ T } is as desired.

By Lemma 3.6, S can be wellordered. It follows that |S| < κU . Assume not. Then there
is some T ⊆ S such that |T | = κU . Fix a family P of disjoint subsets of δ such that each
A ∈ P belongs to exactly one U ∈ T . Then P is a family of κU -many disjoint F -positive
sets, contrary to Lemma 3.7.

Thus |S| < κU , and so there is a family P of disjoint subsets of δ such that each A ∈ P
belongs to exactly one U ∈ T . We claim that P witnesses that F is atomic.

We first show that there is some σ ⊆ P (δ) such that AF (σ) ∈ F and AF (σ) ⊆
⋃
A∈τ A.

Suppose not. Let S = δ\
⋃
A∈τ A. Then F � S is an ε-complete filter and so as a consequence

of Lemma 3.6 extends to a κ+
U -complete ultrafilter U . By Corollary 3.10, U is ε-complete.

Therefore for some A ∈ τ , A ∈ U . Since U is a proper filter, S ∩ A 6= ∅, which contradicts
that S ⊆ δ \A.

By a similar argument, we show that each A ∈ τ is an F -atom. Assume towards a
contradiction that S ⊆ A has the property that both S and A \ S are F -positive. Let U
and W be ε-complete ultrafilters extending F � S and F � (A \ S) respectively. Fix B and
C in τ such that B ∈ U and C ∈ W . Since S ⊆ A and S ∈ U , S ∩ B 6= ∅, and it follows
that A = B since the sets in τ are disjoint. Similarly A = C. Since each D ∈ τ belongs to
exactly one ultrafilter in T , U = W , which contradicts that A ∈ U and A \ S ∈W .

3.5 Atoms of the club filter

A filter F on X is said to be atomic if every F -positive subset of X contains an atom of F .
For example, the conclusion of Theorem 3.11 implies a strong form of atomicity.

Theorem 3.12. Suppose there is a rank Berkeley cardinal. Then for all sufficiently large
regular cardinals δ, the club filter on δ is atomic.

Before turning to Theorem 3.12, we consider a special case in which one can prove a
stronger result. (To be clear, the proof of Theorem 3.12 does not depend on this result.)
For any stationary set T ⊆ δ, the club filter restricted to T is the filter consisting of subsets
of δ that contain all but nonstationarily many elements of T . Thus T is an atom of the club
filter if and only if the club filter restricted to T is an ultrafilter.

If S is a stationary subset of δ, let S− denote the set of ordinals α ∈ S such that S ∩ α
is nonstationary. Clearly (S−)− = S−, and slightly less obviously, S− is again stationary.
Note that if S is an atom of the club filter, then S = S− modulo a nonstationary set.
In the context of the Axiom of Determinacy there is a partial converse to this result: a
theorem of Kechris-Kleinberg-Woodin [4] states that if δ is a strong partition cardinal, then
for any stationary S ⊆ δ, the club filter restricted to S− is an ultrafilter. This motivates
the following theorem.

Theorem 3.13. If λ is rank Berkeley, δ is a sufficiently large regular cardinal, and S ⊆ δ
is stationary, then S− can be partitioned into fewer than λ-many atoms of the club filter.
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Proof. Let α > δ be an ordinal such that Vα �Σ2 V and let j : Vα → Vα be an elementary
embedding such that crit(j) < λ and j(S) = S. Let U be the normal fine ultrafilter on
P (δ) derived from j using j[δ]. Let F be the filter generated by S− along with club subsets
of δ. We will show that F ∈ U , and then applying Theorem 3.11, if δ is sufficiently large,
there is a partition of S− into fewer than λ-many stationary sets T such that the club filter
restricted to T is an ultrafilter.

To show that F ∈ U , it suffices to show that j[δ] ∈ j(F ). Since j(S) = S, j(F ) = F . In
fact, we will show that if ξ ∈ S− is a closure point of j, then j(ξ) = ξ. This shows that the
set of fixed points of j contains the intersection of S− with a club, which easily implies that
j[δ] ∈ F .

