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Abstract. We study a partial order on countably complete ultrafilters introduced by

Ketonen [2] as a generalization of the Mitchell order. The following are our main results:

the order is wellfounded; its linearity is equivalent to the Ultrapower Axiom, a principle

introduced in the author’s dissertation [1]; finally, assuming the Ultrapower Axiom, the

Ketonen order coincides with Lipschitz reducibility in the sense of generalized descriptive

set theory.

§1. Introduction. The subject of this paper is a partial order on the class
of countably complete ultrafilters originally introduced by Jussi Ketonen [2] in
the early 1970s. This order, which we call the Ketonen order, is a generalization
of the Mitchell order on normal ultrafilters to a consistently linear order on
(essentially) all countably complete ultrafilters.

The Mitchell order is the partial order on the class of normal ultrafilters de-
fined by setting U CW if U belongs to the ultrapower of the universe of sets by
W . The Mitchell order turns out to be wellfounded, and the rank of a normal
ultrafilter in the Mitchell order has come to be viewed as a measure of its com-
plexity. All the known canonical inner models (for example, the Mitchell-Steel
models [4]) satisfy the statement that the Mitchell order is linear. In other words,
the normal ultrafilters of these models are linearly ordered by their complexity
as measured by their rank in the Mitchell order.

The best-studied generalization of the Mitchell order is obtained by directly
extending the original definition to more general objects than normal ultrafilters.
For example, one can define the Mitchell order on arbitrary countably complete
ultrafilters U and W by again setting U CW if U ∈MW .

The Ketonen order, on the other hand, is obtained by incorporating in addition
a more subtle variation, demanding not that U belongs MW but instead that
jW [U ] is contained in a sufficiently small ultrafilter of MW . (See Theorem 3.1
below for the details.)

Restricting to the class of normal ultrafilters, Theorem 3.3 shows that the
Ketonen order and the Mitchell order coincide. The point of this paper is to
begin to extend the theory of normal ultrafilters under the Mitchell order to
a theory of all countably complete ultrafilters under the Ketonen order. For
example, the first result of this paper generalizes the main structural features of
the Mitchell order to the Ketonen order:
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Theorem 1.1. The Ketonen order is a wellfounded partial order of the class
of all countably complete ultrafilters on ordinals.

What sets the Ketonen order apart from the usual generalizations of the
Mitchell order is that it is consistent with very large cardinals that the Ketonen
order is linear. In fact, the main result of this paper shows that the Ketonen
order is linear in all known canonical inner models.

We will actually prove something much more general, which arguably shows
that the Ketonen order is linear not only in the known canonical inner models,
but also in all canonical inner models that will ever be constructed: we establish
that the linearity of the Ketonen order follows from the Ultrapower Axiom, a
combinatorial principle with far-reaching consequences for the structure of large
cardinals that itself arguably should hold in any model that is anything like the
canonical inner models constructed to date.

Moreover, we show that the Ultrapower Axiom is equivalent to the linearity
of the Ketonen order:

Theorem 1.2. The following are equivalent:

(1) The Ketonen order is linear.
(2) The Ultrapower Axiom holds.

The Ultrapower Axiom has many consequences in the theory of countably
complete ultrafilters, so in light of Theorem 1.2, the linearity of the Ketonen
order is itself a surprisingly powerful structural principle.

We conclude this paper by considering the relationship between the Ketonen
order and a fundamental measure of complexity from descriptive set theory,
the Lipschitz order. We define a direct generalization of the Lipschitz order on
subsets of Cantor space and prove the following theorem:

Theorem 1.3 (UA). For any ordinal δ, the Lipschitz order coincides with the
Ketonen order on countably complete ultrafilters on δ.

We infer from this that the Ultrapower Axiom implies the determinacy of
certain long games involving ultrafilters. We conclude the paper with a number
of questions about the generalized Lipschitz order.

§2. Preliminaries.

2.1. Ultrafilters and ultrapowers. Throughout this paper, we will often
need to discuss objects U which are not ultrafilters but do appear to be ultrafilters
inside of some transitive model. For this we use the following self-explanatory
terminology:

Definition 2.1. Suppose N is a transitive model of ZFC. A set U ∈ N is an
ultrafilter of N if N satisfies that U is an ultrafilter; U is a countably complete
ultrafilter of N if in addition N satisfies that U is countably complete.

Relativizing Scott’s construction of the ultrapower of the universe, we can
form the ultrapower of a transitive model N by an ultrafilter of N . For this, we
use the following notation:
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Definition 2.2. Suppose N is a transitive model of ZFC and U is an ultrafil-
ter of N . We write (MU )N to denote the ultrapower of N by U using functions
in N . We write (jU )N to denote the ultrapower embedding from N to (MU )N

associated to U . For any function f ∈ N , we write [f ]NU to denote the point
represented by f in (MU )N .

We will often omit the parentheses in this notation, writing jNU and MN
U . In

the case N = V , we omit the superscript altogether, writing jU : V → MU for
the ultrapower of V by an ultrafilter U .

In all our applications, U will be a countably complete ultrafilter of N , and
therefore MN

U will be wellfounded and so we identify it with the transitive inner
model to which it is isomorphic.

Definition 2.3. Suppose U is an ultrafilter on a set X. We say that U
concentrates on a set A if A∩X belongs to U . If a ∈ X, the principal ultrafilter
concentrated at a is the set of all A ⊆ X such that a ∈ A.

In other words, U concentrates on A if [id]U ∈ jU (A). If U is an ultrafilter on
an ordinal δ, then U concentrates on an ordinal α if and only if either α ∈ U or
δ ≤ α.

2.2. The Ultrapower Axiom and the seed order. The Ultrapower Ax-
iom is a combinatorial principle motivated by the Comparison Lemma of inner
model theory. To express the axiom succinctly, we introduce a coarse notion of
comparison.

Definition 2.4. Suppose N and P are transitive models of ZFC and j : N →
P is an elementary embedding. We say j is an internal ultrapower embedding of
N if there is an ultrafilter U of N such that P = MN

U and j = jNU .

We will refer to internal ultrapower embeddings of the universe V simply as
ultrapower embeddings.

Definition 2.5. Suppose M0, M1, and N are transitive models of set theory.
We write (i0, i1) : (M0,M1)→ N to denote that i0 : M0 → N and i1 : M1 → N
are elementary embeddings.

Definition 2.6. Suppose j0 : V → M0 and j1 : V → M1 are ultrapower
embeddings. A comparison of (j0, j1) is a pair (i0, i1) : (M0,M1)→ N of internal
ultrapower embeddings such that i0 ◦ j0 = i1 ◦ j0.

