
THE LINEARITY OF THE MITCHELL ORDER

We show from an abstract comparison principle (the Ultrapower Axiom) that the
Mitchell order is linear on sufficiently strong ultrafilters: normal ultrafilters, Dodd solid

ultrafilters, and assuming GCH, generalized normal ultrafilters. This gives a conditional

answer to the well-known question of whether a 2κ-supercompact cardinal κ must carry
more than one normal measure of order 0. Conditioned on a very plausible iteration

hypothesis, the answer is no, since the Ultrapower Axiom holds in the canonical inner

models at the finite levels of supercompactness.
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1. Introduction

The subject of this paper is an axiom motivated by the theory of canonical inner

models for large cardinal hypotheses and its implications for the structure of the

Mitchell order. This axiom, the Ultrapower Axiom, holds in all known canonical

inner models, and despite its simplicity, seems to distill many of the features of

the class of countably complete ultrafilters typical to these models. The axiom

essentially says that any two wellfounded ultrapowers of the universe have a common

wellfounded ultrapower.

The Ultrapower Axiom follows from Woodin’s axiom Weak Comparison [1], a

very weak form of the comparison lemma. The argument that Weak Comparison

holds in canonical inner models is so general that if one can produce a canonical

inner model for a supercompact cardinal by anything like the current methodology,

then this model will satisfy Weak Comparison. By Woodin’s universality results

[1], it therefore seems to be a reasonable conjecture that Weak Comparison and

the Ultrapower Axiom are consistent with all large cardinal axioms. On the other

hand, a refutation of the Ultrapower Axiom from any large cardinal hypothesis

whatsoever would be a strong anti-inner model theorem.

The Ultrapower Axiom offers a new perspective on the structure of the Mitchell

order in canonical inner models, so we begin by describing the original perspective.

The Mitchell order was first isolated by Mitchell in the context of the models L[U ]

constructed from coherent sequences of ultrafilters U . In these models, the Mitchell

order is manifestly a linear order. We outline Mitchell’s proof. The definition of co-

herence implies that the Mitchell order linearly orders the sequence U , and Mitchell

showed by a comparison argument that every normal ultrafilter in L[U ] lies on the

sequence U . Therefore the Mitchell order is linear in L[U ].

The linearity of the Mitchell order on normal measures is one of the simplest

features of canonical inner models that have not been replicated by forcing. There-

fore a key test question for the theory of inner models for large cardinal axioms is

1



2

whether the linearity of the Mitchell order is compatible with very large cardinals.

For example, the following question was raised very early on by Solovay-Reinhardt-

Kanamori [2] in a slightly weaker form:

Question 1.1. Assume there is a cardinal κ that is 2κ-supercompact. Can the

Mitchell order linearly order the normal ultrafilters on κ?

Woodin [1] and Neeman-Steel [3] have constructed canonical inner models at

the finite levels of supercompactness under iteration hypotheses, and so one would

expect to dispense easily with this question. Yet Mitchell’s argument cannot be

generalized to these models: in order to develop a comparison theory for these

models, one must prevent certain normal measures from appearing on their extender

sequences.

It turns out, however, that the existence of a comparison theory, rather than

any specific requirements about the form of a coherent extender sequence, ensures

the linearity of the Mitchell order by a completely different argument. This is the

alternate perspective on the linearity of the Mitchell order we referred to above.

More precisely, we show in Theorem 2.5 that the Ultrapower Axiom alone is suffi-

cient to prove the linearity of the Mitchell order on normal ultrafilters. In fact, the

proof is in certain respects simpler than even Mitchell’s original proof.

Since the Ultrapower Axiom holds in the Woodin and Neeman-Steel models (by

[4]), this answers Question 1.1 positively under a very plausible iteration hypothesis.

The paper is organized as follows. In the first section we state the Ultrapower

Axiom and quickly prove Theorem 2.5. In the next section, we generalize it to a much

wider class of ultrafilters, the Dodd solid ultrafilters. Solovay’s lemma ([5], Theorem

2) implies without much work that for regular cardinals λ satisfying 2<λ = λ, normal

fine ultrafilters on Pλ(λ) are equivalent to Dodd solid ultrafilters. We therefore

obtain that if λ is a regular cardinal such that 2<λ = λ, then the Mitchell order

wellorders the normal fine ultrafilters on Pλ(λ). (Regarding the assumption 2<λ = λ,

in a separate paper we show that if κ is strongly compact and the Ultrapower Axiom

holds, then for all δ ≥ κ, 2δ = δ+. Using local variants of this theorem we can make

do without the assumption 2<λ = λ in many cases.)

This leaves us with the question of normal fine ultrafilters on P (λ) for λ singular.

It seems that not much is known about such ultrafilters. We begin by proving a

generalization of Solovay’s lemma to singular cardinals. We remark that this is the

main ZFC result in this paper, and requires new ideas, especially the analysis of

cofinalities of reduced products. In the final section, we show that this implies the

Dodd solidity of generalized normal ultrafilters on P (λ) under a cardinal arithmetic

assumption (again 2<λ = λ) that ismnecessary.

For purely technical reasons (which are discussed after Theorem 4.4), to state the

strongest theorem we prove about the Mitchell order, we first introduce in Definition

5.8 a variant of the Mitchell order called the internal relation. For the purposes of

this paper, the internal relation simply serves as a version of the Mitchell order that

is invariant under Rudin-Keisler equivalence. Theorem 5.12 then reads: if 2<λ = λ,



3

then the internal relation wellorders the normal fine ultrafilters on P (λ).