Suppose ξ ∈ S− is a closure point of j. Assume towards a contradiction that j(ξ) > ξ.
We will show that S− ∩ ξ is stationary. Fix a club C ⊆ ξ. Since j(C) is club in j(ξ) and ξ is
an accumulation point of j(C) below j(ξ), ξ belongs to j(C). But then j(S−) ∩ j(C) 6= ∅,
and hence S− ∩ C 6= ∅. This shows that S− ∩ ξ is stationary, and this contradicts that for
all ξ ∈ S−, S does not reflect to ξ.

To generalize this theorem to an arbitrary stationary set, we must contend with the case
where the stationary set S is not fixed by any elementary embedding. (If λ is Berkeley
rather than merely rank Berkeley, this issue evaporates since one can obtain embeddings
fixing any set one wants.)

Proof of Theorem 3.12. For the proof, we need the existence of a countably complete ultra-
filter U on δ extending the club filter with S− ∈ U along with an ordinal α > δ such that
Vα �Σ2

V and an elementary embedding j : Vα → Vα such that j(U) = U . We defer the
proof that these objects exist to Lemma 4.6, after the basic theory of the Ketonen order has
been set up.

Let
T =

⋂
n<ω

jn(S−)

Then j(T ) =
⋂
n<ω j

n+1(S−) and so T ⊆ j(T ). Moreover, since S− ∈ U and jn(U) = U for
all n < ω, jn(S−) ∈ U for all n < ω. Therefore since U is countably complete, T ∈ U . In
particular, T is stationary. Note that for all ξ ∈ T , T ∩ ξ is nonstationary, simply because
T ⊆ S−. By the elementarity of j, for all ξ ∈ j(T ), j(T ) ∩ ξ is nonstationary. This will be
important below.

To finish, we show that the club filter restricted to T belongs to the normal fine ultrafilter
on P (δ) derived from j using j[δ]. By Theorem 3.11, if δ is sufficiently large, this implies
that there is a stationary subset of T on which the club filter is an ultrafilter.

Proceeding as in Theorem 3.13, fix a closure point ξ of j such that ξ ∈ j(T ), and we
will show that j(ξ) = ξ. Assume towards a contradiction that j(ξ) > ξ. We will show that
j(T )∩ ξ is stationary, contradicting the fact that for all ξ ∈ j(T ), j(T )∩ ξ is nonstationary.

Fix a club C ⊆ ξ. Since j(C) is club in j(ξ) and ξ is an accumulation point of j(C)
below j(ξ), ξ belongs to j(C). But then j(T )∩ j(C) 6= ∅, and hence T ∩C 6= ∅. This proves
that T ∩ ξ is stationary. Since T ⊆ j(T ), j(T ) ∩ ξ is stationary, as claimed, which leads to
a contradiction as explained above.

Theorem 3.14. Suppose there is a rank Berkeley cardinal. Then for a club class of cardinals
ε, either ε or ε+ is measurable.
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4 The filter extension property

4.1 The Ketonen order

The Ketonen order is a wellfounded partial order of countably complete filters introduced
in the author’s thesis. The wellfoundedness of the Ketonen order cannot be proved without
appeal to the Axiom of Dependent Choice (DC), and so to avoid using DC in our applications
below, we work here with a restricted version of the Ketonen order whose wellfoundedness
can be proved in ZF. The main idea is to use wellfounded filters instead of merely countably
complete ones.

If F is a filter on X, A ∈ F , and 〈Gx : x ∈ A〉 is a sequence of filters on Y , then
F - limx∈AGx denotes the filter on Y consisting of all B ⊆ Y such that for F -almost all x,
B ∈ Gx.