Ultrapower Axiom. Every pair of ultrapower embeddings of the universe
of sets admits a comparison.

The Ultrapower Axiom is not provable in ZFC. Indeed, the Ultrapower Axiom
implies that the Mitchell order is linear on normal ultrafilters (as a consequence
of Theorem 3.3 and Theorem 4.5 below), but Kunen-Paris [3] exhibit a forcing
extension in which the least measurable cardinal carries many normal ultrafil-
ters, any two of are necessarily incomparable in the Mitchell order. The same
argument shows that the Ultrapower Axiom is not a consequence of any large
cardinal axiom.

On the other hand, if there are no measurable cardinals then the Ultrapower
Axiom holds vacuously. Thus ZFC + UA is trivially equiconsistent with ZFC. A
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less trivial fact is that ZFC + a measurable cardinal is equiconsistent with ZFC
+ UA + a measurable cardinal. This is true because the inner model L[U ] is a
model of UA. Similarly, ZFC + a Woodin cardinal is equiconsistent with ZFC +
UA + a Woodin cardinal; the proof proceeds by constructing the Mitchell-Steel
inner model with one Woodin cardinal.

The Ultrapower Axiom might therefore be viewed as a principle that clarifies
the large cardinal structure of the universe of sets without “adding consistency
strength.” It is open, however, whether this pattern persists to large cardinals
beyond the current inner models. For example, it is open whether the Ultrapower
Axiom is consistent with a supercompact cardinal, and this seems like a good
test question for inner model theory at that level.

Comparisons in this coarse sense induce a natural relation on the class of
countably complete ultrafilters:

Definition 2.7. The seed order is defined on countably complete ultrafilters
on ordinals as follows. Suppose U0 and U1 are countably complete ultrafilters
on ordinals.

• U0 <S U1 if there is a comparison (i0, i1) : (MU0
,MU1

) → N of (jU0
, jU1

)
such that i0([id]U0) < i1([id]U1).

• U0 ≤S U1 if there is a comparison (i0, i1) : (MU0 ,MU1) → N of (jU0 , jU1)
such that i0([id]U0

) ≤ i1([id]U1
).

The totality of the seed order is trivially equivalent to the Ultrapower Axiom:

Proposition 2.8. The following are equivalent:

• The Ultrapower Axiom.
• If U0 and U1 are countably complete ultrafilters on ordinals, then either
U0 <S U1 or U1 ≤S U0. a

We will show later on that the seed order is wellfounded and in particular that
one cannot have both U0 <S U1 and U1 ≤S U0 simultaneously. While one can
show the wellfoundedness of the seed order, one cannot prove its transitivity in
ZFC:

Proposition 2.9. Assume the seed order is transitive. Then the Ultrapower
Axiom holds.

The proposition is a consequence of the following easily proved lemma:

Lemma 2.10. Suppose U is a countably complete ultrafilter on an ordinal δ.
Suppose α is an ordinal, and let pα denote the principal ultrafilter on α + 1
concentrated at α.

• If U concentrates on α, then U <S pα.
• If U does not concentrate on α, then pα ≤S U . a

To prove Theorem 2.10, one uses that (jU , id) is a comparison of (jpα , jU ).

Proof of Theorem 2.9. Suppose U and W are countably complete ultra-
filters on ordinals. We will show that the pair (jU , jW ) admits a comparison.

Let α be any ordinal on which U concentrates. It is easy to construct a
countably complete ultrafilter W ′ on an ordinal such that jW ′ = jW but W ′
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does not concentrate on α. (For example, one can let W ′ be the ultrafilter
derived from jW using 〈[id]W , jW (α)〉 where 〈−,−〉 : Ord×Ord→ Ord denotes
a definable pairing function.)

By Theorem 2.10,

U <S pα ≤S W ′

where pα denotes the principal ultrafilter on α + 1 concentrated at α. By the
transitivity of the seed order, U <S W

′. In particular, there is a comparison of
(jU , jW ′). But jW ′ = jW , so there is a comparison of (jU , jW ), as desired. a

§3. The Ketonen order. The conclusion one should draw from Theorem 2.9
is that in the context of ZFC alone, the seed order is not really the right order
to study. This rather pedestrian observation was the author’s motivation for
considering the Ketonen order:

Definition 3.1. Suppose U and W are countably complete ultrafilters on
ordinals. The Ketonen order is defined by setting U <k W if jW [U ] is contained
in a countably complete ultrafilter of MW that concentrates on [id]W .

We start by proving that the restriction of the Ketonen order to normal ul-
trafilters is the Mitchell order.

Definition 3.2. Suppose κ is a cardinal. An ultrafilter U on κ is normal if
U is κ-complete and [id]U = κ.

Suppose U and W are normal ultrafilters. The Mitchell order is defined by
setting U CW if U ∈MW .

Proposition 3.3. If U and W are normal ultrafilters on a cardinal κ. Then
U CW if and only if U <k W .

Proof. First assume U CW , and we will show U <k W . Define

U∗ = {A ⊆ jW (κ) : A ∈MW and A ∩ κ ∈ U}

Since U ∈ MW , the set U∗ is definable from parameters in MW , and hence U∗
belongs to MW . It is easy to check that U∗ is a countably complete ultrafilter of
MW . Moreover, by definition U∗ concentrates on κ. Finally U∗ contains jW [U ]:
if A ∈ U , then jW (A)∩ κ = A ∈ U , so jW (A) ∈ U∗ by definition. It follows that
U <k W .

Conversely, assume U <k W , and we will show U C W . Fix a countably
complete ultrafilter U∗ of MW containing jW [U ] and concentrating on κ. We
claim U = U∗ ∩ P (κ). For any set A ⊆ κ,

A ∈ U ⇐⇒ jW (A) ∈ U∗
⇐⇒ jW (A) ∩ κ ∈ U∗(1)

⇐⇒ A ∈ U∗(2)

(1) follows from the fact that U∗ concentrates on κ, while (2) follows from the
fact that κ is the critical point of jW . Thus U = U∗∩P (κ) ∈MW , so U CW . a

In fact, the Mitchell order, the Ketonen order, the seed order, and the Lipschitz
order (see Section 5) all coincide on normal ultrafilters. The point of this section
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is to show that the basic structural properties of the Mitchell order on normal
ultrafilters generalize to the Ketonen order. We begin by reformulating the
definition of the Ketonen order in two simple ways. This requires two definitions.
The first comes from the classical theory of ultrafilters:

Definition 3.4. Suppose U is an ultrafilter, I is a set in U , and 〈Wi : i ∈ I〉
is a sequence of ultrafilters on a set Y . Then U - limi∈IWi is the ultrafilter on Y
consisting of all subsets A of Y such that {i ∈ I : A ∈Wi} belongs to U .