2. The Ultrapower Axiom

In this section we introduce the Ultrapower Axiom (UA) as briefly as possible.

Definition 2.1. Suppose M is an inner model. An internal ultrafilter of M is an

M -countably complete M -ultrafilter that is an element of M .

Definition 2.2. Suppose U0 and U1 are countably complete ultrafilters. A com-

parison of 〈U0, U1〉 by internal ultrafilters is a pair 〈W0,W1〉 such that the following

hold.

(1) W0 is an internal ultrafilter of MU0 .

(2) W1 is an internal ultrafilter of MU1
.

(3) M
MU0

W0
= M

MU1

W1
.

(4) j
MU0

W0
◦ jU0 = j

MU1

W1
◦ jU1 .

Letting N = M
MU0

W0
, we call 〈W0,W1〉 a comparison of 〈U0, U1〉 to N .

Given this definition, we can state the Ultrapower Axiom, a hypothesis of nearly

every theorem in this paper.

Definition 2.3 (Ultrapower Axiom). Every pair of countably complete ultra-

filters admits a comparison by internal ultrafilters.

Again, the Ultrapower Axiom holds in all known canonical inner models for large

cardinal hypotheses. For example, it holds in the largest canonical inner models that

have been unconditionally constructed from a large cardinal hypothesis, in the realm

of Woodin limits of Woodin cardinals.

The more countably complete ultrafilters there are, the more interesting the

Ultrapower Axiom becomes, which explains our focus on the Ultrapower Axiom in

the context of supercompact cardinals. The constructions of canonical inner models

conditioned on iteration hypotheses reach the finite levels of supercompactness.

For example, Woodin ([1], Theorem 13.1) shows that the Ultrapower Axiom is

almost certainly compatible with the GCH and the existence of a κ+n-supercompact

cardinal for any n:

Theorem 2.4 (Woodin). Suppose that for all n < ω, there is a coarse premouse

(M, E , δ) that is (ω1+1)-iterable for (coarse) non-overlapping (+1)-iteration trees by

E, and for all A ⊆ δ, there is a κ < δ that is witnessed to be (n,A)-extendible by E.

Then for all n < ω, there is an ω-short pm satisfying ZFC with a κ+n-supercompact

cardinal.

An ω-short pm satisfying ZFC satisfies the Ultrapower Axiom by a result of [4];

the argument is essentially folklore.
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The following theorem therefore conditionally answers the old question (see [2])

of whether the Mitchell order can linearly order the normal ultrafilters on κ when κ

is 2κ-supercompact. This theorem is vastly improved by Theorem 3.9, but we give

the proof as motivation for Definition 3.2 (and as a service to the reader who does

not want to know what a Dodd solid ultrafilter is).

Theorem 2.5 (UA). The Mitchell order on normal ultrafilters is linear.

Proof. Suppose U0 and U1 are normal ultrafilters. Let M0 = MU0 and M1 = MU1 ,

and let j0 : V → M0 and j1 : V → M1 be the ultrapower embeddings. Without

loss of generality, assume that crt(j0) = crt(j1). Let us call this cardinal κ. Let

〈W0,W1〉 be a comparison of 〈U0, U1〉 by internal ultrafilters to a common model

N . Thus there are internal ultrapower embeddings k0 : M0 → N and k1 : M1 → N

given by W0 and W1 such that k0 ◦ j0 = k1 ◦ j1. We may assume by symmetry that

k0(κ) ≤ k1(κ).

Suppose first that k0(κ) = k1(κ). We claim that U0 = U1. This is a consequence

of the following calculation:

X ∈ U0 ⇐⇒ κ ∈ j0(X)

⇐⇒ k0(κ) ∈ k0(j0(X))

⇐⇒ k1(κ) ∈ k1(j1(X))

⇐⇒ κ ∈ j1(X)

⇐⇒ X ∈ U1

The third equivalence uses that k0 ◦ j0 = k1 ◦ j1 and k0(κ) = k1(κ).

Suppose instead that k0(κ) < k1(κ). We claim that U0 ∈ M1. This is a conse-

quence of the following calculation: for any X ⊆ κ,

X ∈ U0 ⇐⇒ κ ∈ j0(X)

⇐⇒ k0(κ) ∈ k0(j0(X))

⇐⇒ k0(κ) ∈ k1(j1(X))

⇐⇒ k0(κ) ∈ k1(j1(X)) ∩ k1(κ)

⇐⇒ k0(κ) ∈ k1(j1(X) ∩ κ)

⇐⇒ k0(κ) ∈ k1(X)

The fourth equivalence follows from the fact that k0(κ) < k1(κ). Since k1 is definable

over M1, this calculation shows how to compute U0 within M1.

We remark that this answers a similar question from [2] and [6]: must a strongly

compact cardinal κ carry more than one normal ultrafilter? The answer is no, if the

Ultrapower Axiom is consistent with the existence of a measurable cardinal that is

a limit of strongly compact cardinals: the least such cardinal is strongly compact

yet has Mitchell order 1, and therefore carries at most one normal ultrafilter if the

Ultrapower Axiom holds.
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3. Dodd solid ultrafilters

The following definition is somewhat nonstandard, but it is useful in our context.

Definition 3.1. Suppose α is an ordinal. An ultrafilter U on α is uniform if for all

β < α, β /∈ U . In this case, α is called the space of U and is denoted by sp(U).

Thus for the purposes of this paper a uniform ultrafilter has an ordinal as its

underlying set, and we do not require that every element of a uniform ultrafilter U

have the same cardinality, but rather that every element be unbounded in sp(U)

(though this distinction is only relevant when sp(U) is a singular ordinal).