Fix an ordinal δ. For each α < δ, let Gα(δ) denote the set of filters F on δ such that

α ∈ F . We define a set of filters Fα(δ) ⊆ Gα(δ) and binary relations <α,δk and ≤α,δk on
Gα(δ) by induction on α. To ameliorate notation, we suppress the fixed parameter δ. Let
F0 = {∅}, and let <0

k and ≤0
k be the unique strict and nonstrict orders on F0 respectively.

Assume by induction that (Fα, <
α
k ) has been defined for α < β. Then a filter F ∈ Gβ

belongs to Fβ if
∏
α<β(Fα, <

α
k )/F is wellfounded. If F ∈ Gδ and G ∈ Gβ ,

• F <βk G if F ⊆ G- limα<β Fα where 〈Fα : α < β〉 ∈
∏
α<β Fα.

• F ≤βk G if F ⊆ G- limα<β Fα where 〈Fα : α < β〉 ∈
∏
α<β Fα+1.

Theorem 4.1. For all ordinals α ≤ δ, (Fα, <
α
k ) is a wellfounded partial order. Moreover,

for all G ∈ Fα and 〈Fν : ν < α〉 ∈
∏
ν<α Fν , G- limν<α Fν ∈ Fα.

Proof. Fix an ordinal β ≤ δ, and assume by induction that for all α < β, (Fα, <
α
k ) is

wellfounded and if G ∈ Fα and 〈Fν : ν < α〉 ∈
∏
ν<α Fν , then G- limν<α Fν ∈ Fα.

For each filter F ∈ Gδ, let PF denote the reduced product
∏
α<δ Fα/F . Note that by

definition, F ∈ Fβ if and only if PF is wellfounded and β ∈ F .

For each sequence ~F = 〈Fα : α < β〉 ∈
∏
α<β Fα, define a function

i~F :
∏
α<δ

Fα →
∏
α<β

Fα

as follows. Fix ~H = 〈Hν : ν < δ〉 ∈
∏
ν<δ Fν . For α < β, set Eα = Fα- limν<αHν . By our

induction hypothesis, Eα ∈ Fα for all α < β. Finally, let i~F ( ~H) = 〈Eα : α < β〉.
Fix G ∈ Fβ and 〈Fα : α < β〉 ∈

∏
α<β Fα. Then for any F ⊆ G- limα<β Fα, i~F

descends to an order-preserving function ĩ : PF → PG such that for all x ∈ PF , ĩ(x) lies
below [〈Fα : α < δ〉]G. As a consequence, PF is wellfounded and has rank strictly less
than the rank of PG. Define a function r : Fβ → Ord by r(H) = rank(PH). Then r is

order-preserving, which proves that (Fβ , <
β
k ) is wellfounded.

Moreover, consider the filter H = G- limα<β Fα. The partial order PH is wellfounded by
the previous paragraph, and β ∈ H since β ∈ Fα for all α < β. It follows that H ∈ Fβ .

Notice that (Fα(δ), <α,δk ,≤α,δk ) ∼= (F (α), <k,≤k). We let

(F (δ), <k,≤k) = (Fδ(δ), <
δ,δ
k ,≤δ,δk )
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and we refer to this partial order as the Ketonen order on F (δ).
For any filter F ∈ F (δ), |F |k denotes the rank of F in the Ketonen order on F (δ). We

let |δ|k = |F (δ)|k and |<δ|k = supα<δ |α|k.

Corollary 4.2. For any δ, F (δ) includes the set of all |<δ|k-wellfounded filters.

The following lemmas clarify the relationship between ≤k and <k to a certain extent.

Lemma 4.3. Suppose F,G ∈ F (δ) satisfy F ≤k G. Then either F <k G or there is some
S ∈ G+ such that F ⊆ G � S.