We also need a generalization of the notion of a comparison:

Definition 3.5. Suppose j0 : V → M0 and j1 : V → M1 are ultrapower
embeddings. A pair of elementary embeddings (i0, i1) : (M0,M1) → N is a
semicomparison of (j0, j1) if i1 is an internal ultrapower embedding of M1 and
i0 ◦ j0 = i1 ◦ j1.

We warn that the notion of a semicomparison of (j0, j1) is not symmetric in
j0 and j1.

Proposition 3.6. If U and W are countably complete ultrafilters on ordinals
ε and δ, then the following are equivalent:

(1) U <k W .
(2) U = W - limα∈I Uα where I ∈ W and for all α ∈ I, Uα is a countably

complete ultrafilter on ε that concentrates on α.
(3) There is a semicomparison (k, h) : (MU ,MW ) → N of (jU , jW ) such that

k([id]U ) < h([id]W ).

Proof. We first show that (1) implies (2). Since U <k W , we can fix a
countably complete ultrafilter U∗ of MW containing jW [U ] and concentrating
on [id]W . By replacing U∗ with U∗ ∩ jW (P (ε)), we may assume without loss of
generality that the underlying set of U∗ is jW (ε). Fix a function f : δ → V such
that [f ]W = U∗. By Los’s Theorem, there is a set I ∈W such that for all α ∈ I,
f(α) is a countably complete ultrafilter on ε that concentrates on α. For α ∈ I,
let Uα = f(α). For any A ⊆ ε, A ∈ U if and only if jW (A) ∈ U∗ if and only if
{α ∈ I : A ∈ Uα} ∈W . It follows that U = W - limα∈I Uα, as desired.

Next we show that (2) implies (3). Let U∗ be the ultrafilter of MW represented
by the function α 7→ Uα. Let h : MW → N be the ultrapower of MW by U∗.
Define k : MU → N by setting k([f ]U ) = [jW (f)]MW

U∗
. It is easy to check

that k is a well-defined elementary embedding and moreover that (k, h) is a

semicomparison of (jU , jW ). Finally k([id]U ) = [id]MW

U ′ < h([id]W ). The final
inequality follows by applying Los’s Theorem to the ultrapower of V by W , using
the fact that for all α ∈ I, [id]Uα < jUα(α).

We finally show that (3) implies (1). For this, let U∗ be the ultrafilter of MW

on jW (ε) derived from h using the ordinal k([id]U ).
We first show that U∗ contains jW [U ]. Suppose A ∈ U , and we will show

jW (A) ∈ U∗. Note that [id]U ∈ jU (A), so k([id]U ) ∈ k(jU (A)). By the definition
of a semicomparison, k(jU (A)) = h(jW (A)), and therefore k([id]U ) ∈ h(jW (A)).
Since jW (A) ⊆ jW (ε) and k([id]U ) ∈ h(jW (A)), jW (A) belongs to the ultrafilter
of MW on jW (ε) derived from h using k([id]U ). In other words, jW (A) ∈ U∗.
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We finally show that U∗ concentrates on [id]W . Since k([id]U ) < h([id]W ),

formally k([id]U ) ∈ h([id]W ). It follows that [id]MW

U∗
∈ jMW

U∗
([id]W ). In other

words, U∗ concentrates on [id]W . a
Theorem 3.6 (3) is obviously reminiscent of the definition of the seed order.

Indeed, since every comparison is a semicomparison, Theorem 3.6 (3) yields:

Corollary 3.7. The Ketonen order <k extends the seed order <S. a
It is convenient to introduce a non-strict version of the Ketonen order:

Definition 3.8. Suppose U and W are countably complete ultrafilters on
ordinals. The non-strict Ketonen order is defined by setting U ≤k W if jW [U ]
is contained in a countably complete ultrafilter of MW that concentrates on
[id]W + 1.

The equivalences of Theorem 3.6 also go through for the non-strict Ketonen
order:

Proposition 3.9. If U and W are countably complete ultrafilters on ordinals
ε and δ, then the following are equivalent:

(1) U ≤k W .
(2) U = W - limα∈I Uα where I ∈ W and for all α ∈ I, Uα is a countably

complete ultrafilter on ε that concentrates on α+ 1.
(3) There is a semicomparison (k, h) : (MU ,MW ) → N of (jU , jW ) such that

k([id]U ) ≤ h([id]W ).

Corollary 3.10. The non-strict Ketonen order ≤k extends the non-strict
seed order ≤S. a

The relationship between the Ketonen order and the non-strict Ketonen or-
der is quite straightforward. The following equivalence relation ultimately turns
out to be the equivalence relation given by the non-strict Ketonen order (Theo-
rem 3.21):

Definition 3.11. Suppose U and W are ultrafilters. The change-of-space
equivalence relation is defined by setting U ≡k W if there is a set A ∈ U ∩W
such that U ∩ P (A) = W ∩ P (A).

Change-of-space equivalence can be reformulated in a couple of ways:

Lemma 3.12. Suppose U and W are countably complete ultrafilters. The fol-
lowing are equivalent:

(1) U ≡k W .
(2) jU = jW and [id]U = [id]W .
(3) There exist elementary embeddings (k, h) : (MU ,MW ) → N such that k ◦

jU = h ◦ jW and k([id]U ) = h([id]W ).
(4) U and W concentrate on the same sets.

Proof. We only include the proof that (3) implies (4). Suppose U concen-
trates on the set A. Then [id]U ∈ jU (A). Applying k, k([id]U ) ∈ k(jU (A)).
Replacing like terms, h([id]W ) ∈ h(jW (A)). Pulling back by h, [id]W ∈ jW (A).
Therefore W concentrates on the set A. Similarly if W concentrates on A, then
U concentrates on A. Thus U and W concentrate on the same sets. a
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Lemma 3.13. The Ketonen order is invariant under change-of-space equiv-
alence. In other words, if U ≡k U ′ and W ≡k W ′ are countably complete
ultrafilters on ordinals, then U <k W if and only if U ′ <k W

′.

The most straightforward relationship between the Ketonen order and the
non-strict Ketonen order involves change-of-space equivalence:

Lemma 3.14. Suppose U and W are countably complete ultrafilters on ordi-
nals. The following are equivalent:

(1) U ≤k W .
(2) Either U <k W or U ≡k W .