We now put down the most important definition in the context of the Ultrapower

Axiom. We will use the definition only in a superficial way. We note that it is

motivated by the attempt to generalize Theorem 2.5: recall that the key to the

proof was to consider, given a comparison 〈W0,W1〉 of a pair of normal ultrafilters

〈U0, U1〉, whether jW0
(κ) ≤ jW1

(κ).

Definition 3.2. The seed order is the binary relation ≤S defined on uniform count-

ably complete ultrafilters U0 and U1 by U0 ≤S U1 if and only if there exists a compar-

ison 〈W0,W1〉 of 〈U0, U1〉 by internal ultrafilters such that jW0([id]U0) ≤ jW1([id]U1).

Theorem 3.3. The following are equivalent.

(1) The Ultrapower Axiom.

(2) The seed order wellorders the class of uniform countably complete ultrafilters.

The fact that one can define a wellorder of all uniform countably complete ultra-

filters assuming a principle as general as the Ultrapower Axiom is quite surprising.

For example, it has the following immediate consequence, which is not obvious from

the statement of the Ultrapower Axiom.

Corollary 3.4 (UA). Every uniform countably complete ultrafilter is ordinal de-

finable.

We now define the notion of Dodd solidity, which is a strong form of the initial

segment condition.

Definition 3.5. Suppose U is an ultrafilter. The Dodd initial segment of U is the

function EU : P (sp(U))→ PMU ([id]U ) defined by

EU (X) = jU (X) ∩ [id]U

We remark EU is not in general an extender in the usual sense: one cannot form

its ultrapower since [id]U may not be closed under pairing. In the case that U is a

weakly normal ultrafilter (i.e. [id]U = sup jU [sp(U)]), EU is an extender.

Definition 3.6. Suppose U is a nonprincipal uniform countably complete ultrafil-

ter. Then U is Dodd solid if EU ∈MU .
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Thus an ultrafilter is Dodd solid if its ultrapower contains the longest possible

initial segment of its extender. For example, every normal ultrafilter U on κ is

trivially Dodd solid, since EU is the identity on P (κ) and therefore EU ∈MU . We

will show in this paper that if 2<λ = λ, then any normal fine ultrafilter on P (λ)

is Rudin-Keisler equivalent to a Dodd solid ultrafilter. This is Theorem 5.7, which

along with our next theorem, Theorem 3.9, is the key to the proof of our main

theorem Theorem 5.12. Since the existence of a Dodd solid ultrafilter on λ implies

2<λ = λ, Theorem 5.7 is optimal.

Dodd solidity also admits a simple combinatorial characterization.

Proposition 3.7. A nonprincipal uniform countably complete ultrafilter U on δ is

Dodd solid if and only if there is a sequence 〈Sα : α < δ〉 of families Sα ⊆ P (α)

such that for any sequence 〈Aα : α < δ〉 of sets Aα ⊆ α,

{α < δ : Aα ∈ Sα} ∈ U ⇐⇒ ∃A ⊆ δ {α < δ : Aα = A ∩ α} ∈ U

Proof. We first remark that a sequence 〈Sα : α < δ〉 has the property in the

statement of the proposition if and only if [〈Sα : α < δ〉]U = EU [P (δ)].

In one direction, if U is Dodd solid then EU ∈ MU so EU [P (δ)] ∈ MU , and so

there is such a sequence 〈Sα : α < δ〉.
In the other direction, suppose there is such a sequence 〈Sα : α < δ〉. Then

EU [P (δ)] ∈MU , and this implies EU ∈MU , since EU is the inverse of the transitive

collapse of EU [P (δ)]. (Note that P (δ) is transitive and extensional.)

Our definition of Dodd solidity is essentially equivalent to that of [7], except

that Dodd solidity is defined there for arbitrary extenders:

Proposition 3.8. If U is a nonprincipal uniform countably complete ultrafilter, the

following are equivalent:

(1) U is Dodd solid.

(2) Letting p be the least descending sequence of ordinals such that MU =

HMU (jU [V ] ∪ p), for each i ∈ dom(p), the extender

Ei = {(a,X) : a ∈ [pi]
<ω, X ⊆ [sp(U)]<ω, p[i] ∪ a ∈ jU (X)}

is an element of MU .

The notion of Dodd solidity was introduced by Steel in the case of short ex-

tenders. Theorem 3.8(2) is a simplification of the definition that Steel used that is

valid for ultrafilters. Steel showed that if E is an extender on the sequence of an it-

erable Mitchell-Steel model satisfying ZFC, then E is Dodd solid. Most of the proof

appears in [7], but see also [8]. Schlutzenberg [9] later showed that conversely any

Dodd solid ultrafilter in an iterable Mitchell-Steel model satisfying ZFC lies on the

extender sequence. (Similar but more complicated results hold for extenders.) Thus

in the Mitchell-Steel models, the Mitchell order is linear on Dodd solid ultrafilters.
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This is the most one could hope to prove using Mitchell’s original argument for the

linearity of the Mitchell order in L[U ] since it exhausts the class of ultrafilters that

lie on the extender sequence.

Surprisingly, the linearity of the Mitchell order on these ultrafilters is a conse-

quence of the Ultrapower Axiom alone.

Theorem 3.9 (UA). The Mitchell order on Dodd solid ultrafilters is linear.

We will use in the proof the following easily verified fact about the seed order.

Lemma 3.10. Suppose U0 and U1 are uniform countably complete ultrafilters such

that U0 ≤S U1. Then sp(U0) ≤ sp(U1).