Proof. Let F ⊆ G- limα<δ Fα where Fα ∈ F (α + 1) for α < δ. Since F 6<k G, the set
S = {α < δ : α /∈ Fα} is G-positive. For all α ∈ S, Fα ⊆ pα where pα is the principal
ultrafilter on δ concentrated at α, and so

F ⊆ G- lim
α<δ

Fα ⊆ (G � S)- lim
α<δ

Fα ⊆ (G � S)- lim
α<δ

pα = G � S

Corollary 4.4. If U ≤k W are ultrafilters in F (δ), either U <k W or U = W .

Lemma 4.5. Suppose U ∈ F (δ) is an ultrafilter, α > |U |k, and j : Vα → Vα is an
elementary embedding fixing δ and |U |k. Then j(U) = U .

Proof. Note that U ≤k j(U): we have U = j(U)- limβ<δ Uβ where Uβ is the ultrafilter on δ
derived from j using β, and for U -almost all β, Uβ belongs to Fβ+1(δ): Uβ is α-wellfounded
and hence |U |k-wellfounded and hence |<β|k-wellfounded assuming β /∈ U . On the other
hand, U 6<k j(U) since the Ketonen rank of j(U) is j(|U |k) = |U |k, the same as the Ketonen
rank of U . Therefore by Corollary 4.4, j(U) = U .

Lemma 4.6. Let κ be the least (0,∞)-supercompact cardinal. Then for any κ-complete
filter F on δ and any ordinal α > δ + 1, there is an ultrafilter U ∈ F (δ) extending F along
with an elementary embedding j : Vα → Vα such that j(U) = U .

Proof. The existence of U follows from Lemma 3.6 and the existence of j follows from
Lemma 4.5.

4.2 The semi-linearity of the Ketonen order

In the context of the Axiom of Choice, the Ultrapower Axiom (UA) roughly states that
any two ultrapowers of the universe have a common internal ultrapower. UA is equivalent
to the linearity of the Ketonen order on ultrafilters. The principle has found a number of
applications in the theory of supercompact cardinals. Here we will show that in the context
of a rank Berkeley cardinal, the Ketonen order is almost linear in the sense that it contains
no large antichains. This fact will find an application in the proof of the filter extension
property below.

Theorem 4.7. Suppose λ is the least rank Berkeley cardinal, κ is almost supercompact,
cf(κ) > λ, and A is a set of pairwise Ketonen incomparable ultrafilters in F (δ).

(1) There is a bijection from A to a set in Vκ.

(2) If A can be wellordered, then |A| ≤ λ.
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Proof. The key observation is that if U ∈ F (δ) and j : Vα → Vα is an elementary embedding
where α > δ and Vα �Σ2 V , then for some n < ω, jn(U) = U . To see this, find n < ω
such that jn(ξ) = ξ where ξ is the rank of U in the Ketonen order on F (δ), and apply
Lemma 4.5.

Fix α larger than the rank of A, and suppose j : Vα → Vα is an elementary embedding
with κω(j) = λ. For each n < ω, let An be the set of ultrafilters in A fixed by jn. Then
A =

⋃
n<ω An.

We claim that jn(An) = jn[An]. Suppose not, and fix U ∈ jn(An) \ jn[An]. Let

B = jn+1(jn(An)) = jn(jn(An))

Then jn(U) and jn+1(U) belong to B, and B is a set of Ketonen incomparable ultrafilters.
Since every ultrafilter in An is fixed by jn, every ultrafilter in jn(An) is fixed by jn+1, and
it follows that jn+1(U) = U . On the other hand, U ≤k jn(U) since jn : P (δ) → P (δ) is
Ketonen. Also U 6= jn(U) since U /∈ jn[An]. Therefore U <k jn(U). But both of these
ultrafilters are in B, which contradicts that B is a set of pairwise Ketonen incomparable
ultrafilters.