Proof. We prove (1) implies (2). Suppose U ≤k W . By Theorem 3.9
(2), there is a semicomparison (k, h) : (MU ,MW ) → N such that k([id]U ) ≤
h([id]W ). If strict inequality holds, then by Theorem 3.6 (2), U <k W . Other-
wise k([id]U ) = h([id]W ), so U ≡k W by Theorem 3.12 (3). a

We now prove the various structural properties of the Ketonen order. We start
with a useful lemma which is analogous to Theorem 2.10:

Lemma 3.15. Suppose U <k W are countably complete ultrafilters on ordinals.
If W concentrates on the ordinal β + 1, then U concentrates on β.

Proof. Fix a sequence 〈Uα : α ∈ I〉 of countably complete ultrafilters defined
on a set I ∈ W such that U = W - limα∈I Uα and for all α ∈ I, Uα concentrates
on α. Note that I ∩ (β + 1) ∈W and for all α ∈ I ∩ (β + 1), Uα concentrates on
β. Since U = W - limα∈I Uα, this implies that U concentrates on β. a

Another variant is the following:

Lemma 3.16. Suppose U and W are countably complete ultrafilters on ordi-
nals. Suppose U concentrates on the ordinal β but W does not. Then U <k W .

Sketch. Let δ be the underlying set of W . Let I = δ \ β and for α ∈ I, let
Uβ = U . The sequence 〈Uα : α ∈ I〉 witnesses U <k W . a

For each ordinal α, let Uα be the class of countably complete ultrafilters U
that concentrate on α but on no smaller ordinal. Theorem 3.16 tells us that if
α < β, then all the ultrafilters in Uα are below all the ultrafilters in Uβ in the
Ketonen order. Thus the Ketonen order is the sum of the orders 〈Uα : α ∈ Ord〉.

To prove the transitivity of the Ketonen order, we need a simple lemma that
allows us to copy the structure of the Ketonen order into an ultrapower:

Lemma 3.17. Suppose U <k W are countably complete ultrafilters on ordi-
nals, and Z is a countably complete ultrafilter. Suppose jZ [W ] is contained in
a countably complete ultrafilter W∗ of MZ . Then jZ [U ] is contained in some

U∗ <
MZ

k W∗.

Proof. Fix a sequence of countably complete ultrafilters 〈Uα : α ∈ I〉 wit-
nessing U <k W . Let 〈U∗α : α ∈ I∗〉 = jZ(〈Uα : α ∈ I〉). Working in MZ ,
let

U∗ = W∗- limα∈I∗ U
∗
α

which is defined since I∗ = jZ(I) ∈ W∗. The elementarity of jZ easily implies
that 〈U∗α : α ∈ I∗〉 witnesses U∗ <k W∗ in MZ . We finish by showing jZ [U ] ⊆ U∗.



THE KETONEN ORDER 9

Suppose A ∈ U . Then {α ∈ I : A ∈ Uα} ∈ W , so jZ({α ∈ I : A ∈ Uα}) ∈ W∗
since jZ [W ] ⊆W∗. In other words, {α ∈ I∗ : jZ(A) ∈ U∗α} ∈W∗. It follows that
jZ(A) ∈ U∗, as desired. a

Theorem 3.17 easily implies the transitivity of the Ketonen order:

Corollary 3.18. Suppose U <k W ≤k Z are countably complete ultrafilters
on ordinals. Then U <k Z.

Proof. Let W∗ be a countably complete ultrafilter of MZ containing jZ [W ]
and concentrating on the ordinal [id]Z + 1. By Theorem 3.17, jZ [U ] is contained

in some U∗ <
MZ

k W∗. Applying Theorem 3.15 in MZ , U∗ concentrates on [id]Z .
Therefore U∗ witnesses that U <k Z. a

The proof that the Ketonen order is wellfounded is somewhat subtle, and
apparently it was not known to Ketonen (who proved it only in the special case
of weakly normal ultrafilters where a different argument can be used). Given
Theorem 3.17, however, the wellfoundedness proof closely follows the proof that
the Mitchell order is wellfounded on normal ultrafilters:

Theorem 3.19. The Ketonen order is wellfounded.

Proof. Assume towards a contradiction that δ is the least ordinal α such that
the Ketonen order is illfounded on ultrafilters concentrating on α. Fix a descend-
ing sequence U0 >k U1 >k · · · of countably complete ultrafilters concentrating
on δ.

Let N = MU0
. We define by recursion a sequence U∗1 >

N
k U∗2 >

N
k · · · of count-

ably complete ultrafilters of N concentrating on [id]U0
. We will also maintain

that for all integers n ≥ 1, jU0 [Un] is contained in U∗n.
For the base case, the definition of the Ketonen order yields a countably com-

plete ultrafilter U∗1 of N containing jU0
[U1] and concentrating on [id]U0

.
Suppose U∗n has been defined, and we will define U∗n+1. Applying Theorem 3.17

with Z = U0, U = Un+1, W = Un, and W∗ = U∗n yields an ultrafilter U∗ of N
containing jU0

[Un+1] such that U∗ <
N
k U∗n. Set U∗n+1 = U∗. Theorem 3.15

implies U∗n+1 concentrates on [id]U0 since U∗n+1 <
N
k U∗n and U∗n concentrates on

[id]U0 .
Thus we have obtained a Ketonen descending sequence of ultrafilters of N

concentrating on [id]U0
. Note that [id]U0

< jU0
(δ). Since N is closed under

countable sequences, N satisfies that there is an ordinal α < jU0
(δ) such that

the Ketonen order is illfounded on countably complete ultrafilters concentrating
on α. By the elementarity of jU0 , there is an ordinal α < δ such that the Ketonen
order is illfounded on countably complete ultrafilters concentrating on α. This
contradicts the minimality of δ. a

The wellfoundedness of the Ketonen order immediately implies the strictness
of the Ketonen order. (This can also be proved by the simpler and more general
argument of Theorem 5.9, which for example shows the strictness of the natural
extension of the Ketonen order to countably incomplete ultrafilters.)

Corollary 3.20. If U is a countably complete ultrafilter, then U 6<k U . a
As another corollary, we can analyze the equivalence relation given by the

non-strict Ketonen order:
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Corollary 3.21. Suppose U and W are countably complete ultrafilters. Then
the following are equivalent:

(1) U ≤k W and W ≤k U .
(2) U ≡k W .