We now prove Theorem 3.9. What we actually show is a bit stronger:

Theorem 3.11. Suppose U0 is a uniform countably complete ultrafilter, U1 is a

Dodd solid ultrafilter, and U0 <S U1. Then U0 <M U1.

Proof. Let α0 = [id]U0 and α1 = [id]U1 . Let 〈W0,W1〉 be a comparison of 〈U0, U1〉
by internal ultrafilters to a common model N witnessing U0 <S U1. Thus there are

internal ultrapower embeddings k0 : MU0 → N and k1 : MU1 → N given by W0

and W1 such that k0 ◦ jU0
= k1 ◦ jU1

and k0(α0) < k1(α1).

We claim that U0 ∈MU1
. Let δ0 = sp(U0) and δ1 = sp(U1). If X ⊆ δ0,

X ∈ U0 ⇐⇒ α0 ∈ jU0
(X)

⇐⇒ k0(α0) ∈ k0(jU0(X))

⇐⇒ k0(c0) ∈ k1(jU1
(X))

⇐⇒ k0(c0) ∈ k1(jU1
(X)) ∩ k1(α1)

⇐⇒ k0(c0) ∈ k1(jU1
(X) ∩ α1)

⇐⇒ k0(c0) ∈ k1(EU1
(X))

The fourth equivalence follows from the fact that k0(α0) < k1(α1). Since k1 is

definable over MU1
and EU1

∈MU1
, this calculation shows that U0 can be computed

inside MU1
. (This requires P (δ0) ⊆ MU1

, but P (δ1) ⊆ MU1
by Dodd solidity, and

δ0 ≤ δ1 by Lemma 3.10.) This completes the proof.

4. Solovay’s Lemma and Singular Cardinals

The following remarkable theorem, due to Solovay [5], implies that if λ is a regular

cardinal then any normal fine ultrafilter on P (λ) is Rudin-Keisler equivalent to a

canonical ultrafilter on λ via the sup function.

Theorem 4.1 (Solovay’s Lemma). Suppose λ is a regular uncountable cardinal

and 〈Sα : α < λ〉 is a partition of cof(ω) ∩ λ into stationary sets. If j : V → M is

an elementary embedding of V into an inner model M with j[λ] ∈ M , then j[λ] is

definable in M from the parameters j(〈Sα : α < λ〉) and sup j[λ].
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The key corollary of Theorem 4.1 makes no mention of the arbitrary stationary

partition 〈Sα : α < λ〉.

Corollary 4.2. Suppose λ is a regular uncountable cardinal and U is a normal fine

ultrafilter on P (λ). Then U is Rudin-Keisler equivalent to the ultrafilter

U = {X ⊆ λ : {σ ∈ P (λ) : supσ ∈ X} ∈ U}

An easy corollary is the following:

Corollary 4.3. Suppose λ is a regular cardinal such that 2<λ = λ. Suppose U is a

normal fine ultrafilter on P (λ). Then U is Rudin-Keisler equivalent to a Dodd solid

ultrafilter on λ.

We omit the proof here, and instead prove a generalization in Theorem 5.7. When

it exists, we denote the (unique) Dodd solid ultrafilter associated to a normal fine

ultrafilter U by UU . We note that we already have the following consequence of the

Ultrapower Axiom and Solovay’s lemma. (The restriction to normal fine ultrafilters

on Pλ(λ) entails no loss of generality by Kunen’s inconsistency theorem [10]: every

normal fine ultrafilter on P (λ) concentrates on Pλ(λ).)

Corollary 4.4 (UA). Suppose λ is a regular cardinal such that 2<λ = λ. Then

the Mitchell order wellorders the normal fine ultrafilters on Pλ(λ).

Proof. Suppose U0 and U1 are normal fine ultrafilters on Pλ(λ). Let U0 = UU0 and

U1 = UU1 . By Theorem 3.9, either U0 <M U1, U1 <M U0, or U0 = U1. In the latter

case, it is easy to see that U0 = U1. Thus assume without loss of generality that

U0 <M U1, or equivalently that U0 ∈MU1 . Since λ is a regular cardinal and 2<λ = λ,

λ<λ = λ. Therefore since MU1 is closed under λ-sequences, P (Pλ(λ)) ⊆ MU1 and

the Rudin-Keisler reduction f : λ→ Pλ(λ) reducing U0 to U0 is in MU1 . Since

U0 = {X ∈ P (Pλ(λ)) : f−1(X) ∈ U0}

and P (Pλ(λ)), f , and U0 are in MU1 , U0 is in MU1 .

In the case that λ is singular, the seemingly trivial issue of whether the powerset

of the underlying set of U0 lies in MU1 will actually block the attempt to easily state

some of our theorems about normal measures on P (λ) in terms of the Mitchell order.

There is a slightly deeper issue here, which is that in general when λ is a singular

cardinal, given a normal fine ultrafilter U on P (λ), there seems to be no canonical

choice of a subset X of P (λ) to which one can restrict U in order to ensure that

U � X is a uniform ultrafilter (in the standard sense of the word uniform); see

Corollary 5.5 and the comments following it. In the regular case, Pλ(λ) works, but

for singular cardinals Pλ(λ) is usually too large.

Theorem 4.9 generalizes Solovay’s lemma to all cardinals, regular or not, though

the following lemma shows that Corollary 4.2 does not generalize naively to the

singular case.



9

Lemma 4.5. Suppose λ has cofinality ι and j : V → M is an elementary em-

bedding. Let ι∗ = sup j[ι] and λ∗ = sup j[λ]. Let g0 : ι → λ be the increasing

enumeration of any closed cofinal subset λ of order type ι. Then the ordinals ι∗ and

λ∗ are interdefinable in M from the parameter j(g0).