We now prove (1). By Lemma 2.9, since jn(An) = jn[An], there is some βn < κ such
that An injects into Vβn . Applying the wellordered collection lemma, there is some γ < κ
and a set {fx : x ∈ Vγ} such that for each n, there is some x ∈ Vγ such that fx : An → Vβn
is an injection. Define gn : An → VγVβn by gn(a)(x) = fx(a). Then gn is an injection from
An into Vρn where ρn = γ · βn + 1. Now setting g(a) = 〈gn(a) : n < ω〉, we obtain an
injection from A to Vβ where β = (supn<ω ρn) + 1 is less than κ.

Assuming A can be wellordered, one can moreover conclude from the fact that jn(An) =
jn[An] that |An| < κn(j), and hence |A| ≤ λ, proving (2).

The semi-linearity property of the Ketonen order that will actually be applied in the
proof of the filter extension property is more technical but a bit easier to prove.

Proposition 4.8. Suppose λ is a rank Berkeley cardinal, δ and ξ are ordinals, and U is
the set of all ultrafilters of rank ξ in the Ketonen order on F (δ). Then λ is U -closed rank
Berkeley.

Proof. Suppose α > ξ is an ordinal and j : Vα → Vα is an elementary embedding that fixes
δ and ξ. Then j(U ) = U , and moreover for any ultrafilter W ∈ F (δ), j−1[W ] ≤k W :

j−1[W ] = W - lim
β<δ

Dβ

where Dβ is the ultrafilter on δ derived from j using β. Notice that Dβ is α-wellfounded,
and so Dβ ∈ Fβ+1(δ) by Corollary 4.2. If W ∈ U , then |j(W )|k = j(ξ) = ξ = |W |k, and
hence j(W ) = W . It follows that j[U ] = U = j(U ). This easily implies that λ is U -closed
rank Berkeley.

4.3 The filter extension property

Theorem 4.9. Assume there is a rank Berkeley cardinal. Then for a club class of cardinals
κ, every κ-complete filter on an ordinal extends to a κ-complete ultrafilter.

Proof. Let λ be the least rank Berkeley cardinal and let Γ be the class of all X such that λ
is X-closed rank Berkeley. Let κ a cardinal that is X-closed almost extendible for all X ∈ Γ;
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by Theorem 2.7, there is a club class of such cardinals. We will show that every κ-complete
filter on an ordinal extends to a κ-complete ultrafilter.

Fix an ordinal δ and assume towards a contradiction that there is a κ-complete filter
on δ that does not extend to a κ-complete ultrafilter. By Lemma 3.6, every κ-complete
filter on δ extends to a |<δ|k-wellfounded ultrafilter and hence is itself |<δ|k-wellfounded.
In particular, every κ-complete filter on δ belongs to F (δ) by Corollary 4.2. Let S be
the set of κ-complete filters on δ that do not extend to κ-complete ultrafilters. Applying
Theorem 4.1, S has a minimal element in the Ketonen order on F (δ).

Fix α > |<δ|k, and let E be the set of elementary embeddings j : Vα → Vα such that
F ∈ ran(j). Let κ′ = κ if κ is regular and κ′ = κ+ 1 if κ is singular. Let

B =

⋂
j∈σ

j[δ] : σ ⊆ E , scott∗(σ) < κ′


Let G be the filter on δ generated by B. The filter G is κ′-complete by the wellordered
collection lemma (Proposition 2.19). The main claim of the proof is that G∪F generates a
proper filter, or in other words, that every set in B is F -positive.

Before proving the claim, let us show how to use it to complete the proof of the theorem.
Let i : Vα+ω → Vα+ω be an elementary embedding fixing δ, and note that i[δ] ∈ i(G).
Therefore G ∈ U where U is the normal fine ultrafilter on P (δ) derived from i using i[δ].
Since G is κ-complete, Theorem 3.11 implies that there is a partition of δ into fewer than
λ-many G-positive sets 〈Sν : ν < γ〉 such that G � Sν is an ultrafilter for all ν < γ. Assume
towards a contradiction that for all ν < γ, F * G � Sν . Therefore there is a set in F
that is not in G � Sν , and so since G � Sν is an ultrafilter, there is a set G-large set whose
intersection with Sν is in the dual ideal F ∗. By the wellordered collection lemma, there is
a set υ ⊆ P (δ) such that scott∗(υ) < κ′ and for each ν < γ, there is a set A ∈ G ∩ υ such
that A ∩ Sν ∈ F ∗. Let B =