Proof. We show (1) implies (2). Suppose U ≤k W and W ≤k U . To see that
U ≡k W , it suffices by Theorem 3.14 to show that U 6<k W . Assume towards
a contradiction that U <k W . Since U <k W ≤k U , Theorem 3.18 implies
U <k U . This contradicts Theorem 3.20. a

We can use Theorem 3.7 and Theorem 3.19 to establish the wellfoundedness
of the seed order:

Proposition 3.22. The seed order is wellfounded on countably complete ul-
trafilters on ordinals.

Proof. The seed order wellfounded because it is contained in the Ketonen
order, which is wellfounded by Theorem 3.19. a

§4. The linearity of the Ketonen order. In this section, we prove the
main theorem of this paper: the linearity of the Ketonen order implies the Ultra-
power Axiom. Before we state this, we list a number of equivalent formulations
of the linearity of the Ketonen order.

The simplest way in which the Ketonen order is linear assuming the Ultrapower
Axiom is the following:

Proposition 4.1 (UA). Suppose U and W are countably complete ultrafilters
on ordinals. Either U <k W or W ≤k U . In fact, the Ketonen order and the
seed order coincide.

Proof. By the totality of the seed order (Theorem 2.8), it suffices to show
that the Ketonen order and the seed order coincide. We will show that if U
and W are countably complete ultrafilters on ordinals, then U <k W if and
only if U <S W . It suffices by Theorem 3.7 to show that U <k W implies
U <S W . Assume U <k W and, towards a contradiction, that U 6<S W . Since
the seed order is total, W ≤S U . Since the Ketonen order extends the seed
order, W ≤k U . Thus W ≤k U <k W , so by the transitivity of the Ketonen
order (Theorem 3.18), W <k W . This contradicts the irreflexivity of the Ketonen
order. a

The Ketonen order is not strictly speaking a linear order of the class of all
countably complete ultrafilters on ordinals. Indeed, any two ≡k-equivalent ul-
trafilters are incomparable in the (strict) Ketonen order. One way to get around
this is to restrict our attention to fine ultrafilters:

Definition 4.2. An ultrafilter U on an ordinal δ is fine if δ is the least ordinal
that belongs to U .

Equivalently, U is fine if and only if U extends the tail filter. Fine ultrafilters
select a unique element from each ≡k-equivalence class:

Lemma 4.3. If U is an ultrafilter on an ordinal, there is a unique fine ultra-
filter U ′ such that U ≡k U

′. In particular, if U and W are fine ultrafilters on
ordinals, then U ≡k W if and only if U = W . a
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Corollary 4.4. The non-strict Ketonen order is antisymmetric on fine count-
ably complete ultrafilters on ordinals. Moreover, if U and W are countably com-
plete fine ultrafilters, then U ≤k W if and only if U <k W or U = W . a

Along with Theorem 4.1, this easily implies the following theorem:

Theorem 4.5 (UA). The Ketonen order is a linear order on the class of
countably complete fine ultrafilters on ordinals. a

One final way of stating the linearity of the Ketonen order will be convenient
going forward.

Definition 4.6. Suppose (X,≺) is a wellorder and U and W are countably
complete ultrafilters on X. The Ketonen order associated to (X,≺) is defined
by setting U ≺k W if U = W - limi∈I Ui where I ∈ W and for all i ∈ I, Ui is a
countably complete ultrafilter on X concentrating on {x ∈ X : x ≺ i}.

The association of Ketonen orders is well-defined on ordertypes:

Lemma 4.7. If (X0,≺0) and (X1,≺1) are isomorphic wellorders, then their
associated Ketonen orders are isomorphic. a

This implies in particular that all the characterizations of the Ketonen or-
der from Section 3 generalize to arbitrary wellorders. We will only need the
characterization in terms of semicomparisons:

Lemma 4.8. Suppose (X,≺) is a wellorder and U and W are countably com-
plete ultrafilters on X. Then the following are equivalent:

(1) U ≺k W .
(2) There is a semicomparison (k, h) : (MU ,MW ) → N of (jU , jW ) such that

k([id]U ) ≺∗ h([id]W ) where ≺∗ = k ◦ jU (≺). a
The following lemma is evident:

Lemma 4.9. The following are equivalent:

(1) For all countably complete ultrafilters U and W on ordinals, either U <k W
or W ≤k U .

(2) The relation <k restricts to a linear order on the class of countably complete
fine ultrafilters on ordinals.

(3) For any ordinal α, the relation <k restricts to a linear order on the set of
countably complete ultrafilters on α.

(4) The Ketonen order associated to any wellorder is a linear order. a
We abbreviate the various equivalent statements from Theorem 4.9 by saying

“the Ketonen order is linear.”

Theorem 4.10. The following are equivalent:

(1) The Ketonen order is linear.
(2) The Ultrapower Axiom holds. a

Theorem 4.10 is an immediate consequence of our next theorem, which shows
how to define a comparison of a pair of ultrafilters given the linearity of the
Ketonen order.

We will use the following terminology which is slightly imprecise but always
clear from context:
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Definition 4.11. If U is a countably complete ultrafilter on X and W is
another countably complete ultrafilter, a cover of jW [U ] is a countably complete
ultrafilter of MW on jW (X) that contains jW [U ].

Theorem 4.12. Assume the Ketonen order is linear. Suppose U and W are
countably complete ultrafilters on ε and δ respectively. Suppose U∗ is a countably
complete ultrafilter of MW on jW (ε) and W∗ is a countably complete ultrafilter
of MU on jU (δ) such that the following hold:

(1) U∗ is <MW

k -minimal among all covers of jW [U ].

(2) W∗ is <MU

k -minimal among all covers of jU [W ].

Then (jMU

W∗
, jMW

U∗
) is a comparison of (jU , jW ).

Let us make a remark regarding Theorem 4.12 (1) that applies equally well to
Theorem 4.12 (2). Theorem 4.12 (1) is formulated externally to MW : indeed,

jW [U ] need not belong to MW . Still, <MW

k is a (truly) wellfounded order on
the class of countably complete ultrafilters of MW on ordinals. Since there is
a countably complete ultrafilter of MW containing jW [U ], namely jW (U), there

must be a <MW

k -minimal cover of jW [U ]. The linearity of the Ketonen order in
fact implies that this cover is unique, but this will not be used in the proof of
Theorem 4.12. In fact, the heart of the proof is contained in a lemma that does
not require the linearity of the Ketonen order at all:

Lemma 4.13. Suppose U and W are countably complete ultrafilters on ε and δ
respectively. Suppose U∗ is a countably complete ultrafilter of MW on jW (ε) and
W∗ is a countably complete ultrafilter of MU on jU (δ) such that the following
hold:

• U∗ is <MW

k -minimal among all covers of jW [U ].
• W∗ is a cover of jU [W ].