Proof. Note that λ∗ = j(g0)(ι∗) since j ◦ g0[ι] is cofinal in j(g0)[ι∗] and j(g0) is

continuous. Clearly this defines λ∗ from ι∗ using j(g0), but it also defines ι∗ from

λ∗ using j(g0), since ι∗ is the unique ordinal α such that j(g0)(α) = λ∗.

Thus if λ is a singular cardinal and U is a normal fine ultrafilter on P (λ), the

ultrafilter derived from jU using λ∗ is equivalent to the ultrafilter W derived from

jU using ι∗, which is not Rudin-Keisler equivalent to U , since jW is continuous at

ι+ while jU is not. In fact, W is Rudin-Keisler equivalent to the projection of U to

P (ι), again by Solovay’s lemma.

We state a lemma that is an immediate consequence of Solovay’s lemma, just

because we will apply it many times in the proof of Theorem 4.9.

Lemma 4.6. Suppose i : V → N is an elementary embedding, ι is a regular cardi-

nal, and i[ι] ∈ N . Then for any f : ι→ V , i ◦ f is in N and is definable in N from

sup i[ι] and a point in the range of i.

Proof. By Solovay’s lemma, i[ι] is definable in N from sup i[ι] and a point in the

range of i. But i ◦ f = i(f) ◦ i � ι.

We now prove the correct generalization of Solovay’s lemma. This involves the

notion of a generator of an elementary embedding, from the theory of extenders:

Definition 4.7. Suppose j : V →M is an elementary embedding. An ordinal θ is

a generator of j if there is are elementary embeddings i : V → N and k : N → M

such that j = k ◦ i and crt(k) = θ.

A well-known, easily proved fact is that if θ is a generator of j, then letting E be

the extender of length θ derived from j and k : ME →M be the factor embedding,

crt(k) = θ, so θ is witnessed to be a generator by i = jE and k. We also use the

following fact, which essentially reduces to the standard fact that a nonprincipal

ultrafilter cannot be supercompact past its space:

Lemma 4.8. Suppose λ is an uncountable cardinal and j : V →M is an elementary

embedding such that crt(j) ≤ λ and j[λ] ∈ M . Let θ be the least ordinal such that

j[λ] is definable in M from θ and a point in the range of j. Then θ is a generator

of j and θ ≥ sup j[λ].

Proof. It is clear that θ is a generator. To see that θ ≥ sup j[λ], note that the ultra-

filter U derived from j using θ is λ-supercompact. Assume towards a contradiction

that θ < sup j[λ]. Let δ = sp(U). Then δ < λ, which contradicts that a nonprincipal
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ultrafilter cannot be supercompact to a cardinal past its space. (Briefly, note that

jU is continuous at δ+, but since δ+ ≤ λ, cfMU (sup jU [δ+]) = δ+ < jU (δ+), with

the last inequality following from Kunen’s inconsistency theorem [10].)

Our generalization of Solovay’s lemma essentially says that the converse of The-

orem 4.8 holds.

Theorem 4.9. Suppose λ is an uncountable cardinal and j : V →M is an elemen-

tary embedding such that crt(j) ≤ λ and j[λ] ∈M . Let θ be the least generator of

j greater than or equal to sup j[λ]. Then j[λ] is definable in M from θ and a point

in the range of j.

Proof. By Solovay’s lemma, we may assume λ is singular. Let ι denote the cofinality

of λ and ι∗ denote sup j[ι]. (The case that ι < κ easily reduces to Solovay’s lemma,

but we do not assume κ ≤ ι because we think that Subclaim 2 is of interest even in

the case ι < κ.)

Let λ∗ denote sup j[λ]. Let E be the extender of length λ∗ derived from j and let

ME be the extender ultrapower. Let 〈γξ : ξ < ι〉 enumerate a cofinal set of regular

cardinals below λ. Let e : ι→ λ∗ be the function e(ξ) = sup j[γξ]. Note that e ∈M
since j[λ] is in M and 〈γξ : ξ < ι〉 is in M . Let J be the ideal of bounded subsets of

ι. We state the key observation, the proof of which will constitute the bulk of the

proof of Theorem 4.9:

Claim 1. The equivalence class [e]J of e modulo J is definable in M from λ+ME
∗

and a point in the range of j.

For now, we assume Claim 1 and show that the theorem follows.

We first show j[λ] is definable in M from [e]J and a point in the range of j.

For ξ < ι, let Tξ be a stationary partition of cof(ω) ∩ γξ. For any e′ ∈ [e]J , for all

sufficiently large ξ0 < ι, j[λ] is the union over ξ ∈ [ξ0, ι) of the sets Xξ obtained by

applying Solovay’s lemma to j(Tξ) and e′(ξ). In this way, j[λ] is definable from [e]J
and 〈j(Tξ) : ξ < ι〉. Obviously λ∗ is definable from [e]J , and hence ι∗ is definable

from [e]J by Lemma 4.5. Thus 〈j(Tξ) : ξ < ι〉 is definable from [e]J and a point in

the range of j by Lemma 4.6. Thus j[λ] is definable in M from [e]J and a point in

the range of j. It follows that j[λ] is definable in M from λ+ME
∗ and a point in the

range of j.