⋂
υ. Then B ∈ G since G is κ-complete, but B ∩ Sν ∈ F ∗ for

all ν < γ. Since 〈Sν : ν < γ〉 is a partition of δ, B =
⋃
ν<γ B ∩ Sν . Since F is κ-complete,

it follows that B ∈ F ∗. Now B ∈ G and B is not F -positive, contrary to the claim. This
contradiction establishes that for some ν < γ, F ⊆ G � Sν , which shows that F extends to
a κ-complete ultrafilter.

We now proceed to the proof of the claim. Assume towards a contradiction that for
some σ ⊆ E with scott∗(σ) < κ′,

⋂
j∈σ j[δ] is F -null. In other words,

S =
⋃
j∈σ

(δ \ j[δ]) ∈ F

For each ξ < δ and j ∈ σ, let Dξ(j) be the ultrafilter on δ derived from j using ξ. For all
ξ ∈ S and all j ∈ σ, ξ ∈ Dξ(j) since ξ < j(ξ). Also Dξ(j) ∈ Fξ(δ) by Corollary 4.2 since j
is an embedding of Vα and α > |<δ|k.

For ξ < δ, let

Dξ =
⋂
{Dξ(j) : j ∈ σ}

and note that if ξ ∈ S, then ξ ∈ (Dξ)
+ since for some j ∈ σ, ξ ∈ Dξ(j). For each j ∈ σ,

let Fj = j−1(F ). Since F ∈ ran(j), Fj is a κ-complete filter that does not extend to a
κ-complete ultrafilter. We claim that⋂

j∈σ
Fj ⊆ F - lim

ξ<δ
Dξ

17



In fact, equality holds, but we do not need this.
Suppose A ∈

⋂
j∈σ Fj . Then for all j ∈ σ, j(A) ∈ F , or in other words,

{ξ < δ : A ∈ Dξ(j)} ∈ F

Since F is κ′-complete and scott∗(σ) < κ′,ξ < δ : A ∈
⋂
j∈σ

Dξ(j)

 ∈ F
and so

{ξ < δ : A ∈ Dξ} ∈ F
which implies that A ∈ F - limξ<δDξ.

It follows that
⋂
j∈σ Fj <k F . To see this, note that S ∈ F , and for all ξ ∈ S, ξ ∈ (Dξ)

+.
Let Eξ = Dξ � ξ. Then Eξ ∈ Fξ(δ): this follows from the fact that for any j ∈ σ such that
j(ξ) < ξ, Dξ(j) ∈ Fξ(δ) and Eξ ⊆ Dξ(j). As a consequence,

⋂
j∈σ Fj ⊆ F - limξ∈S Eξ, and

so
⋂
j∈σ Fj <k F .

The intersection
⋂
j∈σ Fj of the κ-complete filters Fj is κ-complete, so by the minimality

of F ,
⋂
j∈σ Fj extends to a κ-complete ultafilter W . We will show that Fj ⊆ W for some

j ∈ σ, contradicting that Fj does not extend to a κ-complete ultrafilter. This conclusion
would be obvious under the Axiom of Choice: if Fj *W for all j ∈ σ, then for each j ∈ σ,
choose Aj ∈ Fj \W , and let A =

⋃
j∈σ Aj ; then A ∈

⋂
j∈σ Fj and A /∈W , which contradicts

that
⋂
j∈σ Fj ⊆W . Since we are working in ZF, a different argument is required.