For any semicomparison (k, h) : (MMU

W∗
,MMW

U∗
) → P of (jMU

W∗
◦ jU , jMW

U∗
◦ jW ),

the following hold:

h(jMW

U∗
([id]W )) ≤ k([id]W∗)(3)

h([id]U∗) ≤ k(jMU

W∗
([id]U ))(4)

For the proof we need a simple lemma that follows from the irreflexivity of the
Ketonen order:

Lemma 4.14. Suppose W is a countably complete ultrafilter on an ordinal and
k : MW → N and h : MW → N are elementary embeddings from MW to a
common inner model N such that k ◦ jW = h◦ jW . If h is an internal ultrapower
embedding of MW , then h([id]W ) ≤ k([id]W ).

Proof. Note that (k, h) is a semicomparison of (jW , jW ). Assume towards a
contradiction that k([id]W ) < h([id]W ). Then by Theorem 3.6, (k, h) witnesses
that W <k W , which contradicts Theorem 3.20 (or Theorem 5.9 below). a

A significant generalization of Theorem 4.14 is proved in the author’s thesis
[1, Theorem 3.5.10]:
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Figure 1. The proof of Theorem 4.13.

Theorem 4.15. Suppose M and N are inner models, h : M → N and k :
M → N are elementary embeddings, and h is an internal extender ultrapower of
M . Then h(α) ≤ k(α) for all α ∈ Ord. a

In fact, even the assumption that h is an extender ultrapower can be relaxed:
by [1, Theorem 3.5.11], it suffices to assume that h is definable over M from
parameters. For our purposes here, however, Theorem 4.14 is already general
enough.

Proof of Theorem 4.13. We first prove (3). There is a unique elementary
embedding

e : MW →MMU

W∗

such that e ◦ jW = jMU

W∗
◦ jU and e([id]W ) = [id]W∗ . This is defined by setting

e([f ]W ) = [jU (f)]MU

W∗
. We now apply the minimality of internal ultrapower

embeddings of MW (Theorem 4.14). Note that k ◦ e and h ◦ jMW

U∗
are both

elementary embeddings from MW to P , but h ◦ jMW

U∗
is an internal ultrapower

embedding. Moreover,

k ◦ e ◦ jW = k ◦ jMU

W∗
◦ jU = h ◦ jMW

U∗
◦ jW

The final equality comes from the fact that (k, h) is a semicomparison of (jMU

W∗
◦

jU , j
MW

U∗
◦jW ). We can therefore apply Theorem 4.14 to conclude that h(jMW

U∗
([id]W )) ≤

k(e([id]W )) = k([id]W∗), proving (3).
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We now prove (4). To simplify notation, we define the following ordinal:

α = jMU

W∗
([id]U )

Let Z be the ultrafilter of MW on jW (ε) derived from h ◦ jMW

U∗
using k(α). Since

h ◦ jMW

U∗
is an internal ultrapower embedding of MW , Z is a countably complete

ultrafilter of MW on jW (ε). Moreover, Z contains jW [U ]: for any set A ⊆ ε,

jW (A) ∈ Z ⇐⇒ k(α) ∈ h ◦ jMW

U∗
(jW (A))

⇐⇒ k(α) ∈ k ◦ jMU

W∗
(jU (A))

⇐⇒ α ∈ jMU

W∗
(jU (A))

⇐⇒ jMU

W∗
([id]U ) ∈ jMU

W∗
(jU (A))

⇐⇒ [id]U ∈ jU (A)

⇐⇒ A ∈ U

Since U∗ is <MW

k -minimal among all covers of jW [U ], Z 6<k U∗ in MW .

Since Z is derived from h ◦ jMW

U∗
using k(α), there is a factor embedding

i : (MZ)MW → P specified by the following properties:

i ◦ jMW

Z = h ◦ jMW

U∗
(5)

i([id]Z) = k(α)(6)

Note that i is a definable class of MW : it is defined from parameters over MW

by (5) and (6). Therefore by (5), (i, h) is a semicomparison of (jMW

Z , jMW

U∗
) in

MW . The fact that Z 6<k U∗ in MW implies

h([id]U∗) ≤ i([id]Z) = k(α) = k(jMU

W∗
([id]U ))

proving (4). a
Theorem 4.13 can be read as asserting that the natural ultrafilter representing

the embedding jMW

U∗
◦ jW does not exceed the one representing jMU

W∗
◦ jU in

the Ketonen order. To make this precise, we must specify what this natural
ultrafilter is as well as what we mean by the Ketonen order in this context.

Definition 4.16. Suppose U is an ultrafilter on X, and W∗ is an ultrafilter
of MU on jU (Y ). Then U -

∑
W∗ denotes the ultrafilter on X × Y derived from

jMU

W∗
◦ jU using (jMU

W∗
([id]U ), [id]W∗).

Lemma 4.17. Suppose U is an ultrafilter and W∗ is an ultrafilter of MU . Then
jU-

∑
W∗ = jMU

W∗
◦ jU , and [id]U-

∑
W∗ = (jMU

W∗
([id]U ), [id]W∗). a

In the context of Theorem 4.12, we would like to use Theorem 4.13 to conclude
(in ZFC alone) that the ultrafilters U -

∑
W∗ and W -

∑
U∗ are either the same

or else incomparable in the Ketonen order. We will then apply the linearity
of the Ketonen order to conclude that U -

∑
W∗ = W -

∑
U∗. More accurately,

we will show that U -
∑
W∗ is the flip of W -

∑
U∗ (and hence their ultrapowers

coincide):

Definition 4.18. If U is an ultrafilter on X×Y , flip(U) denotes the ultrafilter
on Y ×X consisting of all A ⊆ Y ×X such that {(x, y) ∈ X×Y : (y, x) ∈ A} ∈ U .
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Note that U -
∑
W∗ and W -

∑
U∗ are not ultrafilters on ordinals but rather

on the products ε × δ and δ × ε respectively. Thus instead of using the usual
Ketonen order from Section 3, we will use the Ketonen order associated to the
lexicographic wellorder of pairs of ordinals:

Definition 4.19. Let <lex denote the lexicographic order on pairs of ordinals.