It is now probably quite clear that λ+ME
∗ = θ, which implies Theorem 4.9. Still,

we include a detailed proof that λ+ME
∗ = θ. Let kE : ME → M be the factor

embedding. Note that crt(kE) is regular in ME , so by Theorem 4.6, crt(kE) > λ∗
and hence crt(kE) ≥ λ+ME

∗ . In particular for any ξ < λ+ME
∗ , ξ is definable in M

from an ordinal less than λ∗ and a point in the range of j, so by Theorem 4.8, j[λ]

is not definable in M from ξ and point in the range of j. Therefore λ+ME
∗ is the

least ordinal θ′ such that j[λ] is definable in M from θ′ and point in the range of j.

So by Theorem 4.8, λ+ME
∗ is a generator of j. So λ+ME

∗ = θ. Hence j[λ] is definable

in M from θ.
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This proves Theorem 4.9 assuming Claim 1. We turn to the proof of Claim 1.

Proof. We introduce some notation. Denote by DM the product
(∏

ξ<ι j(γξ)
)
∩M .

Note that this product is in M since 〈j(γξ) : ξ < ι〉 ∈ M by Lemma 4.6. For any

extender F derived from j with length in (sup j[ι], λ∗], we denote the ultrapower

by jF : V → MF , the factor embedding to ME by kFE : MF → ME , the factor

embedding to M by kF : MF → M , and the product
(∏

ξ<ι jF (γξ)
)
∩ MF by

DMF . Then DMF ∈ MF by Lemma 4.6. (Note that Lemma 4.6 applies in this

situation since j[ι] is in the hull that collapses to MF by Solovay’s lemma, and so

jF [ι] is in MF . In fact, jF [ι] = j[ι], but this is not really relevant.) In particular

DME = DM ∩ME since jE(γξ) = j(γξ) for all ξ < ι.

We break the proof into two subclaims.

Subclaim 1. In M , there is a λ+M∗ -scale in DM/J that is definable from ι∗ and

a point in the range of j. Moreover, for any such scale 〈fξ : ξ < λ+M∗ 〉, in ME ,

〈fξ : ξ < λ+ME
∗ 〉 is a scale in DME/J .

Proof. If in M there is a scale in DM/J of length λ+M∗ , then there is one definable

from ι∗ and a point in the range of j: first of all, DM is definable from ι∗ and a

point in the range of j by Lemma 4.6; second, λ+M∗ is definable in M from ι∗ and

a point in the range of j by Lemma 4.5; third, the class of points definable in M

from ι∗ and a point in the range of j forms an elementary substructure of M by

Los’s theorem.

Since DM/J is ≤λ∗-directed, the existence of a λ+M∗ -scale in DM/J in M will

follow if we show |DM |M = λ+M∗ . We therefore prove |DM |M = λ+M∗ . This is

essentially an application of the local version of Solovay’s theorem [5] that SCH holds

above a supercompact cardinal. Note that in M , j(κ) is j(λ)-supercompact, since

in V , j witnesses that κ is λ-supercompact. (Here we use Kunen’s observation [10]

that the condition j(κ) > λ can be omitted in the definition of λ-supercompactness

using his inconsistency theorem.)

It follows that j(κ) is λ+M∗ -supercompact in M : if ι < κ, then we have that j(κ)

is j(λ)+ supercompact in M , and if κ ≤ ι then λ∗ < j(λ). Therefore

|DM |M = (λι∗)
M = λ+M∗ · (2ι)M

by the local version of Solovay’s theorem that SCH holds above a supercompact

applied in M .

In fact (2ι)M < λ∗: we claim that in M there is a strongly inaccessible cardinal

between λ and λ∗. To see this, let 〈κn : n < ω〉 denote the critical sequence of j,

and let n < ω be least such that λ < κn+1. Then κn < λ since we assumed κ0 < λ.

Thus κn+1 < λ∗. Moreover since P (λ) ⊆ M , κn is inaccessible, and hence κn+1 is

inaccessible in M . (That P (λ) ⊆ M follows from j[λ] ∈ M since for any A ⊆ λ,

A = {α < λ : j(α) ∈ j(A)}.)

Subclaim 2. The function e is an exact upper bound of DME/J .
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Proof. We show first that DME is cofinal in e. This follows from Lemma 4.6: by

Lemma 4.6, jE ◦f ∈ME for all f : ι→ V . The collection of all jE ◦f for f ∈
∏
ξ<ι γξ

is clearly cofinal in e, recalling that jE ◦ f = j ◦ f for such f .

Now we show that e is an upper bound of DME/J . Suppose f ∈ DME . For

an extender F derived from j with length in (sup j[ι], λ∗) and some f̄ ∈ MF ,

f = kFE(f̄) since ME is the direct limit of such MF . By the elementarity of kFE ,

f̄ ∈ DMF . Since the length of F is strictly below λ∗, the space of F is strictly

below λ. Thus for some ξ0 < ι, jF is continuous at all regular cardinals δ ≥ γξ0 .

Since f̄ ∈ DMF , f̄(ξ) < jF (γξ) for ξ < ι. For ξ ∈ [ξ0, ι), we may therefore choose

αξ < γξ such that f̄(ξ) < jF (αξ). For ξ < ξ0, set αξ = 0. Let h = 〈αξ : ξ < ι〉. Then

f̄ <J jF (h), and so f = kFE(f̄) <J jE(h) < e, as desired.

Using Subclaim 1 and Subclaim 2, we prove Claim 1. Fix by Subclaim 1 a

scale 〈fξ : ξ < λ+∗ 〉 in DM definable from ι∗ and a point in the range of j. Then

〈fξ : ξ < λ+ME
∗ 〉 is definable from λ+ME

∗ and a point in the range of j by Lemma

4.5. By Subclaim 1, 〈fξ : ξ < λ+ME
∗ 〉 is a scale in DME . Thus [e]J is definable in

M from 〈fξ : ξ < λ+ME
∗ 〉 as the equivalence class of any exact upper bound of

〈fξ : ξ < λ+ME
∗ 〉. Claim 1 follows from this and the definability of 〈fξ : ξ < λ+ME

∗ 〉.
This completes the proof of Theorem 4.9.