Notice that the argument of the previous paragraph combined with the wellordered
collection lemma does imply that if γ < κ′ and

⋂
α<γ Hα ⊆ W , then Hα ⊆ W for some

α < γ. (Indeed, the wellordered collection yields a set σ ⊆ P (δ) such that scott∗(σ) < κ′

and σ∩(Hα\W ) 6= ∅ for all α < γ, and therefore
⋃

(σ\W ) belongs to
⋂
α<γ Hα but not W .)

We will use this fact repeatedly to replace
⋂
j∈σ Fj with a more manageable intersection

that is still contained in W .
Our first step is to reduce to the case that scott∗(σ) < κ. If κ is regular, this is true

by definition, so assume instead that κ is singular. Since scott∗(σ) ≤ κ, one can write
σ =

⋃
α<ι Sα where ι = cf(κ) and scott∗(Sα) < κ for all α < ι. Then

⋂
α<ι

⋂
j∈Sα Fj =⋂

j∈σ Fj ⊆ W , and so by the previous paragraph, for some α < ι,
⋂
j∈Sα Fj ⊆ W . By

replacing σ with Sα, we may assume that scott∗(σ) < κ.
For ξ < δ, set j �ξ k if |Dξ(j)|k ≤ |Dξ(k)|k and j 'ξ k if Dξ(j) = Dξ(k). Let Z be the

set of pairs (�,') where � is a prewellorder of σ and ' is an equivalence relation on σ, let

A(�,') = {ξ < δ : (�ξ,'ξ) = (�,')}

Then P = {A(�,') : (�,') ∈ Z} is a partition of δ, and therefore it is wellorderable: set
A < B if min(A) < min(B). Since scott∗(σ) < κ and κ is a limit ordinal, scott∗(Z) < κ as
well, and so |P| < κ. (This is the main reason we needed to ensure that scott∗(σ) < κ.) Let
Q = P ∩ F+, and note that

⋃
Q ∈ F since its complement is

⋃
(P ∩ F ∗) which belongs to

F ∗ by κ-completeness.
Note that in general if κ is almost extendible, F is a κ-complete filter on X, and Q is a

partition of an F -large set into fewer than κ-many F -positive sets, then for any sequence of
filters 〈Dx : x ∈ X〉,

F - lim
x∈X

Dx =
⋂
A∈Q

(F � A)- lim
x∈X

Dx
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For the nontrivial direction, suppose S ∈
⋂
A∈Q(F � A)- limDξ. In other words, for each

A ∈ Q, {ξ ∈ A : S ∈ Dξ} ∈ F � A. Applying the wellordered collection lemma, one
can find a set τ ⊆ F such that scott∗(τ) < κ for each A ∈ Q, there is some C ∈ τ
such that C ∩ A ⊆ {ξ < δ : S ∈ Dξ}. Letting T =

⋂
τ , we have that T ∈ F and for

each A ∈ Q, T ∩ A ⊆ {ξ < δ : S ∈ Dξ}. Since Q is a partition of X, this implies that
T ∩

⋃
Q ⊆ {ξ < δ : S ∈ Dξ}. Therefore {ξ < δ : S ∈ Dξ} ∈ F , and hence S ∈ F - limx∈X Dx.

Given this, we now have:⋂
j∈σ

Fj =
⋂
j∈σ

j−1[F ]

=
⋂
j∈σ

F - lim
ξ<δ

Dξ(j)

=
⋂
j∈σ

⋂
A∈Q

(F � A)- lim
ξ<δ

Dξ(j)

=
⋂
A∈Q

⋂
j∈σ

(F � A)- lim
ξ<δ

Dξ(j)

Let HA =
⋂
j∈σ(F � A)- limξ<δDξ(j). We have proved that

⋂
A∈QHA ⊆ W . Since

|Q| < κ, there is some A ∈ Q such that HA ⊆W .
Let (�,') be such that A = A(�,'). In other words, if j, k ∈ σ and ξ ∈ A, then

|Dj(ξ)|k ≤ |Dk(ξ)|k if and only if j � k and Dj(ξ) = Dk(ξ) if and only if j ' k.
Let β = rank(�), so β < θ(σ) < κ. For ν < β, let