Given this notation, we can now prove Theorem 4.12:

Proof of Theorem 4.12. To prove the theorem, it suffices to show that
U -

∑
W∗ = flip(W -

∑
U∗): then we have jU-

∑
W∗ = jflip(W -

∑
U∗) = jW -

∑
U∗ ,

which by Theorem 4.17 yields jMU

W∗
◦jU = jMW

U∗
◦jW , or in other words, (jMU

W∗
, jMW

U∗
)

is a comparison of (jU , jW ).
We first show:

U -
∑
W∗ 6<k

lex flip(W -
∑
U∗)(7)

Assume towards a contradiction that U -
∑
W∗ <

k
lex flip(W -

∑
U∗). The follow-

ing identities are easily verified using Theorem 4.17:

jU-
∑
W∗ = jMU

W∗
◦ jU jflip(W -

∑
U∗) = jMW

U∗
◦ jW

[id]U-
∑
W∗ = (jMU

W∗
([id]U ), [id]W∗) [id]flip(W -

∑
U∗) = ([id]U∗ , j

MW

U∗
([id]W ))

By Theorem 4.8 (and an application of Theorem 4.17), U -
∑
W∗ <

k
lex flip(W -

∑
U∗)

is equivalent to the existence of a semicomparison

(k, h) : (MMU

W∗
,MMW

U∗
)→ N

of (jMU

W∗
◦ jU , jMW

U∗
◦ jW ) such that

k(jMU

W∗
([id]U ), [id]W∗) <lex h([id]U∗ , j

MW

U∗
([id]W ))

Therefore either k(jMU

W∗
([id]U )) < h([id]U∗) or k([id]W∗) < h(jMW

U∗
([id]W )). Either

way, this contradicts Theorem 4.13.
A similar argument shows:

U -
∑
W∗ 6<k

lex flip(W -
∑
U∗)(8)

By the linearity of the Ketonen order, <k
lex linearly orders the set of count-

ably complete ultrafilters on ε × δ (Theorem 4.9). (7) and (8) therefore imply
U -

∑
W∗ = flip(W -

∑
U∗). a

§5. The Lipschitz order. In this last section, we define a generalization of
the Lipschitz order and raise the question of whether the Ultrapower Axiom is
equivalent to a long determinacy principle.

5.1. The Lipschitz order on subsets of 2ω. We begin by recalling the
definition of Lipschitz reducibility on the Cantor space 2ω.

Definition 5.1. A function f : 2ω → 2ω is Lipschitz if for all x ∈ 2ω, for any
number n < ω, f(x) � n only depends on x � n.

To be absolutely clear, in the definition of a Lipschitz function, when we
say f(x) � n depends only on x � n, we mean that if x′ ∈ 2ω is such that
x′ � n = x � n, then f(x′) � n = f(x) � n.

It will be convenient to define a general concept of a (many-one) reduction:
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Definition 5.2. If G,H ⊆ X, a function f : X → X reduces G to H if for
all x ∈ X, we have x ∈ G if and only if f(x) ∈ H.

Of course, this is just a longwinded way of saying f−1[H] = G, but the ter-
minology suggests that the problem of determining membership in G is reduced
via f to the problem of determining membership in H.

Definition 5.3. If G,H ⊆ 2ω, we say G is Lipschitz reducible to H, and write
G ≤L H, if there is a Lipschitz function f : 2ω → 2ω that reduces G to H.

The following fundamental theorem explains the empirical fact that definable
sets of reals are wellordered by their descriptive set theoretic complexity:

Theorem 5.4 (Wadge, Martin-Monk, Martin). The Borel subsets of 2ω form
a semi-linear, wellfounded hierarchy under the Lipschitz order:

• (Semi-linearity) For any Borel sets G,H ⊆ 2ω, either G ≤L H or H ≤L
2ω \G.

• (Wellfoundedness) Any collection of Borel sets has a ≤L-minimal element.

Under large cardinal hypotheses, this theorem can be extended to more general
pointclasses of definable sets. For example, if there is a proper class of Woodin
cardinals, then the theorem holds with “Borel” replaced by “universally Baire.”
This explains the ubiquity of wellfounded semilinear hierarchies of definability
in descriptive set theory.

Unsurprisingly, Theorem 5.4 does not extend to the more pathological sets of
reals associated with the Axiom of Choice. With regard to semi-linearity, an
easy recursive argument using AC produces G,H ⊆ 2ω such that G 6≤L H and
H 6≤L 2ω \G. Given the failure of semi-linearity, it is reasonable in the context
of undefinable sets to make the following definition:

Definition 5.5. A function f : 2ω → 2ω is a contraction if for all x ∈ 2ω, for
all numbers n < ω, f(x)(n) depends only on x � n.

Again, to be clear, that f(x)(n) depends only on x � n means that if x′ ∈ 2ω

is such that x′ � n = x � n, then f(x′)(n) = f(x)(n).
A contraction is literally a contraction mapping of the metric space 2ω with

Lipschitz constant 1
2 . It is tempting to try to define a strict Lipschitz order by

setting G <L H if G is reducible to H by a contraction, but in fact there are
many G ⊆ 2ω such that G <L G. The true constraint is given by the following
theorem:

Proposition 5.6. No contraction of 2ω reduces a set to its complement.

Proof. Suppose f : 2ω → 2ω is a contraction and G ⊆ 2ω. By the Contrac-
tion Mapping Theorem, f has a unique fixed point x. (Explicitly, x is defined by
setting x(n) = f(x � n).) Now f cannot reduce G to 2ω \G or else we have x ∈ G
if and only if f(x) ∈ 2ω \G, or in other words, x ∈ G if and only if x /∈ G. a

This motivates the definition of the strict Lipschitz order:

Definition 5.7. For G,H ⊆ 2ω, G <L H if G is reducible to both H and
2ω \H via contractions.
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Clearly G <L H implies G ≤L H and H 6≤L G (using Theorem 5.6 and the
easily verified fact that G ≤L H <L I implies G <L I). If the conclusion of
Theorem 5.4 holds for G and H, the converse is also true. Moreover if H is
self-dual, then G <L H if and only if G is reducible to H by a contraction.

5.2. The Lipschitz order on subsets of 2δ. Fix an ordinal δ. We define
Lipschitz functions on 2δ and the Lipschitz order on subsets of 2δ as a direct
generalization of the concepts from the previous section.

Definition 5.8. A function f : 2δ → 2δ is:

• Lipschitz if for all x ∈ 2δ, for all α < δ, f(x) � α depends only on x � α.
• a contraction if for all x ∈ 2δ, f(x)(α) depends only on x � α.

To be absolutely clear, in the definition of a Lipschitz function, when we
say f(x) � α depends only on x � α, we mean that if x′ ∈ 2δ is such that
x′ � α = x � α, then f(x′) � α = f(x) � α. The meaning is similar in the
definition of a contraction.