Remark 4.10. The proof of Solovay’s lemma for regular cardinals specializes in

the case that M = V to Woodin’s proof of Kunen’s inconsistency theorem (which

appears in [11]). Our proof of Theorem 4.9 specializes in that case to Zapletal’s

proof of Kunen’s inconsistency theorem (which also appears in [11]).

5. Generalized normal ultrafilters

Definition 5.1. Suppose λ is an uncountable cardinal and U is a normal fine

ultrafilter on P (λ). Then UU denotes the uniform ultrafilter derived from U using

θ where θ is the least generator of U greater than or equal to sup jU [λ].

The following is immediate from Theorem 4.9.

Theorem 5.2. Suppose λ is an uncountable cardinal and U is a normal fine ultra-

filter on P (λ). Then U ≡RK UU .

The normal fine ultrafilters on P (λ) break into two types.

Definition 5.3. A normal fine ultrafilter on P (λ) is TYPE 0 if crt(U) ≤ cf(λ)

and TYPE 1 if cf(λ) < crt(U).

We will show that a normal fine ultrafilter on P (λ) is TYPE 1 if and only if it

is Rudin-Keisler equivalent to a normal fine ultrafilter on P (λ+).

Proposition 5.4. Suppose U is a normal fine ultrafilter on P (λ). Then

sp(UU ) =

{
λ if U is TYPE 0

λ+ if U is TYPE 1
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Proof. We may assume by Corollary 4.2 that λ is singular. By Theorem 4.9, UU is

derived from U using λ+ME
∗ where λ∗ = sup jU [λ] and E is the extender of length

λ∗ derived from U .

Suppose first that crt(U) ≤ cf(λ). Clearly sp(UU ) ≥ λ since λ∗ < λ+ME
∗ . But

since crt(U) ≤ cf(λ), jU is discontinuous at λ and so λ∗ < j(λ). Since jU (λ) is

a limit cardinal of MU , follows that λ+ME
∗ < jU (λ), and so sp(UU ) ≤ λ. Thus

sp(UU ) = λ.

Suppose instead that cf(λ) < crt(U). Then jU (λ) = λ∗. Since λ+ME
∗ is a gen-

erator of U , λ+ME
∗ 6= jU (λ+). Thus jU (λ+) > λ+ME

∗ , so sp(UU ) ≤ λ+. Moreover, if

ξ < λ+, then jE(ξ) < λ+ME and hence jE(ξ) = jU (ξ), since λ+ME is the critical

point of the factor map from ME to MU . Thus jU (ξ) < λ+ME . Since ξ < λ+ was

arbitrary, it follows that sp(UU ) = λ+.

Proposition 5.4 has a counterintuitive corollary.

Corollary 5.5. Suppose λ is an uncountable cardinal and U is a normal fine ul-

trafilter on P (λ). Then there is a set X ∈ U such that |X| = λ<crt(U).

One might expect that every set in U has cardinality λ<δ where δ is the least

ordinal such that jU (δ) > λ, since this is typically the space on which one takes a

huge measure to lie. By Corollary 5.5, this fails whenever crt(U) ≤ cf(λ) < δ ≤ λ.

(This only occurs past a huge cardinal.)

Lemma 5.6. Suppose λ is an uncountable cardinal and U is a normal fine ultrafilter

on P (λ). Then MU is closed under sp(UU )-sequences.

Proof. Note that MU is closed under Pκ(λ)-sequences where κ = crt(U), since

j[λ] ∈ MU by normality and j[Pκ(λ)] is easily computed from j[λ]. But by Propo-

sition 5.4, sp(UU ) = |Pκ(λ)|.

The next proof is really a trivial corollary of what we have already done except

for the small amount of extender theory that is needed, and which we spell out in

detail.

Theorem 5.7. Suppose 2<λ = λ and U is a normal fine ultrafilter on P (λ). Then

UU is Dodd solid.

Proof. Let θ = [id]UU , which by definition is the least generator of U above λ∗ =

sup jU [λ]. Let E = UU |θ, the extender of UU below θ, which is of course the same

as the extender of U below θ. We must show that E ∈MUU , or in other words that

E ∈MU .

First of all, E|λ∗ ∈MU since E|λ∗ is easily computed from the restriction of jU
to
⋃
α<λ P (α), which is in MU since MU is closed under λ-sequences and λ = 2<λ.

This implies E ∈ MU by the following argument. Note that E is the extender

of length θ derived from jE|λ∗ since θ is the least generator of U above λ∗. But
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jE|λ∗ � MU can be defined over MU by taking the ultrapower by E|λ∗ ∈ MU
which is correctly computed in MU by closure under λ-sequences. Now E is easily

computed from jE|λ∗ � P (sp(E)), and P (sp(E)) ⊆ P (sp(UU )) ⊆ MU by Lemma

5.6.

We modify the Mitchell order slightly in order to state the general theorem for

normal fine ultrafilters in a simple way.

Definition 5.8. Suppose U0, U1 are countably complete ultrafilters. The internal

relation @ is defined by U0 @ U1 if jU0 � MU1 is an internal ultrapower embedding

of MU1
.

As an immediate corollary of Theorem 3.9, we have the following:

Proposition 5.9. Suppose U0 and U1 are Dodd solid ultrafilters. Then U0 <S U1

implies U0 @ U1.