σν = {j ∈ σ : rank�(j) = ν}

Then ⋂
j∈σ

(F � A)- lim
ξ<δ

Dξ(j) =
⋂
ν<β

⋂
j∈σν

(F � A)- lim
ξ<δ

Dξ(j)

Again applying the wellordered collection lemma, there is some ν < β such that⋂
j∈σν

(F � A)- lim
ξ<δ

Dξ(j) ⊆W

For j ∈ σν , let Hj = (F � A)- limξ<δDξ(j), so that
⋂
j∈σν Hj ⊆ W . Let I = σν/' be

the set of equivalence classes of σν modulo '. If j, k ∈ σν and j ' k, then Dξ(j) = Dξ(k)
for all ξ ∈ A, and so Hj = Hk. For each '-equivalence class x ∈ I, one can therefore define
Hx to be the common value of Hj for all j ∈ x.

Then ⋂
x∈I

Hx =
⋂
x∈I

⋂
j∈x

Hx =
⋂
j∈σν

Hj ⊆W

On the other hand, if x ∈ I, then for any j ∈ x, we have

Fj = F - lim
ξ<δ

Dξ(j) ⊆ (F � A)- lim
ξ<δ

Dξ(j) = Hj ⊆ Hx

and so since Fj does not extend to a κ-complete ultrafilter, neither does Hx. In particular,
Hx *W .

Fix ξ ∈ A, and note that the set I is in bijection with the set D = {Dξ(j) : j ∈ σν}.
Since any two embeddings in σν have the same rank in �, any two ultrafilters in D have the
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same rank in the Ketonen order. Applying Proposition 4.8, the least rank Berkeley cardinal
is D-closed rank Berkeley, and hence it is I-closed rank Berkeley since |I| = |D|.

By our choice of κ, it follows that κ is I-closed almost extendible. In particular, κ is
I-closed almost supercompact, and so there is an I-closed fine filter W on P (P (δ)) concen-
trating on the set of τ such that scott∗(τ) < κ. SinceW is fine, for each i ∈ I, forW-almost
all τ , there is some A ∈ τ such that A ∈ Hx \W . Since W is I-closed, these quantifiers can
be exchanged: for W-almost all τ , for all i ∈ I, there is some A ∈ τ such that A ∈ Hx \W .
Therefore fix such a τ with scott∗(τ) < κ. Then

⋃
(τ \W ) belongs to

⋂
x∈I Hx, but it does

not belong to W since W is κ-complete. This contradicts the fact that
⋂
x∈I Hx ⊆W . This

contradiction establishes that G∪F generates a filter, completing the proof of the claim.

5 Questions

For any ordinal δ, let Fδ be the filter on [δ]ω generated by sets of the form [C]ω where C is
ω-club in δ.

Question 5.1. Assume there is a rank Berkeley cardinal. Is there a cardinal δ such that
Fδ is atomic?

Given the atomicity of the ω-club filter, one would expect to prove such an analog of the
partition property δ → (δ)ω, but the techniques of this paper seem to be powerless in the
face of a filter on a set that cannot be wellordered.

Question 5.2. Assume λ is a rank Berkeley cardinal. Must there be a weakly Mahlo
cardinal above λ?
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the Foundations of Mathematics: Horizons of Truth, page 449. Cambridge University
Press, 2011.

21


	Introduction
	The Kunen inconsistency
	Main results

	Choicelike consequences of choiceless axioms
	Notation
	Almost extendibility and supercompactness
	Regular cardinals
	The wellordered collection lemma

	Filters, saturation, and atoms
	Terminology
	Filter bases
	Wellfounded filters
	Saturated filters in normal measures
	Atoms of the club filter

	The filter extension property
	The Ketonen order
	The semi-linearity of the Ketonen order
	The filter extension property

	Questions