Note that every contraction is Lipschitz. Every contraction has a unique fixed
point, defined by recursion setting x(α) = f(x � α). We therefore obtain the
analog of Theorem 5.6:

Theorem 5.9. No contraction of 2δ reduces a set to its complement. a

We can now define the Lipschitz order and the strict Lipschitz order:

Definition 5.10. Suppose G,H ⊆ 2δ.

• G ≤L H if G is reducible to H by a Lipschitz function.
• G <L H if G is reducible to both H and 2δ \H by contractions.

The following is an immediate consequence of Theorem 5.9:

Lemma 5.11. <L is irreflexive. a

We now consider the Lipschitz order on ultrafilters. Note that 2δ is isomorphic
to P (δ), so any subset of P (δ) can be identified with a subset of 2δ. To avoid
confusion, we make this identification completely explicit:

Definition 5.12. For each S ⊆ δ, let χS ∈ 2δ denote the characteristic func-
tion of S. For any set G ⊆ P (δ), let G̃ = {χS : S ∈ G}.

Under UA, the relationship between the two orders is quite simple:

Theorem 5.13 (UA). If U and W are countably complete ultrafilters on δ,

then U ≤k W if and only if Ũ ≤L W̃ .

To prove this, we will characterize the Ketonen order as a refinement of the
Lipschitz order.

Definition 5.14. A function f : 2δ → 2δ is countably complete if it is a
countably complete endomorphism of the Boolean algebra 2δ.

In our view, the following theorem offers a very different perspective on the
Ketonen order, even though it is ultimately a rather simple reformulation of the
definition:
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Theorem 5.15. If U and W are countably complete ultrafilters on δ, then
U ≤k W if and only if Ũ is reducible to W̃ by a countably complete Lipschitz
function.

Proof. Suppose f : 2δ → 2δ is a function. Let Uf = 〈Ufα : α < δ〉 be defined
by Ufα = {S ⊆ δ : α ∈ f(χS)}. Then the following hold:

• The function f 7→ Uf is a bijection.
• f is countably complete if and only if each Uα is a countably complete

ultrafilter.
• f is Lipschitz if and only if each Uα concentrates on α+ 1.
• f reduces Ũ to W̃ if and only if U = W - limα<δ U

f
α .

The theorem follows. a

The analog of Theorem 5.15 for the strict Ketonen order is not as pretty. The
issue is that no function from 2δ to itself is both a contraction and a Boolean
homomorphism; there is no ultrafilter that concentrates on 0. We do not even
formulate the analog (although it is not that difficult to do), but we do record
the following fact, which follows from the proof of Theorem 5.15:

Lemma 5.16. If U and W are countably complete ultrafilters on δ, then U <k
W implies Ũ <L W̃ . a

Using Theorem 5.15 and Theorem 5.16, we can prove Theorem 5.13.

Proof of Theorem 5.13. By Theorem 5.15, the Lipschitz order extends the
Ketonen order. To finish, it suffices to show the converse. Fix countably complete
ultrafilters U and W on δ. Assume Ũ ≤L W̃ , and we will show U ≤k W . Suppose
not. Then W <k U by the linearity of the Ketonen order. Now Theorem 5.16
yields W̃ <L Ũ . It follows that W̃ <L Ũ ≤L W̃ , so W̃ <L W̃ , contradicting that
<L is irreflexive (Theorem 5.11). a

Notice that for G,H ⊆ 2δ, G ≤L H if and only if Player II has a winning
strategy in the long Lipschitz game:

Definition 5.17. Suppose δ is an ordinal and G,H ⊆ 2δ. The long Lipschitz
game GL(G,H) is a two-player game of length 2 · δ on {0, 1}. In a play of
GL(G,H), I and II alternate playing 0s and 1s with I playing at all even stages
(including limits). In this way, I and II produce elements xI, xII ∈ 2δ, and II is
declared the winner if either of the following conditions is met:

• xI ∈ G and xII ∈ H.
• xI /∈ G and xII /∈ H.

The linearity of the Lipschitz order can be recast as a long determinacy prin-
ciple which follows from UA.

Definition 5.18. Lipschitz Determinacy for Ultrafilters on δ (LDUδ) is the

statement that for all countably complete ultrafilters U and W on δ, GL(Ũ , W̃ )
is determined. Lipschitz Determinacy for Ultrafilters (LDU) states that LDUδ

holds for all ordinals δ.

Theorem 5.19 (UA). Lipschitz Determinacy for Ultrafilters holds. a

Our main open question is whether the converse holds:
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Question 5.20. Does LDU imply the Ultrapower Axiom?

There are some interesting consequences of Ultrafilter Determinacy. For ex-
ample, the proof of Theorem 3.3 generalizes to show the following:

Proposition 5.21. The Lipschitz order and the Mitchell order coincide on
normal ultrafilters. Thus LDU implies that the Mitchell order is linear on normal
ultrafilters. a

It is not clear whether one can even prove the wellfoundedness of the Lipschitz
order on countably complete ultrafilters, even assuming LDU. On the other hand,
using the Martin-Monk proof of the wellfoundedness of the Wadge order, one can
establish the following curious fact:

Proposition 5.22 (ZF+ DC). If every set of reals has the Baire Property,
then for all ordinals δ, the Lipschitz order is wellfounded on subsets of 2δ. a

One can actually use this observation along with the characterization of the
Ketonen order in Theorem 5.15 to give a very different proof of the wellfound-
edness of the Ketonen order.

Question 5.23 (ZF + DC). Does the Axiom of Determinacy imply LDU?
Does the Axiom of Determinacy imply the linearity of the Mitchell order on
normal ultrafilters?

In fact, the Axiom of Determinacy does imply LDUδ if δ < ω3. It seems
plausible that one can show LDUδ holds for all δ < ℵε0 using Jackson’s analysis
of ultrafilters on projective ordinals.

The possible structure of the Lipschitz order on arbitrary subsets of large
ordinals is itself far from clear:

Definition 5.24. If δ is an ordinal, then Lipschitz Determinacy holds at δ
(LDδ) if for all G,H ⊆ 2δ, GL(G,H) is determined.

The principle ADR implies LDα for all countable ordinals α, since it implies
determinacy for all games of countable length. It is not clear whether LDα for
countable α follows from AD alone. A more interesting question is whether
Lipschitz Determinacy consistently extends to uncountable ordinals:

Question 5.25 (ZF + DC). Is LDω1
consistent? Can LDδ hold for all δ < Θ?

What about LDδ for all ordinals δ?
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