Proof. If U0 <S U1 then U0 <M U1 and sp(U0) ≤ sp(U1). Since U1 is Dodd solid,

MU1
is closed under sp(U1)-sequences. It follows that j

MU1

U0
= jU0

�MU1
so U0 @ U1.

The converse is not actually true: in fact if κ0 < κ1 and U0 and U1 are normal

ultrafilters on κ0 and κ1 respectively, then U1 @ U0 (since jU0
(jU1

) = jU1
� MU0

by Kunen’s commuting ultrapowers lemma) though of course U1 6<S U0. The next

two lemmas say that all counterexamples to the converse resemble this one. We use

these to deal with the TYPE 1 case in Theorem 5.12.

Lemma 5.10. Suppose δ is an ordinal. Restricted to uniform countably complete

ultrafilters on δ, the seed order extends the internal relation.

Proof. Suppose U0 and U1 are uniform countably complete ultrafilters on δ and

U0 @ U1. We show that U0 <S U1. The pair 〈jU0
(jU1

), jU0
� MU1

〉 are the embed-

dings associated to a comparison of 〈U0, U1〉 by internal ultrafilters, since jU0
�MU1

is an internal ultrapower embedding of MU1
by the definition of the internal rela-

tion. So to see that U0 <S U1, it suffices to show that jU0(jU1)([id]U0) < jU0([id]U1).

By Los’s theorem, this is equivalent to the statement that

{α < δ : jU1
(α) < [id]U1

} ∈ U0

But since δ = sp(U1), for all α < δ, jU1(α) < [id]U1 .

Lemma 5.11 (UA). Suppose U0 @ U1 and U1 @ U0. Then jU0(jU1) = jU1 � MU0

and jU1
(jU0

) = jU0
�MU1

.

Proof. We just sketch the proof. The key idea here is that of a canonical compari-

son, which we do not define here. The following are the key properties of canonical

comparisons used in the proof:
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(1) The comparison of 〈U0, U1〉 inducing 〈jU0(jU1), jU0 �MU1〉 is canonical.

(2) The comparison of 〈U0, U1〉 inducing 〈jU1
�MU0

, jU1
(jU0

)〉 is canonical.

(3) (Ultrapower Axiom) A pair of ultrafilters admits a unique canonical comparison.

It follows that jU0
(jU1

) = jU1
�MU0

and jU1
(jU0

) = jU0
�MU1

.

More detailed proofs will appear in a separate paper.

Theorem 5.12 (UA). Suppose 2<λ = λ. Then the internal relation wellorders the

set of normal fine ultrafilters on P (λ).

Proof. Suppose U0 and U1 are normal fine ultrafilters on P (λ). We show that

U0 @ U1 if and only if UU0 <S UU1 . Clearly this proves the theorem. Set U0 = UU0
and U1 = UU1 . Since U0 ≡RK U0 and U1 ≡RK U1, it suffices to show that U0 @ U1

if and only if U0 <S U1.

That U0 <S U1 implies U0 @ U1 is immediate from Proposition 5.9 since U0 and

U1 are Dodd solid.

Now suppose U0 6<S U1, or in other words U1 ≤S U0. We must show U0 6@ U1.

If U0 = U1, this is immediate, so assume instead that U1 <S U0. Then U1 @ U0 by

Proposition 5.9. We assume toward a contradiction that U0 @ U1 as well. In this

case by Lemma 5.10 and the wellfoundedness of the seed order, we must have that

sp(U0) 6= sp(U1). Therefore λ is a singular cardinal and U0,U1 are of different types.

Since U1 <S U1, we therefore have sp(U1) = λ and sp(U0) = λ+.

Let κ0 = crt(U0) and κ1 = crt(U1). By Lemma 5.11, jU0
(jU1

) = jU1
� MU0

and jU1
(jU0

) = jU0
� MU1

. This implies that jU0
(κ1) = κ1 and jU1

(κ0) = κ0. Since

jU0
fixes no ordinals in [κ0, λ

+] and jU1
fixes no ordinals in [κ1, λ] (by the Kunen

inconsistency theorem [10]), the intervals [κ0, λ
+] and [κ1, λ] are disjoint. Therefore

either κ0 > λ or κ1 > λ+. The former implies κ0 = λ+, contradicting that successor

cardinals cannot be measurable. The latter is obviously impossible since sp(U1) = λ.

This is a contradiction, so U0 6@ U1.

We close with a trivial variant of Theorem 5.12.

Definition 5.13. Suppose U is an ultrafilter and X ∈ U . Then U � X denotes the

ultrafilter {A ⊆ X : A ∈ U}.
If U0 and U1 are normal fine ultrafilters on P (λ), then the modified Mitchell

order <∗M on P (λ) is defined by U0 <∗M U1 if there is a set X ∈ U0 such that

U0 � X ∈MU1 .

The proof of Theorem 5.12 shows that assuming 2<λ = λ, no TYPE 0 ultrafilter

on P (λ) lies above a TYPE 1 ultrafilter on P (λ) in the internal relation. Thus if

U0 and U1 are normal fine ultrafilters on P (λ) with U0 @ U1, U0 concentrates on

a set X of size at most λ<crt(U1). Since MU1 is closed under λ<crt(U1)-sequences,

P (X) ∈ MU1 , and so U0 � X belongs to MU1 by Theorem 5.12. Another version of

Theorem 5.12 is therefore the following:
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Theorem 5.14 (UA). Suppose 2<λ = λ. Then the modified Mitchell order

wellorders the set of normal fine ultrafilters on P (λ).
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